欢迎访问爱发表,线上期刊服务咨询

通信电源论文8篇

时间:2023-03-22 17:35:47

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇通信电源论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

通信电源论文

篇1

1.1通信电源中最常见的一种就是铅蓄电池。

其按种类划分主要可分为富液式和阀控密封式两种类型。且两者有着显著不同的特征。其中第一种电池具有着较长的寿命,同时安全性能也很高,耐用性,可以使用较长的时间所以其被广泛应用在很多的国家中的通信电源设备中。我国大部分应用到电源的地方则主要使用的是第二类型的电源,所以,在铅蓄电池被普遍使用的情况下相关方面的技术水平也有相应的加强。近几年来经常出现变化例如电池的内部空间逐渐变大,能够供电的时间逐渐变长等。新出来的有关的方式和方法也越来越多样化。有一种新型的电池,凭借其能够供电的时间之长,现在已经被广泛投入了使用。在相关的研究和调查的内容中显示,新出现的冷压纯铅板成型的手段。这样就能够在更加进一步的程度上让电池具有更高的寿命和更高的效率和使用更能。

1.2锂离子电池

锂离子电池在不断被投入使用和研究的基础上,技术水平上也不短的提高,应用的范围也在不断地加大。同时在经过技术不断的优化的条件下,锂离子电池能够供电的时间也越来越长,性能越来越好。所以在应用的范围方面也逐渐扩大,就目前来看,不仅仅能够被使用在便携产品的使用方面,还能够被应用在后备电源,车辆机械等多个范围中,同时还在逐渐的向外扩展。

1.3组合电池

目前,在不断提倡环境友好的前提下,对于电池在使用过程中造成的环境的问题已经日益明显,所以在节能减排方面的要求也出现了越来越多的规定。目前出现的很多环境友好的电池已经占领了市场的很大的一个领域中,例如通过对太阳能,水力能源等多种自然资源的利用来进行发电。然而由于通信电源技术在很多方面有着同其他不一样的特殊化的相关规定,所以在不同的要求和背景下,我们所采用的具体的对策和应急方式也是不一样的。其中最主要的就是单独设定的通过采光来提供电源的方式。风、光、柴混合或风、光互补发电系统,光伏发电和燃料电池系统等。

2.通信电源系统的发展和现代化

主要是通过交流电来进行供电的系统。这个系统首先是十分复杂的。包括了以下几个方面的组成部分:首先是降压变压器,高压配电装置,油机发电机,UPS以及低电压的配电屏等相关的组成。所以这个系统的交流电源有以下几个部分组成:通过油机来进行电源供应的系统。后补的电源系统,UPS的供给电源设备。首先来进行第一种的介绍。由于油机发电机。出现市电不足的情况的时候,发电机就会自动来给系统进行交流电的供给。UPS:这是一种为了能够使得通信电源保持完整的,没有突变并且能够提供持续的稳定的电流的系统。其中包含了多种结构。例如有铅蓄电池,整流器,逆变器和不动态的电源通断控制器等设备。在相关的一切的情况都正常的情况下,在市电的逆变器一起并联并作为一种能够提供交流电流的设备来进行使用。

3.应对通电系统中的多种复杂情况的方法。

我们最终希望达到的目的是为了尽可能减少由于各种通信电源出现故障之后出现的各种通信电路相关的障碍,例如出现的电路中断等相关的情况。在电源平时基本的维护工作被完成了之后,要同系统中系统的实际情况相结合起来,拟定好相应的能够对系统出现的任何障碍和故障顺利应对并解决好的完整对策。从而能够在发生多种事故的时候,有急事解决的对策的出现,来对问题进行完整解决。这样的方式的采用还能够在很大程度维持电源持续工作,使得电源停运的时间大大的缩短。首先,要保证有有效并合理的管理制度,使得相关的管理人员和操作人员能够在事故出现的第一时间达到事故发生的地点,并尽可能在短时间内找出造成出状况出现的原因以及相应的解决方式。要不就应该将一些辅助的设施关闭。让电源能够维持较持久的电流供应。如果出现的相应的交流电的问题是因为交流电配电系统中出现了很多相应的毛病造成的,可以采取的措施是首先要将接触器置于短路的状态,完成之后再进行相应的维修工作。如果没有出现交流电路中的相关的问题,整流电流的输出也是运行良好的,可以首先将电源供应上之后,在进行接触器的恢复工作。

4结语

篇2

通信电源的配置以及工程建设和系统设计都存在着不同程度的问题,对通信电源的设计只考虑了可靠的使用性,而忽略了应急方面的设计。在建立新的通信站时供电设备不齐全,发生通信事故时,蓄电池不能长时间持续供电,当时又没建立应急措施,便会导致通信线路中断。另外,并没有按照严格要求建立通信站,在运行过程中,极可能会引起电源系统的故障,比如火灾等一些严重事故。选址通信站的建立环境相当重要,除了好的主设备机房配备外,其它的组成部分比较差,导致电源设备不能长期而可靠的运行,相应的机房对防台风、防汛、防雷电工作也不到位。无法保证通信电源长期可靠的运行。电力通信系统运行管理的不完善与设计技术的不规范不切实,在设计和维护时遵循的规章制度不完善,给整个电力通信网的正常运行带来了严重的影响。基本没有设置专门的通信电源维护和管理的有关岗位。另外,没有相应的技术管理,也更是缺少相应的维护方法,通信电源各种设备的运行维护不能有计划的、科学的维护管理。

2通信电源常见的故障及维护

2.1蓄电池出现的故障及维护在多数的变电站事故中,多数导致事故的原因就是蓄电池内部发生短路的情况,由于电流出现了异常,最终致使蓄电池产生了爆裂的情况,蓄电池负极的接线外绝缘层可能受到了损坏,接触到了蓄电池架。由于蓄电池架连接着地面,绝缘层的损坏处接触到蓄电池架,导致对地放电,电源线会严重过热,从而引起火灾。所以管理人员在建设通信站时一定要注意在建立蓄电池柜时尽量不接触地面,以免造成上述的事故。交流供电替换载波机,交流分配屏接至载波室,防止微波室和载波室接地网通过电源线连接。另外,严格对蓄电池进行定期的检查工作,如发现蓄电池的损坏情况,及时地做出更换,并同时进行蓄电池的充放电工作,使蓄电池性能保证正常的使用要求,在通信站中蓄电池是不可或缺的部分。如果我们平时用电停止输送时,蓄电池发生故障,那么会导致所有的机器设备停止工作,进而整个通信发生中断现象。因此,蓄电池的维护工作非常重要。当然,蓄电池的维护工作也是有一定困难的,目前,我国的蓄电池大都是阀控式密封铅酸蓄电池,这种蓄电池较比以前的蓄电池有明显的优势,最为明显的就是大大减少了日常维护的工作量,而这种优势也导致工作人员忽略蓄电池的日常维护,致使长期的使用而并没维护的过程中出现故障。因此,虽说这种蓄电池的优势较大,但也要在正常的使用中定期的对蓄电池进行维护检查工作,如有损坏以便及时更换,保证蓄电池的使用状态达到指定的标准。

2.2高频开关电源的故障及维护如果主干网端发生了失压的情况,应首先对电源开关进行检查,检查结果会发现内部的一个开关电源出现交流警告,接着对出现交流警告的电源开关仔细检查,发现整流模块已经没有了丝毫的电压,对开关电源的检查,进线交流接触器没有完全的接合,再对交流切换控制的电路板检查,电路板控制插件出现了松动情况,那么立刻对控制插件进行紧固,使控制插件重新开始工作,经检查维修电源开关正常运行,还要对它观察一些时间,留意查看防止再出现异常。在出现失压的情况下,要对主要控制插件进行检查紧固,使其重新工作。设备重新工作时,还要留意观察,以防再次出现异常。电路板上的控制插件出现松动,是这种情况发生的主要原因。通常情况通信机房在初建时都会设置一台带有自动切换单元的交流配电屏,它具备两路自动切换单元功能。一般情况下两路市电是经过交流配电屏然后到达通信电源。所以工作人员应该甩开两路自动切换电源,将市电直接引入到整流模块控制空开和交流负载配电单元,经过改革后的通信电源交流电流,增加了稳定性,工作运行中会更安全、更稳定。

3小结

篇3

作者:张建英 范春甫 胡建云 单位:重庆工业自动化仪表研究所

系统特点我们通过对优化设计前智能切换屏存在的问题进行了大量分析,并依据《GB/T19826-2005电力工程直流电源设备通用技术条件和安全要求》及《YD/T5027-2005通讯电源集中监控系统工程设计规范》等相关要求,对该装置进行了优化设计,确保在设备正常运行方式、交流电源中断或充电装置发生故障的情况下,直流母线连续供电[1]。该装置具有掉电保持、信息多点处理、远程监控等特点,实现了机房对该装置进行集中监控管理的功能,设备更加安全、可靠,更加人性化[2]。据梁平供电局值班人员的信息反馈:在近19个月的运行过程当中,通过监控管理系统发现并解决相关设备问题已有3次,告警及时准确,维修人员反应迅速,没有导致输出电源中断现象发生;并且,在蓄电池充放电过程中,该装置都成功切换,除了定期巡检外,真正实现了机房无人值守。系统介绍系统参数工作方式:设有手动和远程控制方式(手动时采用刀闸并联在接触器旁);标称电压:直流48V;输入电压:2路直流-48V,正极接地;输出电压:2路直流-48V,每路分别对应10个电流为15A的配电回路;工作电压:-56V到-42V(范围通过管理系统可调节),正极接地;启动电压:≥-42.5V或≤-56.5V(可调),正极接地;故障切换时间:0秒;网络通讯:采用RS485与触摸屏通讯进行现场监控,通过以太网与上位机通讯进行集中管理;通用参数按照相关规定[1]设计。

模拟量数据采集采用EM231的8回路输入模块,用来测量母线电压和电流值;以太网模块选CP243-1作为通讯模块,和监控站进行信息联络,监控中心通过监控站对智能切换屏进行集中管理。接触器之前的设备选用的是NDZ1-400K型接触器,其主触点为常开状态,当系统出现故障或控制线圈故障时,接触器主触点失电断开,导致整个通信电源设备掉电。为了避免这种情况的发生,我们选用了天水213电器厂的单级直流接触器,型号为:GSZ2-400D,其主触点为常闭,故障时其主触点会立即闭合,同时PLC向监控站发出故障信号,等待处理。这里需特别注意的是,在检修输出设备需断电时,必须取出对应输出回路熔断器FU3、FU4的熔芯,防止故障时接触器掉电闭合。触摸屏为了方便现场巡检人员查看设备的运行状态,同时维修人员可以更加直观的查看告警记录,快速判断故障位置,我们选用威伦通科技生产的8寸触摸屏,型号为:MT4403TE。该款触摸屏配置了10M/100M自适应以太网接口RJ45,支持给予CS架构的以太网通讯,同时也可以通过以太网接多个HMI构成多HMI联机或与PC机通讯,方便了多点监控和通讯,这样,大大提高设备的可扩展性。组态软件MT5000可以实现参数设定、数据监视、运行监控、故障显示、历史记录及数据报表,功能十分强大,这也是我们选它的主要原因。开关电源开关电源在本系统中作为控制电源起着非常关键的作用。这里我们选用航天朝阳军品电源:4NIC-TX250DC/DC输入直流48V,输出直流24V。其特点是:低纹波、免维护、功率密度大及良好的电磁兼容性;在工作时,该电源是双路输入,双路输出,当任意一路出现电源故障将不会影响两路输出,而且电源输出两个回路并联使用,其中的一路出现故障将不影响另外一路的电压波动;它还具有宽电压输入范围:DC36V-DC72V,同时电压精度达到:≤±1%,纹波Vrms≤0.1%VP-P≤1%。上述这些特点正是我们选择控制电源最关注的地方,也是其它同类开关电源不具备的方面。集中监控管理系统优化设计前设备只有唯一人机交互界面——触摸屏,并且只能在现场监控,值班人员必须每天值守。不仅如此,设备没有跟其他相关设备联网,不能和其它设备联动,且只有本地操作,及不方便。优化后,设备集中监控管理系统具有故障管理、性能管理、配置管理和系统本身安全管理功能,实现了供电电源相关设备无人自动联动功能,并且可以进行远程集中管理。值班人员只需在通信局监控(站)中心对该设备集中监控,派专人进行需定期巡检和设备保养即可,无需专人值守机房。使设备更加可靠、更加人性化。

新型智能切换屏内部具有监控性能和通信接口的PLC监控模块(以太网模块),通过该模块与通信局(站)的监控站通信,最终将信息上传至上级监控中心。新型智能切换屏的工作状态通过监控中心实现的管理功能有:(1)故障管理功能:当出现熔断器熔断、接触器误动作、母线掉电、系统运行异常等情况时,具有多点、多事件同时告警的能力,并向值班人员提示故障位置及处理建议,同时支持操作人员对告警信息进行确认。(2)性能管理功能:可以进入到智能切换屏元件工作状态的画面,对其运行状态进行监控;能对告警、值班人员的操控等信息进行保留;所保存的历史数据可以以图形和表格的方式显示和打印。(3)配置管理功能:监控中心能调整PLC内部的系统参数、修改操控人员的权限等功能。(4)安全管理功能:具有完备的操作管理功能,对该装置参数设置和系统参数设置具有多级管理权限,通过操作口令可以对设备进行“遥控”和“遥调”。

篇4

通信机房内所有线缆均采用走线架上走线,走线架根据使用功能分为主走线架、列走线架,根据走线种类分为交流电源线走线架、直流电源线走线架和信号线走线架。走线架设置的层数、标高,对整个机房的规划及有效使用起到重要作用。

一般情况下,通信机房内走线架设置为2~3层,每层走线架的高度均为300mm,最底层走线架与通信设备机柜顶端间距约为200mm,防静电地板高按500mm、工艺设备高按2200mm考虑。两层走线架时,电源线走线架在下层(对室内地面标高为2900mm),信号线走线架在上层(对室内地面标高为3200mm)。三层走线架时,交流电源线走线架在下层(对室内地面标高为2900mm),直流电源线走线架在中间层(对室内地面标高为3200mm),信号线走线架在上层(对室内地面标高为3500mm)。这样设置使得线径粗、数量多的电源线的布放长度最短,利于电源与工艺专业间实际走线的配合。

主走线架整体规划、一次安装到位,列走线架与通信设备同期建设,分步实施。主走线架不宜安装在设备上方。

2通信电源与土建专业的配合

通信建筑在使用初期,通信电源与土建专业的配合更为密切,包括电力机房位置、机房荷载、空调的设置位置及空调配电等。

2.1电力机房的位置电力机房的位置要考虑输入输出电缆进出线方便,考虑供电至本层工艺设备的路径尽量短、便捷畅通。电力机房的面积要能满足楼层配电柜、为工艺设备供电的所有开关电源系统及UPS系统、部分预留面积的需求,需与建筑专业不断沟通确定合适位置并考虑相应上线井的需求。电力机房的荷载需按相关标准规定的16kN/m2考虑。

2.2空调的设置电力机房内开关电源系统及UPS系统运行时会散发热量,其他通信机房内的工艺设备运行时更会散发大量的热,所以需要设置机房专用空调,达到降低环境温度的目的,保证各设备正常工作。空调设置的位置要考虑设备的冷热风道及散热量,如:电池和低压柜不散热,开关电源的整流模块柜及UPS主机散热,则空调设在散热设备的对面。空调设置位置还要兼顾电源设备的近远期规划。电力机房内可能设置空调配电柜,需与建筑电气专业沟通具体放置的位置与走线路由,是否与通信电源合用交流走线架等。

3结论

篇5

关键词:通信电源;设备管理;设备维护;阀控式蓄电池

通信电源的基本任务是向通信设备提供不间断的、符合质量要求的电能。它作为通信网的“血脉”,是确保通信畅通的必要条件。要保证现代化通信网全程全网的畅通并做到高可靠、低电磁干扰,低功耗通信电源系统是基础。

一、加强通信电源管理的专业化

随着通信网装备水平的逐步提高,电源也同样处在大量引进新设备、淘汰旧设备的时期,同时为配合维护体制全专业、大配套的改革,用了许多新的维护手段,出台了许多新的维护管理办法。所以在通信网的各级管理层次及建设、维护方面都应该有独立的电源专业管理机构和人员。因为通信电源不仅是一个专业,而且是一个包括多种系统和学科的大专业,由其他专业的人员来兼管电源专业是不科学的,也是不专业的。因此,要管理和维护好现代化通信网,电源专业同其专业一样存在着维护人员素质、水平亟待提高的问题。要解决这一问题可以采取以下一些措施:

加强日常及定期管理,根据新设备、新技术的采用及新的网络体系结构重新制定和完善各项规章制度。

在新建工程时,要从工程设计、方案会审、工程实施到验收竣工各个阶段积极参与和把关。继续搞好技术练兵,加大培训力度。引进电源专业的高素质人才。

二、加强通信电源安全可靠运行的管理与维护

通信电源安全可靠运行是由多种因素和环节所决定的,它与设备质量、工程勘察与设计、运行方式选择、建设管理、运行维护管理等各环节相关。其中对于设备选择、方案设计、工程管理等环节尤其要加强重视和管理。一个先天不足的通信电源系统将造成通信安全的巨大风险和后期人力、物力、财力的巨大重复投入。

2.1动力电源

动力电源设备是所有通信设备运行的动力之源,其运行状态直接影响到通信业务能否有效提供。在日常设备运行中,常存在高压电源单引入、逆变电源不稳定、UPS应用不当等问题,为此应做好以下工作:

机房的高压宜采用双回路供电,即两路不同的变电站输入,以确保供电不间断。对于给机房通信设备供电的交直流电源列头柜,也应采用双路供电,以保障业务设备用电安全。

逆变电源与整流电源应采用一体化设备,以保障安全供电,易于监控,同时可减少设备投资,降低维护工作量。目前,一些通信机房为部分设备提供220V交流电时,采用2KVA~6KVA的UPS(另带有220V蓄电池组)供电,单机工作不可靠,成本高。建议使用逆变且与整流功能一体化的电源设备,其结构为:在整流电源机架的空余子框中插入1KVA~1.5KVA逆变模块,1个子框一般插3~4个,逆变模块均流输出,实现N+1容量冗余,这样不会因某个模块出现故障而影响正常供电。逆变模块的运行监控由整流电源的监控模块统一实现,从而可节省机房空间。由于共用原有的-48V蓄电池组,省去了UPS必须另带其他型号电池组的费用(以16个单体65AH电池为一组,约需1.5万元)及其维护,并减少了动力环境监控系统的协议转换节点(约需0.4万元),6KVA的逆变器(4个1.5KVA模块)比同容量UPS少2万元,因此1个机房就可减少建设投资及运行维护成本约4万元,同时可大幅度减少维护工作量,设备运行也更安全可靠。同时建议在机房新建通信项目时,不应另购小的UPS/逆变器,而应使用机房原有的大UPS交流电源,以保障设备用电可靠,减少故障环节。

2.2蓄电池

蓄电池作为直流(直流系统)或交流(UPS系统)不间断供电的保证,在整个系统中最为关键。电池不但在交流系统或整流器出现问题时保证不间断供电,而且还要在市电正常转换时提供保证。如果电池丧失容量,即使对前端的交流高低压系统、整流系统等配置管理得再好,在一次正常的市电转换中,都可能造成失电而引致通信故障。因此,应把蓄电池的维护管理作为一项重点工作来抓。目前阀控式密封蓄电池以其体积小、电压稳定、无污染、重量轻、放电性能高、维护量小等特点,而成为通信电源系统的首选电池。但在实际使用中,达不到理论预期寿命的比比皆是。

2.2.1影响阀控式蓄电池使用寿命的主要因素

阀控式蓄电池全浮充正常使用寿命在10年以上,理论上可到20年,但在实际使用中,影响阀控式蓄电池使用寿命的因素很多,主要有:

环境温度。环境温度过高对蓄电池使用寿命的影响很大。温度升高时,蓄电池的极板腐蚀将加剧,同时将消耗更多的水,从而使电池寿命缩短。蓄电池在25℃的环境下可获得较长的寿命,长期运行温度若升高10℃,使用寿命约降低一半。

过度充电。长期过充电状态下,正极因析氧反应,水被消耗,H+增加,从而导致正极附近酸度增加,板栅腐蚀加速,使板栅变薄加速电池的腐蚀,使电池容量降低;同时因水损耗加剧,将使蓄电池有干涸的危险,从而影响蓄电池寿命。

过度放电。蓄电池过度放电主要发生在交流电源停电后,蓄电池长时间为负载供电。当蓄电池被过度放电到其电压过低甚至为零时,会导致电池内部有大量的硫酸铅被吸附到蓄电池的阴极表面,在电池的阴极造成“硫酸盐化”。硫酸铅是一种绝缘体,它的形成必将对蓄电池的充、放电性能产生很大的负面影响,因此在阴极上形成的硫酸盐越多,蓄电池的内阻越大,电池的充、放电性能就越差,蓄电池的使用寿命就越短。

2.2.2阀控式蓄电池的正确使用和维护

蓄电池应放置在通风、干燥、远离热源处和不易产生火花的地方,安全距离为0.5m以上。在环境温度为25℃~0℃内,每下降1℃,其放电容量约下降1%,所以电池宜在15℃~20℃环境中工作。

要使蓄电池有较长的使用寿命,应使用性能良好的自动稳压限流充电设备。当负载在正常范围内变化时,充电设备应达到±2%的稳压精度,才能满足电池说明书中所规定的要求。浮充使用的蓄电池非工作期间不要停止浮充。

必须严格遵守蓄电池放电后,再充电时的恒流限压充电恒压充电浮充电的充电规律,条件允许的最好使用高频开关电源型充电装置,以便随时对蓄电池进行智能管理。

新安装或大修后的阀控式蓄电池组,应进行全核对性放电实验,以后每隔2~3年进行一次核对性放电实验,运行了6年的阀控式蓄电池,每年作一次核对性放电实验。若经过3次核对性放充电,蓄电池组容量均达不到额定容量的80%以上,可认为此组阀控式蓄电池寿命终止,应予以更换。

结语

虽然通信电源不是通信网的主流设备,但它却是整个通信网中最重要、最关键的设备。必须看到,通信电源是整个通信网的能量保证,它的作用是整体性和全局性的。在日常维护工作中,要引起足够的重视,明确工作重点,抓住工作重心,确保重点系统的安全运行,减少因电源引起的通信故障,降低故障的影响程度,从而确保通信网的安全畅通。

参考文献:

篇6

1电源是通信系统的坚实基础与根本保障

(1)犹如人们对阳光、空气、食物和水的依赖

从远古时代以来,阳光、空气、食物和水一直是人们赖以生存的必需品,而今在科学技术飞跃发展的时代,电也已成为人们的必需品。因为有了电,我们的生活才有了欢乐。

(2)摩天大楼与基础的关联性

摩天大楼高耸入云,雄伟壮观,强风中坚定不移,坚实的基础则是默默无闻的功臣。通信系统的安全优质运转,无处不在的通信电源则是坚实的基础和根本保障。

(3)广泛的实用性

在通信枢纽大楼里,在卫星地面站、光缆、微波中继站、国际海光缆登陆站……所有需要安装电器设施和通信设备的地方,都需要首先建设好电源和通信电源。众多电源设备能在不同类型外电环境中经不同组合生产出A、B和C不同级别的多种电源,以满足不同用户的不同需求,做到稳定、安全和可靠。

结论:电源是一切通信必不可少的坚实基础,而且是非常重要的根本保障。

2通信电源的重要性

下面列举了邮电行业几次因电源故障而引起的重大的事故:

A)1995年4月1日,广东汕头金砂邮电大楼电气特大火灾,直接经济损失1497.9万元;

B)1995年11月26日,贵州毕节地区邮电局通信大楼电气特大火灾,直接经济损失901万元,中断通信50h,间接经济损失335万元;

C)2002年2月27日0时35分,海南省海口市海府路通信楼无人值守市话传输机房失火,造成海府局的市话出入局中继大面积闭塞,出入局呼叫、数据通信、小灵通网络、部分金融系统网络和有线电视网络都受到不同程度的影响,同时造成6500个接入网用户通信中断,52个中国移动通信机站的通信受阻。其政治影响甚大。

若要恢复原有的通信能力,投入资金是损失资金的若干倍,投入的力量也将很大。

通信电源的质量与实用安全直接影响到通信质量、通信设施和人身安全,轻则影响通话质量,中断通信;重则毁坏机楼,酿成重大事故。A、B和C事故及以前的几个重大火灾,迫使邮电系统下大力气连续几年进行全行业的安全大检查。近年来暴露出的安全隐患问题,需要我们采取更有效的措施,扭转极不安全的被动局面。中国电信集团会经常性地进行安全大检查,扎扎实实地把安全生产抓好。

电源专业及应用对通信企业的安全生产有着至关重要的作用,万万不可忽视。

3通信电源的特点、现状及存在的问题

(1)设备品种甚多,使用组合奇特

高、低压配电设备;发电设备包括柴油、汽油发电机,风能、太阳能和燃汽轮发电机;交直流变换设备包括AC/AC、AC/DC、DC/DC、DC/AC、UPS和蓄电池设备等。

在通信枢纽大楼、卫星地面站、光缆、微波中继站、国际海光缆登陆站、交换机楼和模块局等众多的不同供电环境(条件)中,不同需求的魔方组合,神奇而多样化。一个关键问题是要严格贯彻通信电源的相关技术标准,遵循科学规律,做好设计、建设和维护工作。

(2)涉及专业学科知识多

通信电源的专业维护需要动力机械学、化学、电子、通信与自动控制技术和计算机应用知识。

(3)消耗能源巨大,设备资源丰富,需要精心管理通信生产用电和确保通信机房环境温度等用电,所消耗的电能源是巨大的。而且通信电源设备的种类多、数量多,通信电源、空调设备资产大约占总资产的3%~5%,在一个拥有4000多亿元人民币资产的强大通信企业——中国电信集团公司,通信电源、空调设备的资产约占200亿元人民币,因此加强管理,提高使用效率,降低成本,意义重大。

(4)维护好通信电源责任重大

电源专业工作常处于高电压、大电流、使用易燃油类和防雷保护等特殊环境,对安全生产、通信防护和消除火灾等方面有着不可推卸的责任。(5)通信电源专业维护体制亟待与通信维护体制改革同步

对于中国电信集团,该专业共有近万名员工,工作面广,维护设备多。目前的维护操作方法与传统方式变化不大,减员只是在人员看守设备方面有一定的潜力,而且必须达到通信电源设备自动化、监控手段完善化,只有安全防护达到无人值守条件时,才能实现无人值守。实际设备的检测需推广新技术和新方法,提高工作效率,减员才有实效。过去,通信能力飞速发展,而电源维护人员的数量却变化不大,这是生产效率提高的具体体现。

(6)电源专业方面存在的问题

·生产安全险象环生。近年来供电事故不断发生,严重影响并威胁到通信安全。例如,根据已了解到的电源设备事故分析,蓄电池事故占70%,高压切换事故占20%,高频开关电源事故占10%(强排风,灰尘侵入设备);全通信专业对通信电源的使用也存在很多的不安全因素,众多的火灾事件也都与电源或其使用有很多关联。

·技术管理需有效加强。缺乏对运行维护中存在的问题进行及时、有效的研究和有效的对策,对事故的分析,特别是通信电源的应用安全、通信机房环境、蓄电池的容量和放电等问题,值得深入研究其维护方法,进一步完善和提高监控系统的技术规范。

·亟待提高企业化管理。对企业体制发生巨大变化的今天,没有适应新的电源维护响应模式,没有企业化管理的应对策略。例如:全方位服务问题,电源维护成本分摊问题,高质量的通信电源应用技术支持问题等。

4重视通信电源的管理与应用研究

要加强运行管理,减少通信事故,预防、杜绝恶性事故发生;对于庞大的设备资产,要科学使用,优化组合;在抓节能降耗方面,电源专业有着很大责任,需加强管理;要抓好通信电源、机房专用空调和环境监控系统的完善研究推广应用,抓好通信电源的维护规程、技术规范和安全操作等方面的研究与推广应用;要进行电源专业维护体制改革的研究与推广;要对新的先进供电技术与设备进行应用验证研究,防止盲目性;在知名度极高的通信企业,要培养及配备有一定水平的通信电源管理专家,中国电信集团应在企业内部建立具有高水平、高素质的通信电源技术维护中心及维护队伍。

5具体建议

在通信企业的集团公司总部和省级电信公司的运维部门设通信电源(空调)专业管理岗位,选用热爱通信电源专业并具有相当专业技术知识,对通信专业有一定的维护或管理经验,具有管理才能的技术骨干,负责通信电源(空调)专业的管理。主要抓以下工作:

·集团运维部侧重抓通信电源(空调)专业的运行维护技术管理,负责编制通信电源(空调)专业维护规程。技术规范。安全操作及规章制度,负责指导全通信部门安全管电和安全用电的具体实施工作。

·省运维部门侧重对本企业通信电源(空调)专业的设备运行维护管理,做到科学使用。优化组合;在抓节能降耗、安全生产、安全用电等方面,省运维部分负有责任。

·参与通信电源重大工程的技术选型及重大工程质量验收;电源设备选型应从5个方面考虑:电气性能符合规范要求;安全可靠;技术先进;厂家技术服务保障体系完善;价格合理。而这些方面需要在采购设备中完整体现,宏观地选型无法确定5个因素。应重视待选设备的应用历史及表现。

·负责进行电源(空调)专业维护体制改革的研究与推广;

·负责对新的先进供电技术与设备进行验证、研究与推广。科学技术在不断的发展,其新设备也不断推出,要积极地学习了解,严肃认真地进行实用研究,集团和省电信公司要严格把关。

·参加相关技术交流活动。这是虚心学习和展现中国电信维护管理水平和维护技术水平的极好机会。应积极参加国家相关标准的制定研究工作,参与国际相关方面的研讨事宜。

·在直接担负通信设备运行及维护的省会局和地、市局,要有专人抓通信电源、空调设备的具体维护工作,各维护部门应有专门的通信电源、空调设备的维护专业队伍(电源维护中心),培养和配备相关设备维护专家,抓好通信电源、机房专用空调及机房环境的集中监控系统的维护和完善工作,抓好对发电机组、整流设备、蓄电池和专用空调等设备的运行及例行检测。

只有从管理到维护都高度重视,做到组织落实、生产落实,才能实现通信电源、空调设备的安全生产。下多大的功夫,才会有多大的收获。具有远见卓识的通信企业领导,一定会重视井支持抓好通信电源、空调设备的安全生产。只要上下一条心,团结一股劲,共同抓好通信电源、空调设备的运行维护工作,就一定会谱写出大型通信企业安全生产的辉煌新篇章。

篇7

(1)蓄电池组的放电试验表明:1号蓄电池组容量非常小,无法满足大电流的使用要求;2号蓄电池组虽然容量不满,但还有一半的容量。(2)2次调整2台开关电源的直流电压,负载电流随即发生转移,证明了直流分配屏中的2个单向二极管运行正常,不存在一组蓄电池组向另一组供电的可能。根据事故当日通信电源交流失电的情况分析,当开关电源的交流输入全停时,蓄电池组开始带负载,由于1号蓄电池组电量较少,负载能力低(有1只电池电压低),可能小电流(估计不会超过30A)带负载30s后负载下电动作;2号蓄电池组提供大电流(估计100A以上),在1号蓄电池组下电后2号蓄电池组带全部负载,2s后2号开关电源负载下电动作。根据2号电池组的放电试验结果,不应该在供电32s后就启动负载下电。现场通信电源实际接线情况是,2组蓄电池在1楼交直流室,通过长35m,截面积70mm2的电缆分别和2楼机房内的2套开关电源连接。事故当日,交流失电2号蓄电池组带全部负载,原负载电流是132A/53.5V,电池放电时负载电流是150A/46.9V(根据P=IU计算)。理论计算当时电缆上直流压降ΔU=IR=IρL/S=150×0.0175×2×35/70≈2.63V,其中,R(导线电阻)=ρ×L/S,ρ(铜的电阻率)=0.0175Ω•mm2/m,L(导线长度)=2×35=70m,S(导体截面积)=70mm2;I(电池供电时电流)=150A。正常情况下直流配电屏及熔丝压降值取0.2V,则总体压降为2.83V。为保证数据的准确性,模拟长为35m、截面积为70mm2的电缆进行实验。实验结果为,在46.6V/149.2A时,电缆上的直流电压为3.14V,高于理论值。开关电源设置的负载下电电压是44V,电池保护电压是43.2V,负载下电和电池保护允许都设置为“是”,即当电池组端电压达到47.14V时,就启动负载下电动作;如考虑配电屏及熔丝压降0.2V,则当电池组端电压达到47.34V时,就启动负载下电动作。分析当时的情况为:当交流失电时,蓄电池组开始带负载,由于端电压低,1,2号开关电源均发出直流电压低告警(设置为45V),说明开关电源处电压值低于45V(日志显示1,2号开关电源交流停电与直流电压低告警是同一时间)。由于1号蓄电池组电量较少,组电压低(有1只电池电压低),带了较少负载,在30s后负载下电动作(按电流74A计算,需0.62Ah电量,小于实验中1号蓄电池组放出的容量2.5Ah)。此时由2号蓄电池组带全部负载,电流增大1倍(132A/53.5V,150A/46.9V),电缆上直流压降也增大1倍(按电流增加74A计算,理论压降增加74×0.0175×2×35/70≈1.3V。模拟实验中,在74A电流时直流压降为1.63V),2号开关电源处的电压2s后掉至44V以下,虽然2号电池组还有容量,在带全部负载后,仅运行2s开关电源就启动了负载下电,导致所有通信设备失去电源。通信电源于2006年8月投运,截至2012年下半年2台开关电源的负载电流合计不超过50A,分摊到2组电源上,直流压降影响微小。之后连续新投了OTN设备、综合数据网设备等,负载电流迅速升高。虽然当时扩容了开关电源的整流模块,但未考虑到单电源供电时,电缆上直流压降较大(比初设时增加5倍)造成的影响,这成为了此次事件的主要原因。

2原因分析

(1)正常运行时,1台站用变压器供全站低压母线负荷,另外2台站用变备用,而每季度的切换电源试验对各类设备均是一次冲击考验。此次通信电源失电就发生在站用电切换试验时。(2)1号蓄电池组中的1只蓄电池容量严重不足,造成整组不能正常供电,全部负荷均由2号蓄电池组供电,较大电流在导线上的压降造成蓄电池组供电时低电压下电保护切除负荷,这是造成此次事件的直接原因。(3)通信设备不断增加,尤其是大容量设备增加时,未考虑通信电源蓄电池组容量及较长导线(蓄电池组与直流母线分配屏不在一处安装)的电压降,负荷下电保护的采样电压与电池组端电压实际值存在偏差,导致错误地切除负荷,这也是本次事件的直接原因。(4)通信电源直流分配为单母线供电,形成线路薄弱点,失去了电源线路双配置的优势。

3整改措施

篇8

电源系统交流输入设计两路,一路从市电接入,一路从柴油发电机输入,当市电出现异常时,自动切换至柴油发电机发电,如图1所示。三相市电R,S,T分别由空开L1、L2、L3接入,给整流模块供电,控制板上设有市电过高或者过低的指示灯,在市电正常供电时,报警指示灯熄灭,市电过高或者过低时,相应的报警指示灯会亮起。考虑到可能会有浪涌电流的产生,损坏通信设备,在开关整流模块和交流辅助输出口之前安装C级防雷系统。

交流配电单元(屏)设计方案:(1)交流接入电路:市电经过交流空气开关输入通信电源系统,交流空气开关的额定容量即为交流配电单元的额定容量。安装基站装机容量为8KW计算,交流配电容量属于50A等级。选取50A三相交流空气开关,具体型号为施耐德空气开关C65N系列三相50A4P50型。(2)整流模块交流输入开关:在市电接入空气开关之后,交流配电单元分别为每个整流模块提供一路单独的交流输入开关,开关额定电流大小根据开关整流模块的容量确定,本系统设计选用台达DPR2000C系列开关整流模块,故选择额定电流12A的施耐德单相空气开关。(3)交流辅助输出:电源系统的交流配电除了给整流模块提供交流电外,还需配置额定容量不同的各种的交流输出接插口,供基站内交流用电设备使用,因此外加一个交流配电排,供其他交流设备取电使用。(4)交流侦测电路:由1:20的交流变压器和整流滤波器件组成,将交流配电单元的原始电压、电流和频率等参数转化为监控电路可以接收的采样信号。(5)交流监控电路:通信电源监控单元有专门处理交流配电情况的微处理器电路,可以自动完成采样信号的接收、处理、报警、显示等功能。(6)防雷器:选用电源C级电涌保护器,具体型号选用ASP公司的AM1-80/3+NPE。

二、直流配电单元设计

直流配电单元的正负母排分别与整流模块输出的正负极相连,同时它还接入了三组电池组BAT1、BAT2、BAT3。电池通过熔断器,LVDS直流电流切断器及分流器接入-48V铜排。霍尔传感器检测电池1、电池2、电池3的各自电流及负载的总电流,接触器CB1-CB6由直流断电控制板及监控模块来控制,实现电池及负载的自动切断及重新接入功能,电流信号经信号转接板转换后送入监控单元。

LVDS为电池直流电流切断器,做一次或者二次下电使用,本设计方案设计只有一路直流下电控制,以保护蓄电池组,防止过度放电造成电池损坏。当交流中断,系统靠电池电流维持运转时,监控系统会检测蓄电池组当前电压值,当目前电压值低于预设电压时,会发出跳脱信号,控制LVDS切断直流供电。负载电路所选用短断器由每路设计通过电流决定,24载频通话,直流功耗为3KW,选择施耐德EA9AN2C60,60A断路器,WCDMA机柜每个1.5KW,选择施耐德EA9AN2C30,30A断路器3个,还有一路提供给传输设备,传输设备功耗0.5KW,选择施耐德C65N-2P-10A,10A断路器,剩余3个直流负载位置预留,为以后基站升级扩容留下空间。

推荐期刊