时间:2023-03-22 17:36:43
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇数学建模论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
在过去常规的数学分析教学课程只要以公式推导、定理证明为主要教学内容,却对数学分析的应用思想以及融合贯通少有讲授。这就导致学生们虽熟练掌握这门课程的理论知识,但是学生们将掌握的知识应用于实际问题的解决过程中却存在效果不满意,或无法学以致用。因此学生会形成数学的掌握仅仅是为了考试而学习,无现实意义等错误思想。若在数学分析的教学过程中融合数学建模方式进行教学,利用数学建模思想来熏陶学生,通过通过将数学的意义思想完整的进行介绍,将数学概念与公式的实际源头与应用情况进行宣教,使学生充分了解数学与实际生活之间存在的密切关系。首先,通过利用数学建模思想融入数学分析的教学课程中可有效促进学生数学的行使效果。适当配合数学模型方式糅合数学分析的理论知识与实际方法,可帮助学生迅速理解数学分析的内容概念,全面掌握理论知识与实践能力。其次,利用数学建模思想促进学生的数学学习兴趣,以改善在教学过程中因理论性复杂、定义生涩难懂导致学生学习积极性不高以及枯燥乏味等数学教学问题。因此,在数学分析的教学中融合数学建模教学方式具有巨大的应用价值。
2数学建模思想在概念教学中的渗透
按照大范围来讲,数学分析的内容中包含了函数、导数、积分等数学概念,这类概念均属于实际事物数量表现或空间形式概括而来的数学模型。在数学教学过程我们可以根据概念的具体事物原型或平时生活中易见到的事物进行引用,让学生了解到理论上的概念性知识不仅仅存在与课本中,更与日常生活中具有紧密的关系。对此,老师在教学相关概念知识时,最好联系实际,创造合适的学习环境,为学生在学习过程中通过适当的观察、想象、研究、验证等方式来主导学生的教学活动。例如微积分教学中,刚开始感觉其较为抽象笼统,不过仔细观察其形成过程会发现其实具有较多的基础原型,通过旋转体体积、曲边梯形面积等具体问题紧密联系,应用微元法求解即可得出积分这个较为抽象的概念。通过适当的取材,建立概念模型,引导学生对教学的积极兴趣,可比简单的利用数学符号来描述抽象概念要具体生动得多。
3数学建模思想在定理证明中的渗透
在数学分析课程中存在较多的定理,而怎样在教学过程中让学生熟练掌握带来并应用则成为目前数学分析教学中较为困难的。其实在书本中大部分定理是有着具体的意义,不过在通过笼统的刻印组书本中后导致定理创造者实际想法无法清晰表现在其中,致使学生在接受定理教学中感到茫然。对此,在定理教学过程老师应结合该定理知识的源指出处以及历史渊源,从而促进学生的求知欲取进一步了解该定理的意义与作用。同时应用建模思想将定理作为模型的一类,利用前期设计的特定问题引导学生逐步发现定理定论,通过这种方式让学生在吸收定理知识的过程中体验到研究探索发现的重要性,为学生树立的创新观念。
4数学建模思想在课题中的渗透
数学分析教学中需要讲解大量课题,通过对具有代表性的课题进行讲解以达到促进应用知识解题的能力并巩固。但是在过去传统的课题讲解中,与应用相关的问题教学较少,仅有的少部分也是条件满足解答肯定的情况,这不利于学生创新性思维培养。因此,在课题讲解中尽量选取以具体应用的问题作为例题,设置相应的问题来引导学生发现其中存在的错误,并结合自身知识来解决其错误,通过建立模型的方式来进一步巩固自身知识。
5数学建模思想在考试命题中的渗透
目前数学分析的教学考试中试题的设置普遍以书本课题为主,又或者直接将某些例题设置成选择或填空的答题方式,却缺少开放型的试题或全面考察学生是否掌握数学知识应用解决实际问题的试题。可能目前这种考试设题方式对老师的阅卷提供了便利,但是往往也造成部分学生在课本考试中分数较高,但在解决实际具体问题往往存在不足,对学生思维中形成了为考试而学习,忽略了对数学概念的理解,导致具体问题解决能力不足。对此,可利用数学建模思维去设置一部分开放型试题,利于学生在解题过程中将所学的数学建模方式应用与具体中,以此来观察学生的数学素质以及知识水平并适当修改教学方案。又或者通过命题论文的方式来了解学生综合水平,学生通过将自身所学知识进行适当的总结,探讨自身学习体会,来加强学生对相关知识的进一步理解,深化了数学建模思想的渗透。
6结语
随着高职教育改革的不断深化,高职院校毕业生的就业能力和竞争力有所提高,就业状况不断改善,但毕业生就业形势仍然十分严峻。这固然有节节攀升的毕业生数、毕业生自身就业观念、供需结构失衡等方面的问题,但毕业生综合素质不够高、就业能力不够强等方面的问题依然突出。就业能力是指学生在校期间通过知识学习和综合素质开发而获得的能够实现就业理想,满足社会需要,保持工作及晋升和继续发展的内在素质和才能,是一种与职业相关的综合能力。“职业素养”、“专业知识与技能”、“学习能力”、“实践能力”、“社会适应能力”、“创新能力”、“与人交往能力”、“规划与应聘能力”等,是高职院校学生应具备的基本就业能力。对于高职院校毕业生,用人单位更看重其“专业技能”、“实际操作能力”、“学习能力”、“敬业精神”“、沟通协调能力”、“创新能力”等方面的能力素质。而“学习能力”、“运用知识解决问题能力”、“沟通协调能力”、“创新能力”这些基本就业能力是高职院校学生比较欠缺的素质。
二数学建模对培养学生就业能力的作用
笔者在指导学生参加全国大学生数学建模竞赛的过程中,体会到数学建模活动对高职院校的学生的综合素质和就业能力的提升起着十分重要的作用,有利于高职教育人才培养目标的实现。
1提升学生自主学习的能力
数学建模竞赛赛题所涉及的知识面较广,甚至有许多是学生未曾涉及过的领域(如,2012年赛题中的C题:“脑卒中发病环境因素分析及干预”与医学领域有关),学生仅凭已有的知识是难以甚至不能完成竞赛,这就要求学生不仅需要复习好已经学过的知识,还必须积极、主动去学习新知识,扩大知识面,如,数学软件的使用、论文写作方法、不包括在高职人才培养方案中的一些数学内容(如数值计算等)、查找相关文献资料并从大量文献中吸取所需知识的技巧等知识,学生都须通过自主学习的途径来掌握。这个过程有助于学生自主学习能力的提升。
2提升学生运用知识解决问题的能力
数学建模是一个将错综复杂的实际问题简化、抽象为合理的数学结构的过程。在建模过程中,就是要针对生产或生活中的实际问题,通过观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,结合数学及其他专业知识的理论和方法去分析、建立起反映实际问题的数量关系。这个过程就是运用所学的数学知识和其他专业知识的过程。数学建模竞赛题涉及的数据量往往大且复杂,求解、运算过程十分繁琐,手工计算很难甚至无法得到结果,需要使用计算机来辅助解决问题,例如,常使用MATLAB等数学软件进行模型初建、模型合理性分析、模型改进等;使用SPSS等数理统计类软件,完成数据处理、图形变换和问题求解等工作,这是个运用计算机知识的过程。可见,数学建模能培养学生运用数学及其他专业知识、计算机知识等解决实际问题的能力,有利于拓宽学生的就业技能。
3提升学生分析问题和创造性解决问题的能力
培养创新能力数学建模赛题来自于实际问题之中,有极强的实际应用背景,而对竞赛选手完成的答卷(论文)的评价一般没有标准答案,评价时主要是看对问题所做假设的合理性、建模的创造性、结论的正确性和文字表述的清晰程度,评审者更青睐有独特创意的论文。这就要求参赛学生充分发挥想像力、创造力,在通过分析、讨论,迅速洞察问题的实质和特征之后,做出合理的假设,并综合运用数学知识和其他相关知识,创造性地确定或建立数学模型。可见,数学建模过程是个提升学生的分析问题能力,创造性解决问题的能力的过程,具有培养学生创新能力的作用。
4提升学生的团结协作能力
数学建模竞赛不同于一般竞赛,单独一个队员是无法完成竞赛的,必须通过团队三队员共同的努力,才能在72个小时内完成论文,交上答卷。这要求在竞赛的过程中,需要根据队员的特点,进行分工合作,发挥各自的长处,发挥团队的整体综合实力。在团队中,由有较强组织协调能力的队员来负责协调三人的关系,安排工作流程和工作任务;由有较强写作能力的队员来保证写出较流畅的论文;由有较强计算机应用能力的队员来使用数学软件,负责建立、检验数学模型;竞赛过程中,队员间必须精诚团结、相互配合、集体攻关,才能在竞赛中取胜。因此,数学建模竞赛过程是个提升学生团结协作能力、培养学生的团队精神的过程,这对培养学生适应社会的能力起到积极的作用。
三高职数学建模课程教学改革的思考毋庸置疑
1.数学建模简介
1985年,数学建模竞赛首先在美国举办,并在高等院校广泛开设相关课程。我国在1992年成功举办了首届大学生数学竞赛,并从1994年起,国家教委正式将其列为全国大学生的四项竞赛之一。数学建模是分为国内和国外竞赛两种,每年举行一次。三人为一队,成员各司其职:一个有扎实的数学功底,再者精于算法的实践,最后一个是拥有较好的文采。数学建模是运用数学的语言和工具,对实际问题的相关信息(现象、数据等)加以翻译、归纳的产物。数学模型经过演绎、求解和推断,运用数学知识去分析、预测、控制,再通过翻译和解释,返回到实际问题中[1]。数学建模培养了学生运用所学知识处理实际问题的能力,竞赛期间,对指导教师的综合能力提出了更高的要求。
2.数学建模科技论文撰写对学生个人能力成长的帮助
2.1.提供给学生主动学习的空间
在当今知识经济时代,知识的传播和更新速度飞快,推行素质教育是根本目标,授人与鱼不如授人与渔。学生掌握自学能力,能有效的弥补在课堂上学得的有限知识的不足。数学建模所涉及到的知识面广,除问题相关领域知识外,还要求学生掌握如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学、数学软件包的使用等。多元的学科领域、灵活多变的技能方法是学生从未接触过的,并且也不可能在短时间内由老师一一的讲解清楚,势必会促使学生通过自学、探讨的方式来将其研懂。给出问题,让学生针对问题去广泛搜集资料,并将其中与问题有关的信息加以消化,化为己用,解决问题。这样的能力将对学生在今后的工作和科研受益匪浅[2]。
在培训期间,大部分学生会以为老师将把数学建模比赛所涉及到的知识全部传授给学生,学生只要在那里坐着听老师讲就能参加比赛拿到名次了。但是当得知竞赛主要由学生自学完成,老师只是起引导作用时,有部分学生选择了放弃。坚持下来的学生,他们感谢学校给与他们这样能够培养个人能力的机会,对他们今后受用匪浅!
2.2.体验撰写综合运用知识和方法解决实际问题这一系列论文的过程
学生在撰写数学建模科技论文的时候,不光要求学生具备一定的数学功底、有良好的计算机应用能力、还要求学生具备相关领域知识,从实际问题中提炼出关键信息,并运用所学知识对这些关键信息加以抽象、建立模型。这也是教师一直倡导学生对所学知识不光要记住,而且要会运用。千万不要读死书,死读书,读书死。
2.3.培养了学生的创新意识和实践能力
在撰写过程中潜移默化的培养了学生获取新知识、新技术、新方法的能力,并在解决实际问题的过程中培养学生的创新意识和实践能力。有别于其他竞赛活动,数学建模竞赛培养学生运用所学知识将实际问题数字化的能力,学生要有良好的洞察力,具有从现象抓本质的能力。给出的实际问题,没有唯一的解决方案,要求学生大胆假设,运用所学知识将问题由最简单、最直接的科学方法求解出来[3]。
2.4.团队精神的培养。
数学建模竞赛是由三人组队参加比赛的集体项目。三个人必须要配合默契,团结协作,发挥各自的优势,深刻理解了由三人组队的规则,充分发挥团队精神;不能夸大个人能力,不能自大骄傲,要本着整体高于个人的原则,积极合作。竞赛所提倡的团队精神,将会培养学生尊重他人,具有合作意识,,取长补短,团结协作,患难与共的集体主义优良品格[4]。
有些队伍在组队前期,由于每个人的性格迥异,再加上年龄小,经常会因琐碎小事起争端。比如看待问题、解决问题的思路不统一;生活习惯造成其他人的反感;说话处事不能圆满表达,致使产生矛盾等。经过一年的团队磨合,学生看问题不会从自我出发,面对问题时,会先聆听他人的想法,然后再阐述自己的观点;生活习惯也趋于常理化,不会特立独行;为人处世不会有那么多棱角,会选择以让人能够接受的方式表达出来。
2.5.诚信。
比赛期间,每支参赛队伍都会以诚信为原则,绝不会去窃取他人作品,实事求是。作为学生的指导教师更是以身作则,要求学生自己独立完成,要脱离教师的指导,并且会在全程进行监督。
论文关键词:遗传算法
1 引言
“物竞天择,适者生存”是达尔文生物进化论的基本原理,揭示了物种总是向着更适应自然界的方向进化的规律。可见,生物进化过程本质上是一种优化过程,在计算科学上具有直接的借鉴意义。在计算机技术迅猛发展的时代,生物进化过程不仅可以在计算机上模拟实现,而且还可以模拟进化过程,创立新的优化计算方法,并应用到复杂工程领域之中,这就是遗传算法等一类进化计算方法的思想源泉。
2 遗传算法概述
遗传算法是将生物学中的遗传进化原理和随[1]优化理论相结合的产物,是一种随机性的全局优算法。遗传算法不但具有较强的全局搜索功能和求解问题的能力,还具有简单通用、鲁棒性强、适于并行处理等特点数学建模论文,是一种较好的全局优化搜索算法。在遗传算法的应用中,由于编码方式和遗传算子的不同,构成了各种不同的遗传算法。但这些遗传算法都有共同的特点,即通过对生物遗传和进化过程中选择、交叉、变异机理的模仿,来完成对问题最优解的自适应搜索过程。基于这个共同点,Holland的遗传算法常被称为简单遗传算法(简记SGA),简单遗传算法只使用选择算子、交叉算子和变异算子这三种基本遗传算子,其遗传进化操作过程简单,容易理解,是其他一些遗传算法的雏形和基础,这种改进的或变形的遗传算法,都是以其为基础[1]。
2.1遗传算法几个基本概念
个体(IndividualString):个体是遗传算法中用来模拟生物染色体的一定数目的二进制串,该二进制串用来表示优化问题的满意解。
种群(population):包含一组个体的群体,是问题解的集合。
基因模式(Sehemata):基因模式是指二进制位串表示的个体中,某一个或某些位置上具有相似性的个体组成的集合,也称模式。
适应度(Fitness):适应度是以数值方式来描述个体优劣程度的指标,由评价函数F计算得到。F作为求解问题的目标函数,求解的目标就是该函数的最大值或最小值。
遗传算子(genetic operator):产生新个体的操作,常用的遗传算子有选择、交叉和变异。
选择(Reproduetion):选择算子是指在上一代群体中按照某些指标挑选出的,参与繁殖下一代群体的一定数量的个体的一种机制龙源期刊。个体在下一代种群中出现的可能性由个体的适应度决定,适应度越高的个体,产生后代的概率就越高。
交叉(erossover):交叉是指对选择后的父代个体进行基因模式的重组而产生后代个体的繁殖机制。在个体繁殖过程中,交叉能引起基因模式的重组,从而有可能产生含优良性能的基因模式的个体。交叉可以发生在染色体的一段基因串或者多段基因串。交叉概率(Pc)决定两个个体进行交叉操作的可能性数学建模论文,交叉概率太小时难以向前搜索,太大则容易破坏高适应度的个体结构,一般Pc取0.25~0.75
变异(Mutation):变异是指模拟生物在自然的遗传环境中由于某种偶然因素引起的基因模式突变的个体繁殖方式。在变异算子中,常以一定的变异概率(Pm)在群体中选取个体,随机选择个体的二进制串中的某些位进行由概率控制的变换(0与1互换)从而产生新的个体[2]。如果变异概率太小,就难以产生新的基因结构,太大又会使遗传算法成了单纯的随机搜索,一般取Pm=0.1~0.2。在遗传算法中,变异算子增加了群体中基因模式的多样性,从而增加了群体进化过程中自然选择的作用,避免早熟现象的出现。
2.2基本遗传算法的算法描述
用P(t)代表第t代种群,下面给出基本遗传算法的程序伪代码描述:
基本操作:
InitPop()
操作结果:产生初始种群,初始化种群中的个体,包括生成个体的染色体值、计算适应度、计算对象值。
Selection()
初始条件:种群已存在。
操作结果:对当前种群进行交叉操作。
Crossover()
初始条件:种群已存在。
操作结果:对当前种群进行交叉操作。
Mutation()
初始条件:种群已存在。
对当前种群进行变异操作。
PerformEvolution()
初始条件:种群已存在且当前种群不是第一代种群。
操作结果:如果当前种群的最优个体优于上一代的最优本,则将其赋值给bestindi,否则不进行任何操作。
Output()
初始条件:当前种群是最后一代种群。
操作结果:输出bestindi的表现型以及对象值。
3 遗传算法的缺点及改进
遗传算法有两个明显的缺点:一个原因是出现早熟往往是由于种群中出现了某些超级个体,随着模拟生物演化过程的进行,这些个体的基因物质很快占据种群的统治地位,导致种群中由于缺乏新鲜的基因物质而不能找到全局最优值;另一个主要原因是由于遗传算法中选择及杂交变异等算子的作用,使得一些优秀的基因片段过早丢失,从而限制了搜索范围,使得搜索只能在局部范围内找到最优值,而不能得到满意的全局最优值[3]。为提高遗传算法的搜索效率并保证得到问题的最优解,从以下几个方面对简单遗传算法进行改进。
3.1编码方案
因实数编码方案比二进制编码策略具有精度高、搜索范围大、表达自然直观等优点数学建模论文,并能够克服二进制编码自身特点所带来的不易求解高精度问题、不便于反应所求问题的特定知识等缺陷,所以确定实数编码方案替代SGA中采用二进制编码方案[4]。
3.2 适应度函数
采用基于顺序的适应度函数,基于顺序的适应度函数最大的优点是个体被选择的概率与目标函数的具体值无关,仅与顺序有关[5]。构造方法是先将种群中所有个体按目标函数值的好坏进行排序,设参数β∈(0,1),基于顺序的适应度函数为:
(1)
3.3 选择交叉和变异
在遗传算法中,交叉概率和变异概率的选取是影响算法行为和性能的关键所在,直接影响算法的收敛性。在SGA中,交叉概率和变异概率能够随适应度自动调整,在保持群体多样性的同时保证了遗传算法的收敛性。在自适应基本遗传算法中,pc和pm按如下公式进行自动调整:
(2)
(3)
式中:fmax为群体中最大的适应度值;fave为每代群体的平均适应度值;f′为待交叉的两个个体中较大的适应度值;f为待变异个体的适应度值;此处,只要设定k1、k2、k3、k4为(0,1)之间的调整系数,Pc及Pm即可进行自适应调整。本文对标准的遗传算法进行了改进,改进后的遗传算法对交叉概率采用与个体无关,变异概率与个体有关。交叉算子主要作用是产生新个体,实现了算法的全局搜索能力。从种群整体进化过程来看,交叉概率应该是一个稳定而逐渐变小,到最后趋于某一稳定值的过程;而从产生新个体的角度来看,所有个体在交叉操作上应该具有同等地位,即相同的概率,从而使GA在搜索空间具有各个方向的均匀性。对公式(2)和(3)进行分析表明,适应度与交叉率和变异率呈简单的线性映射关系。当适应度低于平均适应度时,说明该个体是性能不好的个体数学建模论文,对它就采用较大的交叉率和变异率;如果适应度高于平均适应度,说明该个体性能优良,对它就根据其适应度值取相应的交叉率和变异率龙源期刊。
当个体适应度值越接近最大适应度值时,交叉概率和变异概率就越小;当等于最大适应度值时,交叉概率和变异概率为零。这种调整方法对于群体处于进化的后期比较合适,这是因为在进化后期,群体中每个个体基本上表现出较优的性能,这时不宜对个体进行较大的变化以免破坏了个体的优良性能结构;但是这种基本遗传算法对于演化的初期却不利,使得进化过程略显缓慢[6]。因为在演化初期,群体中较优的个体几乎是处于一种不发生变化的状态,而此时的优良个体却不一定是全局最优的,这很容易导致演化趋向局部最优解。这容易使进化走向局部最优解的可能性增加。同时,由于对每个个体都要分别计算Pc和Pm,会影响程序的执行效率,不利于实现。
对自适应遗传算法进行改进,使群体中具有最大适应度值的个体的交叉概率和变异概率不为零,改进后的交叉概率和变异概率的计算公式如式(4)和(5)所示。这样,经过改进后就相应地提高了群体中性能优良个体的交叉概率和变异概率,使它们不会处于一种停滞不前的状态,从而使得算法能够从局部最优解中跳出来获得全局最优解[7]。
(4)
(5)
其中:fmax为群体中最大的适应度值;fave为每代群体的平均适应度值;f′为待交叉的两个个体中较大的适应度值;f为待变异个体的适应度值;pc1为最大交叉概率;pm1为最大变异概率。
3.4 种群的进化与进化终止条件
将初始种群和产生的子代种群放在一起,形成新的种群,然后计算新的种群各个体的适应度,将适应度排在前面的m个个体保留,将适应度排在后面m个个体淘汰数学建模论文,这样种群便得到了进化[8]。每进化一次计算一下各个个体的目标函数值,当相邻两次进化平均目标函数之差小于等于某一给定精度ε时,即满足如下条件:
(6)
式中,为第t+1次进化后种群的平均目标函数值,为第t次进化后种群的平均目标函数值,此时,可终止进化。
3.5 重要参数的选择
GA的参数主要有群里规模n,交叉、变异概率等。由于这些参数对GA性能影响很大,因此参数设置的研究受到重视。对于交叉、变异概率的选择,传统选择方法是静态人工设置。现在有人提出动态参数设置方法,以减少人工选择参数的困难和盲目性。
4 结束语
遗传算法作为当前研究的热点,已经取得了很大的进展。由于遗传算法的并行性和全局搜索等特点,已在实际中广泛应用。本文针对传统遗传算法的早熟收敛、得到的结果可能为非全局最优收敛解以及在进化后期搜索效率较低等缺点进行了改进,改进后的遗传算法在全局收敛性和收敛速度方面都有了很大的改善,得到了较好的优化结果。
参考文献
[1]邢文训,谢金星.现代优化计算方法[M].北京:清华大学出版社,1999:66-68.
[2]王小平,曹立明.遗传算法理论[M].西安交通大学出版社,2002:1-50,76-79.
[3]李敏强,寇纪淞,林丹,李书全.遗传算法的基本理论与应用[M].科学出版社, 2002:1-16.
[4]涂承媛,涂承宇.一种新的收敛于全局最优解的遗传算法[J].信息与控制,2001,30(2):116-138
[5]陈玮,周激,流程进,陈莉.一种改进的两代竞争遗传算法[J].四川大学学报:自然科学版,2003.040(002):273-277.
[6]王慧妮,彭其渊,张晓梅.基于种群相异度的改进遗传算法及应用[J].计算机应用,2006,26(3):668-669.
[7]金晶,苏勇.一种改进的自适应遗传算法[J].计算机工程与应用,2005,41(18):64-69.
[8]陆涛,王翰虎,张志明.遗传算法及改进[J].计算机科学,2007,34(8):94-96
课程是高校教育教学活动的载体,是学生掌握理论基础知识和提高综合运用知识能力的重要渠道,学生创新能力的形成必定要落实在课程教学活动的全过程中。“数学建模”是一门理论与实践紧密结合的数学基础课程,课程的许多案例来源于实际生活,其学习过程让学生体验了数学与实际问题的紧密联系。数学建模课程从教学理念及教学方法上有别于传统的数学课程,它是将培养学生的创新实践能力作为主要任务,利用课程体系完成创新能力的培养。由于课程教学内容系统性差,建模方法涉及多个数学分支,课程结束后还存在着学生面对实际问题无从下手解决的现象。通过深入研究课程教学体系,将传授知识和实践指导有机结合,实施以数学建模课程教学为核心,以竞赛和创新实验为平台的新课程教学模式。
一、数学建模课程对培养创新人才的作用
(一)提高实践能力
数学建模课程案例主要来源于多领域中的实际问题,它不仅仅是单一的数学问题,具有数学与多学科交叉、融合等特点。课程要求学生掌握一般数学基础知识,同时要进一步学习如微分方程、概率统计、优化理论等数学知识。这就需要学生有自主学习“新知识”的能力,还要具备运用综合知识解决实际问题的能力。因此,数学建模课程对于大学生自学能力和综合运用知识能力的培养具有重要作用。
(二)提高创新能力
数学建模方法是解决现实问题的一种量化手段。数学建模和传统数学课程相比,是一种创新性活动。面对实际问题,根据数据和现象分析,用数学语言描述建模问题,再进行科学计算处理,最后反馈到现实中解释,这一过程没有固定的标准模式,可以采用不同方法和思路解决同样的问题,能锻炼学生的想象力、洞察力和创新能力。
(三)提高科学素质
面对复杂的实际问题,学生不仅要学会发现问题,还要将问题转化为数学模型,利用数学方法和计算软件提出方案用于解释实际问题。由于数学建模知识的宽泛性,需要学生分工合作完成建模过程,各成员的知识结构侧重点有所不同,彼此沟通、讨论有助于大学生相互交流与协作能力的培养,最终的成果以科学研究论文的形式体现,科学论文撰写过程提高了学生科学研究的系统性。
二、基于数学建模课程教学全方位推进创新能力培养的实践
(一)分解教学内容增强课程的适应性
根据学生的接受能力及数学建模的发展趋势,在保持课程理论体系完整性和知识方法系统性的基础上,教学内容分解为课堂讲授与课后实践两部分。课堂教师讲授数学建模的基础理论和基本方法,精讲经典数学模型及建模应用案例,启发学生数学建模思维,激发学生数学建模兴趣;课后学生自己动手完成课堂内容扩展、模型运算及模型改进等,教师答疑解惑。课堂教学注重数学建模知识的学习,课后教学重在知识的运用。随着实际问题的复杂化和多元化,基本的数学建模方法及计算能力满足不了实际需求。课程教学中还增加了图论、模糊数学等方法,计算机软件等初级知识。
(二)融入新的教学方法提高学生的参与度
1.课堂教学融入引导式和参与式教学方法。数学建模涉及的知识很多是学生学过的,对学生熟悉的方法,教师以引导学生回顾知识、增强应用意识为主,借助应用案例重点讲授问题解决过程中数学方法的应用,引导学生学习数学建模过程;对于学生不熟悉的方法,则要先系统讲授方法,再分析講解方法在案例中的应用,引导学生根据问题寻找方法。此外,为了增强学生学习的积极性和效果,组织1~2次专题研讨,要求学生参与教学过程,教师须做精心准备,选择合适教学内容、设计建模过程、引导学生讨论、纠正错误观点。
2.课后实践实施讨论式和合作式教学方法。在课后实践教学中,提倡学生组成学习小组,教师参与小组讨论共同解决建模问题。学生以主动者的角色积极参与讨论、独立完成建模工作,并进行小组建模报告,教师给予点评和纠正。对那些没有彻底解决的问题,鼓励学生继续讨论完善。通过学生讨论、教师点评、学生完善这一过程,极大地调动了学生参与讨论、团队合作的热情。同时,教师鼓励学生自己寻找感兴趣的问题,用数学建模去解决问题。
3.课程综合实践推进研究式教学方法。指导学生在参加数学建模竞赛、学习专业知识、做毕业设计及参与教师科研等工作中,学习深入研究建模解决实际问题的方法,通过多层次建模综合实践能提高分析问题、选择方法、实施建模、问题求解、编程实践、计算模拟的综合能力,进而提高创新能力。
(三)融合多种教学手段,提高课程的实效性
1.利用网站教育平台实施线上课堂教学。线上教学要选取难易适中,不宜太专业化,便于自学,并具有与课堂教学承上启下功能,服务和巩固课程的需要的内容,利用互联网云教育平台,学习多媒体课件、教学视频,及通过提供的相关资料来学习。教师还可通过网站问题、解答疑难、组织讨论,学生通过网站学习知识、提交解答、参与讨论。学生能更有效地利用零散时间,培养自我约束、管理时间的意识和能力。
2.充分利用多媒体课件与黑板书写相结合的课堂教学手段。根据课堂教学要求,规划设计制作课件与黑板书写的具体内容,同时连接好线上的学习成效推进课堂教学。课件主要介绍问题背景、分析假设、建模方法、算法程序和模型结果,而模型推导和分析求解的具体过程,则通过板书展示增加了课堂教学的信息量,也促进学生消化理解难点和技巧。
3.指导学生小组学习的课后教学手段。指导学生以学习小组为单位开展建模学习与实践活动,提倡不同专业学生之间的相互学习、取长补短,通过学习与讨论增强学生自主学习的意识和能力。数学建模过程不是解应用题,虽然没有唯一途径,但也有规律可循,在小组学习中发挥团队力量、提高建模能力。
(四)构建多层次建模问题,培养学生创新能力
案例选择、教学设计、知识衔接是数学建模在创新型人才培养中的关键。
1.课堂教学建模问题。课堂教学通过应用案例讲解有关建模方法,所选问题包括两类:一是基本类型,围绕大学数学课程主要知识点的简单建模问题,如物理、日常生活等传统领域中的建模问题,学生既能学习建模方法又能感受数学知识的应用价值;二是综合类型,涵盖几个数学知识点的综合建模问题,如SAS的传播。问题要有一定思考的空间,且在教师的分析和引导下学生能够展开讨论。
2.课后实践建模问题。课后学生要以学习小组为单位完成教师布置的数学建模问题。问题要围绕课堂教学内容,难易适当,层次可分,以便学生选择和讨论。同时,问题还要有明确的实际背景,能将数据处理、数值计算有机结合起来。另一方面,鼓励学生学会发现日常生活和专业学习中的建模问题,引导学生提出正确的思考方向,帮助学生给出解决问题的方案。
(五)组织多元化过程考核,注重学习阶段效果
1.课堂内外考试与网上在线考试相结合的过程考核。教师按照教学要求将考试可以分解两种形式:课堂内结合应用案例组织课堂讨论,通过学生参与情况实施考核;课堂外针对基础知识可实施在线测试,对综合知识点设计一定量的大作业,根据学生完成情况实施考核,也允许学生自主选题完成大作业。
2.课程教学结束的综合考核。课程综合考核重点在于测试学生知识综合运用能力,可以采取两种形式之一。一是集中考试法,试题包括有标准答案的基础知识、课堂讲授的建模案例、完全开放的实际问题;考试采取“半开卷”形式,即可以携带一本教材,但不能与他人讨论。二是建模竞赛实践的考核法。数学建模选修课期间刚好组织东北三省数学建模联赛和校内数学建模竞赛,鼓励学生参加竞赛,依据竞赛论文实施考核。
在考核成绩评定上,采用综合计分方式,弱化期末考核权重,加大过程考核分量,注重过程学习,提高考核客观性。
(六)教学团队建设
当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。
建模比赛的一般分工是数学模型的建立、程序编写与拟合、论文的叙述。其中论文是评定参赛队伍成绩的好坏、高低、获奖级别的唯一依据,并且也是每组参赛期间成果的结晶,这是相当重要的一部分。那么今天我们就来分享一下有关建模论文的写作的一些注意事项。
首先
论文的评阅原则是
假设的合理性 ;建模的创造性;
结果的合理性 ;表述的清晰性。
在写作的时候可以按照这些要点来给自己一个大概的估计。
我们在写论文的时候,一般是按如下的结构:
1.摘要
2.问题的叙述,问题的分析,背景的分析等
3.模型的假设,符号说明
4.模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)
5.模型的求解
6.模型检验:结果表示、分析与检验,误差分析,……
7.模型评价:特点,优缺点,改进方法,推广……
8.参考文献
9.附录:计算框图、详细图表,……
摘要是整篇论文最精华的部分,也是评阅人最关注的部分。在写摘要时,我们首先要对这个模型进行数学归类,并且通过之前和队友一起进行建模过程中对整体思路有着比较清楚的了解,然后阐述模型的优点、算法特点等,最后对主要结果进行说明,即回答题目所问的全部问题。
对于模型的建立,基本原则是实用、有效,因为我们建立模型是为了解决实际问题的,而不是追求单纯理论数学上的“高大上”。能用初等方法解决就不用高级方法;能用简单方法解决就不用复杂方法;能用被更多人看懂、理解的方法就不用只能少数人看懂、理解的方法。
数学建模鼓励创新,一般出现在模型本身、简化优化的好方法好策略、模型求解、模型检验甚至是模型推广中。切忌为了标新立异而离题。在阐述建模过程时尽可能使用专业的术语,分析要中肯、确切,表述简明,关键步骤要列出。
探究式教学法,不同于传统将知识直接由老师进行传授的教学方法,而将其重心放在学生的“探与究”上。“探”是重头,学生在新接触某个概念和原理时,教师只提供事例和问题,学生通过查阅、观察、记录、实验等途径独立探索。“究”是核心,学生在独立探索的基础上,通过思考、讨论自行发现掌握相应的原理和结论。最后老师结合学生的探究过程对他们的结论进行评价和矫正。在探究过程中,始终强调以学生为主体,学生的自主学习能力都得到加强,相比被动接受教师传授的知识和结论,通过这种方式获取的知识,学生理解更透彻,掌握更牢固。数学建模课程教学中大量源于实际生活的实例,也使得这门课程在教学手段和教学形式上的得以有大量创新,探究式的教学模式尤其适合在本课程的教学中使用,笔者长期承担数学建模课程的教学工作和指导学生开展数学建模竞赛及有关活动,结合多年的实践谈一谈。
探究过程的具体实施
问题驱动 探究过程的驱动是问题,学生的学习活动围绕教师设计的问题展开。教师在这里要做的是,课前根据教学目的和内容,精心挑选有趣,又难度适宜的问题。例如,在一堂数学建模课中,我们以身边的一个具体实例来提出问题:通常1公斤的面,1公斤的馅,包100个汤圆;今天1公斤面不变,馅比1公斤多了,问应多包几个,每个包小一点,还是应少包几个,每个包大一点?实践探索 这是探究过程的关键环节,在教师的组织下,学生自己动手实践如何制订研究计划,如何收集必要的资料和有关的研究方法。基于培养学生团队合作精神的目的,这个过程可将学生分组来完成。例如:包汤圆的问题中,引导学生把问题梳理和抽象出来,一张面积为S的皮,可以包体积为V的馅,如今把这张面积为S的皮,分成n张面积为s的皮,每张面积为s的皮可以包体积为v的馅,那么问题就转化为了讨论,究竟是V大还是nv大的问题了。这个过程中,一定要让学生思考,是不是需要某些合理的假设,如:不论面皮大小,其厚度都应该一致;不论汤圆大小,其形状都一致(这两个假设很关键)。思考讨论 学生把通过实践探索得到的资料进行思考、梳理、总结,形成自己的结论。各团队就同一问题将自己的结论清楚地表达出来,针对各种不同的观点,共同讨论。评价矫正 在集体讨论、辩论过程中,教师适时给予评价和矫正,分析独特,立意清晰的给予肯定,观点模糊的给予指正,通过融洽的学术交流使大家发现自己的问题所在,不准确、不深入的地方继续完善。
探究式教学中应注意的问题
随着我国高等教育的发展,高校招生规模越来越大,而生源质量较低,特别是独立学院院校。就我校而言,绝大多数专业都开设了数学类课程。但在教学中,普遍认为理论性太强,与实际脱节严重,不能引起学生的学习兴趣。并且,传统教学忽视了学生用数学解决实际问题的能力,所以,进行数学教学改革势在必行。数学建模可培养学生利用数学知识解决实际问题的能力,通过数模方法对实际问题进行巧妙处理,让学生体会到数学不仅能传播理论知识和求解一些数学问题,还可将其应用到实际问题中,让学生看到一些实际模型的来龙去脉,提高学生的学习积极性。数学建模是培养学生综合科学素质和创新能力的一个极好载体,而且能充分考验学生的洞察能力、创新能力、联想能力、使用当代科技最新成果的能力等。学生们同舟共济的团队合作精神和协调组织能力,以及诚信意识和自律精神的塑造,都能得到很好的培养。技能技术的掌握和团队合作精神对于独立学院学生将来进入社会十分重要,这也是衡量独立学院办学成功与否的一个方面。因此,独立学院的人才培养目标定位,既要达到本科生应具备的理论基础,又要有相对突出的专业技能,应培养“应用型本科”人才。因而,独立学院的数学课堂上应该多方面渗透数学模型的思想。
二、数学模型融入数学课堂教学的必要性
(一)人才培养创新的需要
根据独立学院人才培养目标和实际情况,有针对性的加大基础课和实践环节教学的比重,侧重于实践能力的培养,在专业课程体系中适当增加实验、实践教学内容,加强与社会实体的联系。力求培养出具有实际操作能力的高素质大学生。数学建模是将一个实际问题,对其作出一些必要的简化与假设,将其转化成一个数学问题,借助数学工具和数学方法精确或近似地解决该问题,并用数学结果解释客观现象、回答实际问题并接受客观实际的检验。数学建模能弥补传统数学教学在实际应用方面的不足,促进数学教师在现代化教学手段、教学模式方面的更新。数学建模有助于调动学生的学习兴趣,在计算机应用能力、实践能力和创新意识的培养方面都有着非常大的作用,以便学生将来能更好地适应工作岗位。
(二)高校教学改革的需要
当今社会信息高度发达,竞争日益激烈,必须具备一定的创新意识和创新能力,否则很难适应社会信息时代的要求。传统的教学模式是以课堂理论讲授为主,学生绝大部分时间都集中学习书本知识,很少有机会接触社会,也难做到学以致用。绝大多数课程都是教师的一言堂,考试也是以教师讲课内容为主。学生忙于记录和背诵而闲置其聪慧的头脑。长期的灌输式教学导致学生明显缺乏学习的主动性,会听从而不会质疑,更不会形成开创性的观点,很难适应企事业单位动态的工作环境。数学作为一门传统基础学科,对独立学院的学生来说,学习上有一定的难度。我们的教学应以“必需,够用”为度。数学建模从形式到内容,都与毕业后工作时的条件非常相近,是一次非常好的锻炼,学生通过自主的学习,把实际的问题转化为数学理论解决,有助于学生创新能力的培养动手能力的提高,这也正是独立学院院校应用型本科人才培养的方向。
(三)学生参加数学建模竞赛的需要
独立学院学生思维活跃,且比较注重个人能力素质的提高。很多学生愿意在学校参加一些竞赛来提高自己。全国大学生数学建模竞赛尤其受学生重视,但仍有很多大学生不了解这类竞赛,因此,在数学课堂上引入数学建模思想,学生既了解了数学建模,又对数学公式提起了兴趣,还有助于独立学院学生在全国大学生数学建模竞赛中取得优异成绩。
三、结语