时间:2023-03-22 17:33:14
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇中学数学研究论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
情境教学具有一定的代表性,它以优化的情境为空间,根据教材的特点营造、渲染一种富有情境的氛围,让学生的活动有机地注入到学科知识的学习之中。它讲究强调学生的积极性,强调兴趣的培养,以形成主动发展的动因,提倡让学生通过观察,不断积累丰富的表象,让学生在实践感受中逐步认知知识,为学好数学、发展智力打下基础。简言之,情境教学以促进学生整体能力的和谐发展为主要目标.结合本人十多年的教学经验和近几年在数学教学实践中的探索,谈谈情境教学的一些体会
创设情境教学的原则
创设情境的方法很多,但必须做到科学、适度,具体地说,有以下几个原则:
①要有难度,但须在学生的“最近发现区”内,使学生可以“跳一跳,摘桃子”.
②要考虑到大多数学生的认知水平,应面向全体学生,切忌专为少数人设置.
③要简洁明确,有针对性、目的性,表达简明扼要和清晰,不要含糊不清,使学生盲目应付,思维混乱.
④要注意时机,情境的设置时间要恰当,寻求学生思维的最佳突破口.
⑤要少而精,做到教者提问少而精,学生质疑多且深.
重视创设情境教学的特性
一、诱发主动性:
传统教育的弊端告诫我们:教育应以学生为本。面对当今新时期的青少年,服务于这样一种充满生气、有真挚情感、有更大可塑性的学习活动主体,教师决不可以越俎代庖,以知识的讲授替代主体的活动。情境教学就是把学生的主动参与具体化在优化的情境中产生动机、充分感受、主动探究。如在复习函数这节课时,教师可以创设以下的教学情境:
案例:“我”在某市购物,甲商店提出的优惠销售方法是所有商品按九五折销售,而乙商店提出的优惠方法是凡一次购满500元可领取九折贵宾卡。请同学们帮老师出出主意,“我”究竟该到哪家商店购物得到的优惠更多?问题提出后,学生们十分感兴趣,纷纷议论,连平时数学成绩较差的学生也跃跃欲试。学生们学习的主动性很好地被调动了起来。活势形成,学生们在不知不觉中运用了分类讨论的思想方法。
曾有人说:“数学是思维的体操”。数学教学是思维活动的教学。学生的思维活动有赖于教师的循循善诱和精心的点拨和启发。因此,课堂情境的创设应以启导学生思维为立足点。心理学研究表明:不好的思维情境会抑制学生的思维热情,所以,课堂上不论是设计提问、幽默,还是欣喜、竞争,都应考虑活动的启发性,孔子曰:“不愤不启,不悱不发”,如何使学生心理上有愤有悱,正是课堂情境创设所要达到的目的。
二、强化感受性:
情境教学往往会具有鲜明的形象性,使学生如入其境,可见可闻,产生真切感。只有感受真切,才能入境。要做到这一点,可以用创设问题情境来激发学生求知欲。创设问题情境就是在讲授内容和学生求知心理间制造一种“不和谐”,将学生引入一种与问题有关的情境中。心理学研究表明:“认知矛盾时动机的根源。”课堂上,教师创设认知不协调的问题情境,以激起学生研究问题的动机,通过探索,消除剧烈矛盾,获得积极的心理满足。创设问题情境应注意要小而具体、新颖有趣、有启发性,同时又有适当的难度。此外,还要注意问题情境的创设必须与课本内容保持相对一致,更不能运用不恰当的比喻,不利于学生正确理解概念和准确使用数学语言能力的形成。教师要善于将所要解决的课题寓于学生实际掌握的知识基础之中,造成心理上的悬念,把问题作为教学过程的出发点,以问题情境激发学生的积极性,让学生在迫切要求下学习。
案例:在对“等腰三角形的判定”进行教学设计时,教师可以通过具体问题的解决创设出如下诱人的问题情境:
在ABC中,AB=AC,倘若不留神,它的一部分被墨水涂没了,只留下了一条底边BC和一个底角∠C,请问,有没有办法把原来的等腰三角形重新画出来?学生先画出残余图形并思索着如何画出被墨水涂没的部分。各种画法出现了,有的学生是先量出∠C的度数,再以BC为一边,B点为顶点作∠B=∠C,B与C的边相交得顶点A;也有的是取BC中点D,过D点作BC的垂线,与∠C的一边相交得顶点A,这些画法的正确性要用“判定定理”来判定,而这正是要学的课题。于是教师便抓住“所画的三角形一定是等腰三角形吗?”引出课题,再引导学生分析画法的实质,并用几何语言概括出这个实质,即“ABC中,若∠B=∠C,则AB=AC”。这样,就由学生自己从问题出发获得了判定定理。接着,再引导学生根据上述实际问题的启示思考证明方法。
除创设问题情境外,还可以创设新颖、惊愕、幽默、议论等各种教学情境,良好的情境可以使教学内容触及学生的情绪和意志领域,让学生深切感受学习活动的全过程并升化到自己精神的需要,成为提高课堂教学效率的重要手段。这正象赞可夫所说的:“教学法一旦触及学生的情绪和意志领域,这种教学法就能发挥高度有效的作用。”
三、着眼发展性:
数学是一门抽象和逻辑严密的学科,正由于这一点令相当一部分学生望而却步,对其缺乏学习热情。情境教学当然不能将所有的数学知识都用生活真实形象再现出来,事实上情境教学的形象真切,并不是实体的复现或忠实的复制、照相式的再造,而是以简化的形体,暗示的手法,获得与实体在结构上对应的形象,从而给学生以真切之感,在原有的知识上进一步深入发展,以获取新的知识。
案例:在学习完了平行四边形判定定理之后,如何进一步运用这些定理去判定一个四边形是否为平行四边形的习题课上.我先带领学生回顾平行四边形的定义以及四条判定定理:
1、平行四边形定义:两组对边分别平行的四边形是平行四边形。
2、平行四边形判定定理:
(1)两组对边分别相等的四边形是平行四边形。
(2)对角线相互平分的四边形是平行四边形。
(3)两组对角分别相等的四边形是平行四边形。
(4)一组对边平行且相等的四边形是平行四边形。
分析从这五条判定方法结构来看,平行四边形定义和前三条判定定理的条件较单一,或相等、或平行,而第四条判定定理是相等与平行二者兼有,如果将它看作是定义和判定(1)中各取条件的一部分而得出的话,那么从定义和前三条判定定理中每两个取其中部分条件是否都能构成平行四边形的判定方法呢?这样我创设了情境,根据对第四条判定定理的剖析,使学生用类比的方法提出了猜想:
1.一组对边平行且另一组对边相等的四边形是平行四边形。
2.一组对边平行且一组对角相等的四边形是平行四边形。
3.一组对边平行且对角线交点平分某一条对角线的四边形是平行四边形。
4.一组对边相等且对角线交点平分某一条对角线的四边形是平行四边形。
5.一组对边相等且一组对角相等的四边形是平行四边形。
6.一组对角相等且连该两顶点的对角线平分另一对角线的四边形是平行四边形。
7.一组对角相等且连该两顶点的对角线被另一对角线平分的四边形是平行四边形。
在启发学生得出上面的若干猜想之后,我又进一步强调证明的重要性,以使学生形成严谨的思维习惯,达到提高学生逻辑思维能力的目的,要求学生用所学的5种判定方法去一一验证这七条猜想结论的正确性。
经过全体师生一齐分析验证,最终得出结论:七条猜想中有四条猜想是错误的,另外三个正确猜想中的一个尚待给予证明。学生在老师的层层设问下,参与了问题探究的全过程。不仅对知识理解更透彻,掌握更牢固,而且从中受到观察、猜想、分析与转换等思维方法的启迪,思维品质获得了培养,同时学生也从探索的成功中感到喜悦,使学习数学的兴趣得到了强化,知识得到了进一步发展。
四、渗透教育性:
教师要传授知识,更要育人。如何在数学教育中,对学生进行思想道德教育,在情境教学中也得到了较好的体现。法国著名数学家包罗•朗之万曾说:“在数学教学中,加入历史具有百利而无一弊的。”我国是数学的故乡之一,中华民族有着光辉灿烂的数学史,如果将数学科学史渗透到数学教学中,可以拓宽学生的视野,进行爱国主义教育,对于增强民族自信心,提高学生素质,激励学生奋发向上,形成爱科学,学科学的良好风气有着重要作用。
教师应根据教材特点,适应地选择数学科学史资料,有针对性地进行教学
案例:圆周率π是数学中的一个重要常数,是圆的周长与其直径之比。为了回答这个比值等于多少,一代代中外数学家锲而不舍,不断探索,付出了艰辛的劳动,其中我国的数学家祖冲之取得了“当时世界上最先进的成就”。为了让同学们了解这一成就的意义,从中得到启迪,我选配了有关的史料,作了一次读后小结。先简单介绍发展过程:最初一些文明古国均取π=3,如我国《周髀算经》就说“径一周三”,后人称之为“古率”。人们通过利用经验数据π修正值,例如古埃及人和古巴比伦人分别得到π=3.1605和π=3.125。后来古希腊数学家阿基米德(公元前287~212年)利用圆内接和外接正多边形来求圆周率π的近似值,得到当时关于π的最好估值约为:3.1409<π<3.1429;此后古希腊的托勒玫约在公元150年左右又进一步求出π=3.141666。我国魏晋时代数学家刘微(约公元3~4世纪)用圆的内接正多边形的“弧矢割圆术”计算π值。当边数为192时,得到3.141024<π<3.142704。后来把边数增加到3072边时,进一步得到π=3.14159,这比托勒玫的结果又有了进步。待到南北朝时,祖冲之(公元429~500年)更上一层楼,计算出π的值在3.1415926与3.1415927之间。求出了准确到七位小数π的值。
我国的这一精确度,在长达一千年的时间中,一直处于世界领先地位,这一记录直到公元1429年左右才被中亚细亚的数学家阿尔•卡西打破,他准确地计算到小数点后第十六位。这样可使同学们明白,人类对圆周率认识的逐步深入,是中外一代代数学家不断努力的结果。我国不仅以古代的四大发明-------火药、指南针、造纸、印刷术对世界文明的进步起了巨大的作用,而且在数学方面也曾在一些领域内取得过遥遥领先的地位,创造过多项“世界纪录”,祖冲之计算出的圆周率就是其中的一项。接着我再说明,我国的科学技术只是近几百年来,由于封建社会的日趋没落,才逐渐落伍。如今在向四个现代化进军的新中,赶超世界先进水平的历史重任就责无旁贷地落在同学们的肩上。我们要下定决心,努力学习,奋发图强。
为了使同学们认识科学的艰辛以及人类锲而不舍的探索精神,我还进一步介绍:同学们都知道π是无理数,可是在18世纪以前,“π是有理数还是无理数?”一直是许多数学家研究的课题之一。直到1767年兰伯脱才证明了是无理数,圆满地回答了这个问题。然而人类对于π值的进一步计算并没有终止。例如1610年德国人路多夫根据古典方法,用262边形计算π到小数点后第35位。他把自己一生的大部分时间花在这项工作上。后人为了纪念他,就把这个数刻在它的墓碑上。至今圆周率被德国人称为“路多夫数”。1873年英国的向客斯计算π到707位小数,1944年英国曼彻斯特大学的弗格森分析了向克斯计算的结果后,产生了怀疑并决定重新算一次。他从1944年5月到1945年5月用了一整年的时间来做这项工作,结果发现向克斯的707位小数只有前面527位是正确的。后来有了电子计算机,有人已经算到第十亿位。同学们要问计算如此高精度的π值究竟有什么意义?专家们认为,至少可以由此来研究π的小数出现的规律。更重要的是对π认识的新突破进一步说明了人类对自然的认识是无穷无尽的。几千年来,没有哪一个数比圆周率π更吸引人了。根据这一段教材的特点,适当选配数学史料,采用读后小结的方式,不仅可以使学生加深对课文的理解,而且人类对圆周率认识不断加深的过程也是学生深受感染,兴趣盎然,这对培养学生献身科学的探索精神有着积极的意义。
五、贯穿实践性:
情境教学注重“情感”,又提倡“学以致用”,努力使二者有机地统一起来,在特定的情境中和热烈的情感驱动下进行实际应用,同时还通过实际应用来强化学习成功所带来的快乐。数学教学也应以训练学生能力为手段,贯穿实践性,把现在的学习和未来的应用联系起来,并注重学生的应用操作和能力的培养。我们充分利用情境教学特有的功能,在拓展的宽阔的数学教学空间里,创设既带有情感色彩,又富有实际价值的操作情境,让学生扮演测量员,统计员进行实地调查,搜集数据,制统计图,写调查报告,其教学效果可谓“百问不如一做”,学生产生顿悟,求知欲得到满足更加乐意投入到新的学习情境中去了。同时对学生思维能力、表达能力、动手能力、想象能力、提出问题和解决问题的能力,甚至交际能力、应变能力等等,都得到了较好的培养和训练。
案例:“三角形内角和定理”就可以通过实践操作的办法来创设教学情境。学生的认知结构中,已经有了角的有关概念,三角形的概念,还具有同位角、内错角相等等有关平行线的性质。这些都是学习新知识的“固着点”,但由于它们与“三角形内角和定理”之间的逻辑联系并不十分明显,大部分同学都难以想到要对三角形的三个内角之和进行一番研究,这种情况下,我们可以创设这样的数学情境:首先,在回顾三角形概念的基础上,提出:“三角形的三个内角会不会存在某种关系呢?”这是纲领性提问,对学生的思维还达不到确定的导向作用,学生可能会对角与角的相等、不等、两角之和(差)与第三个角的大小比较等等问题进行研究,当发现这些问题只对某些特殊三角形有意义时,他们的思维可能会指向“三个内角的和是否有一定的规律?”我适时地提出:“请同学们画一些三角形(包括锐角、直角、钝角三角形),再用量角器量出三个角,观察一下各三角形的三个内角有什么联系。”经测量、计算,学生发现三个内角的和都在180°左右。我再进一步提出:“由于具体测量会有误差,但和数都在180°左右,三角形的三个内角之和是否为180°呢?请同学们把三个角拼在一起,看一看,构成了一个怎样的角?”学生在完成这一实验后发现,三个内角拼在一起构成一个平角。经过上述两步实验,提出“三角形的三个内角之和为180°”的猜想就水到渠成了。接着,我指出了实验操作的局限性,并要求学生给出严格的逻辑证明。在寻找证明方法时,我提出:“观察拼接图形,从中能得到什么启示?”学生可凭借实践操作时的感性经验,找到证明方法。实践操作不但使学生获得了定理的猜想,而且受到了证明定理的启发,显示了很大的智力价值。又如:我在初三复习列方程解应用题时,为了让学生明白学数学的主要目的是要培养思维和掌握解决问题的能力,在课的最后出了一道开放型命题:
将一个50米长30米宽的矩形空地改造成为花坛,要求花坛所占的面积,恰为空地面积的一半。试给出你的设计方案(要求:美观,合理,实用,要给出详细数据)。这题是一道中考题,是应用数学的典型实例,既培养学生解决问题的能力又开发他们的创新思维。学生讨论得十分激烈,不断有新的创意冒出来,有的因无法操作而被别人否定,也有不少十分不错的设想。通过这次讨论,我觉得每个学生都是有潜力可挖的,解决问题的能力虽有强弱,但我们教师更应该多培养多点拨多激励,以增强学生学习数学的自信心。
创设情境教学的主要方式
一,创设应用性情境,引导学生自己发现数学命题(公理、定理、性质、公式)
案例1在“均值不等式”一节的教学中,可设计如下两个实际应用情境,引导学生从中发现关于均值不等式的定理及其推论.
①某商店在节前进行商品降价酬宾销售活动,拟分两次降价.有三种降价方案:甲方案是第一次打p折销售,第二次打q折销售;乙方案是第一次打q折销售,第二次找p折销售;丙方案是两次都打(p+q)/2折销售.请问:哪一种方案降价较多?
②今有一台天平两臂之长略有差异,其他均精确.有人要用它称量物体的重量,只须将物体放在左、右两个托盘中各称一次,再将称量结果相加后除以2就是物体的真实重量.你认为这种做法对不对?如果不对的话,你能否找到一种用这台天平称量物体重量的正确方法?
学生通过审题、分析、讨论,对于情境①,大都能归结为比较pq与((p+q)/2)2大小的问题,进而用特殊值法猜测出pq≤((p+q)/2)2,即可得p2+q2≥2pq.对于情境②,可安排一名学生上台讲述:设物体真实重量为G,天平两臂长分别为l1、l2,两次称量结果分别为a、b,由力矩平衡原理,得l1G=l2a,l2G=l1b,两式相乘,得G2=ab,由情境①的结论知ab≤((a+b)/2)2,即得(a+b)/2≥,从而回答了实际问题.此时,给出均值不等式的两个定理,已是水到渠成,其证明过程完全可以由学生自己完成.
以上两个应用情境,一个是经济生活中的情境,一个是物理中的情境,贴近生活,贴近实际,给学生创设了一个观察、联想、抽象、概括、数学化的过程.在这样的问题情境下,再注意给学生动手、动脑的空间和时间,学生一定会想学、乐学、主动学.
二,创设趣味性情境,引发学生自主学习的兴趣
案例2在“等比数列”一节的教学时,可创设如下有趣的情境引入等比数列的概念:
阿基里斯(希腊神话中的善跑英雄)和乌龟赛跑,乌龟在前方1里处,阿基里斯的速度是乌龟的10倍,当它追到1里处时,乌龟前进了1/10里,当他追到1/10里,乌龟前进了1/100里;当他追到1/100里时,乌龟又前进了1/1000里……
①分别写出相同的各段时间里阿基里斯和乌龟各自所行的路程;
②阿基里斯能否追上乌龟?
让学生观察这两个数列的特点引出等比数列的定义,学生兴趣十分浓厚,很快就进入了主动学习的状态.
三,创设开放性情境,引导学生积极思考
案例3直线y=2x+m与抛物线y=x2相交于A、B两点,________,求直线AB的方程.(需要补充恰当的条件,使直线方程得以确定)
此题一出示,学生的思维便很活跃,补充的条件形形.例如:
①|AB|=;②若O为原点,∠AOB=90°;
③AB中点的纵坐标为6;④AB过抛物线的焦点F.
涉及到的知识有韦达定理、弦长公式、中点坐标公式、抛物线的焦点坐标,两直线相互垂直的充要条件等等,学生实实在在地进入了“状态”.
四,创设直观性图形情境,引导学生深刻理解数学概念
案例4“充要条件”是高中数学中的一个重要概念,并且是教与学的一个难点.若设计如下四个电路图,视“开关A的闭合”为条件A,“灯泡B亮”为结论B,给充分不必要条件、充分必要条件、必要不充分条件、既不充分又不必要条件以十分贴切、形象的诠释,则使学生兴趣盎然,对“充要条件”的概念理解得入木三分.
五,创设新异悬念情境,引导学生自主探究
案例5在“抛物线及其标准方程”一节的教学中,引出抛物线定义“平面上与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线”之后,设置这样的问题情境:初中已学过的一元二次函数的图象就是抛物线,而今定义的抛物线与初中已学的抛物线从字面上看不一致,它们之间一定有某种内在联系,你能找出这种内在的联系吗?
此问题问得新奇,问题的结论应该是肯定的,而课本中又无解释,这自然会引起学生探索其中奥秘的欲望.此时,教师注意点拨:我们应该由y=x2入手推导出曲线上的动点到某定点和某定直线的距离相等,即可导出形如动点P(x,y)到定点F(x0,y0)的距离等于动点P(x,y)到定直线l的距离.大家试试看!学生纷纷动笔变形、拚凑,教师巡视后可安排一学生板演并进行讲述:
x2=y
x2+y2=y+y2
x2+y2-(1/2)y=y2+(1/2)y
x2+(y-1/4)2=(y+1/4)2
=|y+14|.
它表示平面上动点P(x,y)到定点F(0,1/4)的距离正好等于它到直线y=-1/4的距离,完全符合现在的定义.
这个教学环节对训练学生的自主探究能力,无疑是非常珍贵的.
六,创设疑惑陷阱情境,引导学生主动参与讨论
案例6双曲线x2/25-y2/144=1上一点P到右焦点的距离是5,则下面结论正确的是().
A.P到左焦点的距离为8
B.P到左焦点的距离为15
C.P到左焦点的距离不确定
D.这样的点P不存在
教学时,根据学生平时练习的反馈信息,有意识地出示如下两种错误解法:
错解1.设双曲线的左、右焦点分别为F1、F2,由双曲线的定义得
|PF1|-|PF2|=±10.
|PF2|=5,
|PF1|=|PF2|+10=15,故正确的结论为B.
错解2.设P(x0,y0)为双曲线右支上一点,则
|PF2|=ex0-a,由a=5,|PF2|=5,得ex0=10,
|PF1|=ex0+a=15,故正确结论为B.
然后引导学生进行讨论辨析:若|PF2|=5,|PF1|=15,则|PF1|+|PF2|=20,而|F1F2|=2c=26,即有|PF1|+|PF2|<|F1F2|,这与三角形两边之和大于第三边矛盾,可见这样的点P是不存在的.因此,正确的结论应为D.
进行上述引导,让学生比较定义,找出了产生错误的在原因即是忽视了双曲线定义中的限制条件,所以除了考虑条件||PF1|-|PF2||=2a,还要注意条件a<c和|PF1|+|PF2|≥|F1F2|.
通过上述问题的辨析,不仅使学生从“陷阱”中跳出来,增强了防御“陷阱”的经验,更主要地是能使学生参与讨论,在讨论中自觉地辨析正误,取得学习的主动权.
总之,切实掌握好创设情境教学的原则、重视创设情境教学过程的特性,合理应用创设情境教学的方式,充分重视“情境教学”在课堂教学中的作用,通过精心设计问题情境,不断激发学习动机,使学生经常处于“愤悱”的状态中,给学生提供学习的目标和思维的空间,学生自主学习才能真正成为可能.在日常的教学工作中,不忘经常创设数学情境,引导学生自主学习,动机、兴趣、情感、意志、性格等非智力因素起着关键的作用.把智力因素与非智力因素有机地结合起来,充分调动学生认知的、心理的、生理的、情感的、行为的、价值的等方面的因素,让学生进入一种全新的情境境界,学生自主学习才能达到比较好的效果.这就需要在课堂教学中,做到师生融洽,感情交流,充分尊重学生人格,关心学生的发展,营造一个民主、平等、和谐的氛围,在认知和情意两个领域的有机结合上,促进学生的全面发展.
参考文献:
1、皮连生《学与教的心理学》(华东师范大学出版社1997年)
2、柳斌《学校教育科研全书》(九州图书出版社,人民日报出版社1998年)
3、肖柏荣《数学教育设计的艺术》(《数学通报》1996年10月)
4、章建跃《关于课堂教学中设置问题情境的几个问题》(《数学通报》1994年6月)
5、盛志军《今天,我没有完成授课计划》(《数学教学》2004年第11期)
6、冯克诚《中学数学研究:3+x中学成功教法体系⑧、⑨》(内蒙古出版社,2000年9月)
数学具有高度的抽象性和严密的逻辑性,这就决定了学习数学有一定的难度。所以,在课堂教学中开发学生大脑智力因数、引导学生数学思维更要求师生间有充分的交流与合作,因而,师生互动也表现得更加突出。据我所知,多数数学老师在实践中的互动形式主要有:1.多提问,一堂课不间断的提问,力求照顾到全体学生;2..多讨论,老师讲完一个问题后,让学生分组讨论,然后再指派或让学生推举代表发言。这两种形式确实具有易掌控、易操作、有利于按时完成教学任务等优点。但我认为这并不是真正意义上的“互动”。真正的“互动”应具备下列几个要件:
一、师生互动,首先要强调师生的平等。
师生平等,老师不是居高临下的“说教者”,而是作为引导者,引导学生自主完成学习任务。我们知道,教育作为人类重要的社会活动,其本质是人与人的交往。教学过程中的师生互动,既体现了一般的人际之间的关系,又在教育的情景中“生产”着教育,推动教育的发展。根据交往理论,交往是主体间的对话,主体间对话是在自主的基础上进行的,而自主的前提是平等的参与。因为只有平等参与,交往双方才可能向对方敞开精神,彼此接纳,无拘无束地交流互动。因此,实现真正意义上的师生互动,首先应是师生完全平等地参与到教学活动中来。
应该说,通过各种学习,尤其是课改理论的学习,我们的许多教师都逐步地树立起了这种平等的意识。但是在实际问题当中,师生之间不平等的情况仍然存在。教师闻道在先,术业专攻,是先知先觉,很容易在学生面前就有一种优越感。年龄比学生大,见识比学生多,认识比学生深刻,有时就很难倾听学生那些还不那么成熟、幼稚,甚至错误的意见。尤其是遇到一些不那么驯服听话的孩子,师道的尊严就很难不表现出来。因此,师生平等地参与到教学活动中来,其实是比较难于做到的。
怎样才有师生间真正的平等,这当然需要教师们继续学习,深切领悟,努力实践。但师生间的平等并不是说到就可以做到的。如果我们的教师仍然是传统的角色,采用传统的方式教学,学生们仍然是知识的容器,那么,把师生平等的要求提千百遍,恐怕也是实现不了的。很难设想,一个高高在上的、充满师道尊严意识的教师,会同学生一道,平等地参与到教学活动中来。要知道,历史上师道尊严并不是凭空产生的,它其实是维持传统教学的客观需要。这里必须指出的是,平等的地位,只能产生于平等的角色。只有当教师的角色转变了,才有可能在教学过程中,真正做到师生平等地参与。转变教育观念,改变学习方式,师生平等地参与到教学活动中来,实现新课程的培养目标,是这次课程改革实施过程中要完成的主要任务,这也正是纲要中提出师生积极互动的深切含义。为什么我们要强调纲要提出的师生互动绝不仅仅是一种教学方式或方法,其理由就在于此。
二、师生互动,还应该彻底改变师生的课堂角色,变“教”为“导”,变“接受”为“自学”。
课堂教学应该是师生间共同协作的过程,是学生自主学习的主阵地,也是师生互动的直接体现,要求教师从已经习惯了的传统角色中走出来,从传统教学中的知识传授者,转变成为学生学习活动的参与者、组织者、引导者。现代建构主义的学习理论认为,知识并不能简单地由教师或其他人传授给学生,而只能由每个学生依据自身已有的知识和经验主动地加以建构;同时,让学生有更多的机会去论及自己的思想,与同学进行充分的交流,学会如何去聆听别人的意见并作出适当的评价,有利于促进学生的自我意识和自我反省。从而,数学素质教育中教师的作用就不应被看成“知识的授予者”,而应成为学生学习活动的促进者、启发者、质疑者和示范者,充分发挥“导向”作用,真正体现“学生是主体,教师是主导”的教育思想。所以课堂教学过程的师生合作主要体现在如何充分发挥教师的“导学”和学生的“自学”上。
举个例子,在初中几何中,讲圆柱、圆锥的侧面展开图时,教师的“导学”可以从实验入手,实际操作或演示就可很快得出结论:圆锥侧面展开图是扇形,此扇形的弧长是圆锥的底面圆周长,扇形的半径是圆锥的母线长。这种演示“导学”既直观又能引起学生注意,学生非常容易接受这个知识点。在上述老师提示后,学生自己阅读,找出本节的重点,新知点和难点,先自己利用已学知识尝试解决,攻克疑难问题。这是学生“自学”的过程,在老师做了演示之后,再让学生阅读,自行解决课本中的例题和练习。有了“导学”的认识,学生对本节课的知识点就相当明确,“自学”的过程实际上是在运用旧知识进行求证的过程,也是学生数学思维得以进一步锻炼的过程。所以,改变课堂教学的“传递式”课型,还课堂为学生的自主学习阵地是师生双边活动得以体现,师生互动能否充分实现的关键。
总之,教师成为学生学习活动的参与者,平等地参与学生的学习活动,必然导致新的、平等的师生关系的确立。我们教师要有充分的、清醒的认识,从而自觉地、主动地、积极地去实现这种转变。与此同时,我们也应看到,这次课改,从课程的设置,教材的编写,教学要求等许多方面,都为我们教师这种角色转变,提供了很多有利的条件(其实不转变角色已不能适应新课程实施的要求了)。我们应充分利用这些有利条件,在课改实验中,尽快完成这种转变,以适应新课程实施的要求。
三、创设问题情景,在教学过程中体现师生的合作与交流是“师生互动”的直接表现
在教学过程中,师生之间的交流应是“随机”发生,而不一定要人为地设计出某个时间段老师讲,某个时间段学生讨论,也不一定是老师问学生答。即在课堂教学中,尽量创设宽松平等的教学环境,在教学语言上尽量用“激励式”、“诱导式”语言点燃学生的思维火花,尽量创设问题,引导学生回答,提高学生学习能力及培养学生创设思维能力。例如,在教学“完全平方公式”时,可以这样来进行:
1.提出问题:(a+b)2=a2+b2成立吗?
(显然学生的回答有:成立、不成立、不一定成立等等)
2.引导学生计算:
①(a+b)(a+b)=
②(m+n)(m+n)=
③(x+y)(x+y)=
④(c-d)(c-d)=
3.引导学生发现①算式的左边就是完全平方式(a+b)2
②算式的结果形式是a2±2ab+b2
4.进一步提出:能直接写出结果吗(a+1)2=?
这样学生也就一下子明白了这个规律可以作为公式…
通过教师的诱导,学生的参与,使学生既认识了完全平方公式的形成,对该公式的掌握也一定有很大的帮助,这种探索精神也势必激励学生去习,从而提高学习能力。再如讲授一元一次不等式的解法:
例1解不等式4(1+x)<x+13
解:去括号,得
4+4x<x+13
移项,得
4x-x<13-4
合并同类项,得
3x<9
不等式两边都除3,得x<3
“无问题”教学可以是照本宣科,学生很快便会“依葫芦画瓢”,不知“所以然”,当然就难以有应变思维了。“创设问题”教学,教师设计以下问题让学生思考:
①不等式的结果(解集)的形式是怎样的?
②结果(解集)的形式与原题的形式有哪些差异?
③如何消除这些差异?
学生有了问题,自然注意力集中,思维活跃……
在学习新内容时,如果都能诱导分析,让学生开动脑筋,那么学生不但对知识理解深入,而且有利于他们创造思维的培养。如上例,学生弄清了去括号,移项等……是朝着解集的形式转化的目的后,对于解不等式,也就能很清楚知道“第一步是去分母”了。这也就是我们所希望的创造思维能力所起的作用。
古人常说,功夫在诗外。教学也是如此,为了提高学术功底,我们必须在课外大量地读书,认真地思考;为了改善教学技巧,我们必须在备课的时候仔细推敲、精益求精;为了在课堂上达到“师生互动”的效果,我们在课外就应该花更多的时间和学生交流,放下架子和学生真正成为朋友。学术功底是根基,必须扎实牢靠,并不断更新;教学技巧是手段,必须生动活泼,直观形象;师生互动是平台,必须师生双方融洽和谐,平等对话。如果我们把学术功底、教学技巧和师生互动三者结合起来,在实践中不断完善,逐步达到炉火纯青的地步,那么我们的教学就是完美的,我们的教育就是成功的。
四、师生互动,还应该建立在师生间相互理解的基础上。
教学过程中,师生互动,看到的是一种双边(或多边)交往活动,教师提问,学生回答,教师指点,学生思考;学生提问,教师回答;共同探讨问题,互相交流,互相倾听、感悟、期待。这些活动的实质,是师生间相互的沟通,实现这种沟通,理解是基础。
有人把理解称为交往沟通的“生态条件”,这是不无道理的,因为人与人之间的沟通,都是在相互理解的基础上实现的。研究表明,学习活动中,智力因素和情感因素是同时发生、交互作用的。它们共同组成学生学习心理的两个不同方面,从不同角度对学习活动施以重大影响。如果没有情感因素的参与,学习活动既不能发生也难以持久。情感因素在学习活动中的作用,在许多情况下超过智力因素的作用。因此,新课程实施中,情感因素和过程被提到一个新的高度来认识。发展学生丰富的情感,是这次课程改革的目标之一。可以这么说,增进相互理解的过程,其实也是丰富、发展交往双方情感因素的过程。
教学实践显示,教学活动中最活跃的因素是师生间的关糸。师生之间、同学之间的友好关系是建立在互相切磋、相互帮助的基础之上的。在数学教学中,数学教师应有意识地提出一些学生感兴趣的、并有一定深度的课题,组织学生开展讨论,在师生互相切磋、共同研究中来增进师生、同学之间的情谊,培养积极的情感。我们看到,许多优秀的教师,他们的成功,很大程度上,是与学生建立起了一种非常融洽的关系,相互理解,彼此信任,情感相通,配合默契。教学活动中,通过师生、生生、个体与群体的互动,合作学习,真诚沟通。老师的一言一行,甚至一个眼神,一丝微笑,学生都心领神会。而学生的一举一动,甚至面部表情的些许变化,老师也能心明如镜,知之甚深,真可谓心有灵犀一点通。这里的灵犀就是我们的老师在长期的教学活动中,与学生建立起来的相互理解。
五、创设有利于师生互动的教学方式及组织形式。
教学过程中要实现师生积极互动,要求师生间有尽可能充分的交往活动。目前,中学教学班的班额还普遍偏大(一般50多60人,有的甚至达70多人),要实现充分交往活动是有很大难度的。因此,必须积极探索在现实条件下,有利于师生在教学过程中实现积极互动的教学方式及组织形式。
在教学过程中,由于教师采用的教学方法不同,一般存在以下三种主要课型:
1、以讲授法为主的课型;
2、以讨论法为主的课型;
3、以探究——研讨为主的课型。
[关键词]教育技术;数学CAI;改革
一、课题研究背景、目的与依据
(一)背景与目的
21世纪,人类面临着文明史上的又一次大飞跃--由工业化社会进入到信息化社会,世界各国面临着更为激烈的国际竞争,实际上是经济实力的竞争,科学技术的竞争,归根到底是人才的竞争,而人才取决于教育。因此,世界各国对教育的发展及信息技术在教育中的应用都给予前所未有的关注,并采取措施试图在未来的信息社会中让教育走在前列,以便在国际竞争中立于不败之地。面对这种形势,陈至立部长强调指出:"要深刻认识现代教育技术在教育教学中的重要地位及其应用的必要性和紧迫性,充分认识应用现代教育技术是现代科学技术和社会发展对教育的要求,是教育改革和发展的需要。"吕福源副部长也在多次讲话中强调要把现代教育技术与各学科整合作为深化教育改革的"突破口"。因此,探索如何应用现代教育技术深化教育改革,是摆在我们教育工作者面前的一项十分紧迫而又重要的课题。
从我国中学数学教学现状来看,依然大多采用传统方式教学,其存在的突出问题:一是课堂教学效率低,对学生能力培养不够;二是缺乏理想的教学媒体,使某些概念难以描述清楚;三是无法及时反馈,难以实现因材施教;四是重教轻学,不利创新人才的培养。因而,科学地运用现代教育媒体,促进教学整体优化,改革传统的以教师为中心的教学模式,是深化教育改革的需要,也是摆在我们面前的迫切任务。本课题实验旨在探索科学地应用数学CAI的优势,优化课堂教学过程,改善数学课堂教学结构,促进学生有效学习,提高学生数学能力,进而提高教学质量的方法和模式,以便更好地指导今后的教学实践。
(二)实验依据
1、传播学理论。按照传播学理论,教学过程也是一种传播现象,一切用于教学的传播媒介,都必须从传播的有效性出发,选择适当的方式方法,使信息接收者易于接受和领会。传播学的有效性理论对于我们研究计算机或计算机网络作为传播信息的媒体在教师和学生之间传递教学内容的数量、速度和有效性具有非常重要的指导意义。
2、建构主义学习理论。该理论认为,知识不能从一个人迁移另一个人,而是学习者在一定的情境即社会背景下,借助他人(包括教师和学习伙伴)的帮助,利用必要的学习资料,通过建构意义的方式而获得。网络化的教学环境使本理论的实施成为可能。
3、数学学科的特点。数学教学的核心是培养思维能力,包括思维的发散性、深刻性、批判性、灵活性等。CAI以其到交互性强、运算速度快、图文音象并茂、及时反馈结果等优势为学生提供了发展自我思维能力的空间。
4、21世纪对人才的要求。《中国教育改革和发展纲要》指出:"教育改革和发展的根本目的是提高民族素质,多出人才,出好人才"。为了能应对21世纪的挑战并适应未来社会的发展,要求学校培养的应当是具有更多发散性思维、批判性思维和创造性思维,即应当是具有高度创新能力的创造型人才,而不应当是不善于创新也不敢于创新的知识型人才。
二、实验方法、原则与内容
(一)实验方法
1、实验对象:本实验选择福州屏东中学初二(3)班为实验班,初二(6)班为对比班,两班人数分别为53人和54人,其数学前测成绩见附表1~3。
2、教学方法:实验班采用计算机辅助教学,对比班采用传统媒体教学。
3、实验变量及其控制:(1)自变量:教学媒体的运用方法。(2)因变量:学期末两班学生接受同一份测验的成绩。(3)干扰变量的控制:实验班与对比班学生数量、基础、师资力量基本相当,教材、课时、作业、测试内容、评分标准完全相同;在实验过程中,不让学生知道在参加实验。
4、数据分析处理:本实验采用准实验设计中的不相等实验组与控制组前测后测设计,并采用独立样本的Z检验对实验结果进行统计分析。
(二)实验的教学工作原则
根据现代教学理论、数学学科的特点和本实验要求,在实验中我们坚持以下三大教学原则:一是效率原则。CAI的目标是解决传统教学所面临的低效问题。因此,必须在教学时间、精力,费用投入相对恒定的情况下,追求最好的教学质量和教学效果;二是与传统教学媒体优势互补原则。计算机具有交互性强、运算速度快、图文音象并茂、及时反馈结果等优势,但并非所有的教学内容都要用计算机,有的内容用传统教学手段能很好解决,就不必采用计算机处理,应当运用CAI的优势克服传统教学媒体的不足,实现计算机与传统教学媒体的优势互补;三是以教师为主导、学生为主体的教学设计原则。数学教学过程是教师和学生对数学的意义和价值进行合作性建构的过程,学生是认知的主体,是意义的主动建构者,教师是学生建构活动的设计者,组织者、引导者、帮助者和促进者,必须按照这个原则来进行教学设计。
(三)实验内容
在教学中以《几何画板》为基本软件,并教会学生使用,教师讲课时可采用现有的工具软件(如Word,Powrrpoint等)作为辅助软件,把计算机技术融入到数学教学中--就象使用黑板、粉笔、纸和笔一样自然、流畅。根据现代教育理论及课题实验的目的,我们构建了数学CAI的课堂教学结构,其过程如下图所示。其各环节的基本含义和内容是:
1、创设情景:良好的问题情景,可以激发学生的思维兴趣,有效地激发联想,唤醒长期记忆中有关的知识、经验或表象,为掌握新知识创造一个最佳的心理和认知环境。其方法和途径是:(1)在教学过程一开始,提出对一节课起关键作用的、富有挑战性的、能够激发学生学习兴趣的问题,以唤起学生原有认知结构与学习新课题的认知冲突,诱发学生的求知欲。(2)围绕教学内容的引入、递进、深化,充分利用多媒体计算机创设能启迪学生思维的教学情境。(3)围绕教学环节的衔接、转折延伸,创设能引起学生思考和情绪激动的教学情境。
2、引导探究:数学学科的高度抽象、形式化的特点,决定了学生在学习数学的过程中,要真正地理解并掌握数学,进而领悟数学中的精神和思想方法,必须要经历一个"再创造"的过程。CAI为学生的数学活动营造了一个理想的环境,在数学CAI课上,学生可以观看教师演示或通过自己的动手操作,从动态中观察、探索、归纳,发现规律,得出结论,实现了对知识意义的主动建构。这对发展学生的认知能力,培养学生的创造力,提高数学素养是大有裨益的。
3、组织交流:数学学习需要交流,这是数学教学过程中不可忽视的重要环节。因为学生学习数学不仅需要听,而且更需要自己做和说,有机会探究观察,交流数学概念或原理的形成过程和答案。一堂好的数学课,应该是在教师的组织下全体学生积极参与教学过程的课,是师生之间、生生之间通过讨论、交流而取得对知识本质共识的课。这样的课堂上,学生的思维处于高度运转状态,知识便在教师指导下,通过交流反馈,学生自己主动建构方式而获得。
4、变式训练:学生在探究、交流中获得的初步概念与技能,只有通过深化和熟练,才能切实掌握和应用,变式训练就是使之深化、熟练的基本环节。通过变式训练一是有助于排除非本质特性的干扰、容易混淆情况的干扰和复杂图形背景的干扰,同时还可提高新旧知识的可分辨性;二是扩大了概念、公式、定理、法则应用的范围,有助于提高学生的概括能力;三是摆脱了"示范--模仿--练习"的习题训练单一模式,有利于培养学生独立思考、灵活转换、举一反三的能力,促进发散性思维的发展。
5、归纳小结:本环节是对已经得到的新知识或概念进行进一步的疏理、概括、归纳和强化。即通过必要的讲解或设问引导学生对获得的新知识和新技能适时归纳出带有一般性的结论,使其纳入学生原有的知识系统,或对原有知识系统进行改造、扩充、提高,使之包容它们,从而构建更高层次的知识结构。
6、反馈调节:在现代教育技术支持下,反馈调节可以两方面进行,一是教师在教学过程中通过观察、提问、课堂巡视、课内练习等途径及时了解和评定学生的学习效果,有针对性地进行答疑和讲解。二是学生通过网络教室的人机交互,立即反馈可以及时了解自己对所学知识的掌握情况,自我或在教师的指导下纠正偏差,弥补知识缺陷,提高学习效果。
(四)实验结果
1、提高了学生的数学学习成绩。附表1~7直观地反映了本实验前后学生学习成绩的变化情况。这两个班在前测成绩相近的情况情况下,经过一个学期的教学,实验班的优秀率比对比班提高了23.2个百分点,表6表示两班后测分数差异显著性检验的结果,两班的平均分数相差7.73分,计算Z=3.14,P<0.01,说明实验班和对比班在测验的平均成绩上存在显著差异,实验班的成绩明显高于对比班。从表中还可以看到实验班的标准差明显小于对比班,这说明实验班的整体水平有所提高,成绩分布相对集中,处于较好的稳定状态。而对比班有两极分化的趋势,属于不均衡发展。表3和表7是实验班与对比班前、后测标准分比较分布图,从图中可以看出,实验班学生的数学成绩不仅与对比班相比有显著提高,而且与年级平均成绩相比也有显著提高。
2、培养了学生的创新精神和综合应用计算机与数学知识解决实际问题的能力。实验班学生不仅数学成绩有了显著提高,而且计算机操作水平、应用意识有很大的提高,培养了学生的创新精神和综合应用计算机与数学知识解决实际问题的能力。在校第四届科技文化节中,我组织班级同学利用"几何画板"和"PowerPoint"软件,自选课题制作课件并展示。陆娜等同学的"用运动的观点,特殊化的手段,复习四边形",以新的视角,创造性地对四边形的知识结构进行重组,潘仲贤等同学的"菱形的画法",综合应用"几何画板"及几何的有关知识总结出菱形的六种画法,陈耀斌同学的"多边形内角和定理证明",利用几何画板的动态功能得到了多边形内角和定理的四种证法,这些课件均获得了听课老师好评。
上述实验结果说明现代教学媒体对改进数学教学,提高教学质量起了很大的作用,不但提高了学生的数学成绩,而且培养了学生的创新意识和实践能力。提高了学生的素质。
三、讨论与思考
(一)CAI技术对教学效果影响的原因分析
CAI对教学过程的影响是全面而深刻的,概括来说有以下三个方面:
首先,CAI技术使教学内容更加丰富和生动。从外在形式上看,传统的教学内容主要是描述性的文字和补充说明性的图形、图表,而多媒体信息符号不仅有文字,还包含图形、动画、图象、声音、视频等其他媒体信息,形成一种多媒体信息形态的结合体,具有表现形式丰富、生动的特点;从内在结构上看,传统的文字教材及其辅导材料都是以线性结构来组织学科知识结构,顺序性很强,学生一般只能在教师的教授下获得知识,在学习过程中,对教师的依赖性较大。而多媒体教材是按照人脑的联想思维方式,用网状非线性结构组织管理信息的,其基本结构由节点和链组成。节点表示教学内容的知识点,节点内容可以是文本、语音、图形、动画、图像或一段活动影像,节点大小可以是一个窗口,也可以是一帧或若干帧所包含的数据,链是知识点之间的层级逻辑关系,这种非线性结构有利于学生进行扩散思维,联想原有的知识,获得新知识。
其次,CAI技术使教学组织形式更加多样和灵活。CAI打破了传统的以教师为中心的班级授课的单一形式,教师可以用大屏幕或网络的广播功能完成班级集体授课,也可让学生自己动手操作电脑,每一台电脑相当于一位助教,学生可根据自己的情况控制学习进度,教师通过点对点的操作与学生交流,或通过巡回辅导可以更准确地把握每个学生的学习进程,面对面地对学生进行帮助,使得以教师为主导、学生为主体的教学模式以及个别化教学得以真正实现。
第三,CAI技术使学生的学习更加主动和积极。体现在:一是有利于发挥学生的主体作用。计算机引入数学教学,使学生的学习方式由"听讲"、"记笔记"更多地变为观察、实验和主动地思考,有利于发挥学生在学习中的主体地位;二是有利于知识的获取与保持。大量的实验证实:人类接受外界信息时以视觉获取的信息量最大,占83%,听觉次之,占11%,多媒体技术既能看得见,又能听得见,还能用手操作。这样通过多种感官的刺激所获取的信息量,比单一地听讲强得多,而且还非常有利于知识的保持;三是有利于提供高质量的及时反馈。研究表明,学生记忆的半衰期一般为24小时,因而教学信息反馈的及时与否,对教学效果有很大影响。利用CAI交互性强的特点,学生的练习和作业可直接在计算机上操作完成,并得到及时反馈,使学生正确的结果得以强化,错误之处得以及时矫正。
(二)开展数学CAI应避免的误区
首先,应用数学CAI要留足师生活动的空间。计算机高速处理信息的优点,改变了教师作图、板书费时,课堂节奏缓慢的状态,增加了教学容量,提高了教学效率。但有的老师片面追求这种快节奏、高效率,把整节课的所有教学内容和板书都存储在电脑中,教师在课堂上动动鼠标,敲敲键盘,多媒体成了"电子黑板",教师成了"机器操作者",学生整堂课面对着屏幕,原先低效的"人灌",变成了高效的"机灌",笔者曾听过一节多媒体公开课《椭圆》,从定义的引入到标准方程的推导,整节课老师没写过一个字的板书,所有内容全部由屏幕显示,教学速度之快连听课的教师都来不及记听课笔记,很难想象学生的思路能跟得上,这样的教学效果是可想而知的。因此,数学CAI教学应注意留留足师生活动的空间。
第二,应用数学CAI要注意选好切入点。CAI有许多传统教学媒体无法比拟的优势:如交互性强、图文并茂、实时计算、运算绘图迅速准确等特点和动画、图形变换等功能,这些都是传统教学手段所无法企及的。但不顾实际情况和教学效果,过多过滥地使用计算机,,也会造成一些负面影响,笔者曾见过一个辅助教学软件演示椭圆的画法及定义,软件利用计算机绘图的功能,动态地把椭圆画出来,让学生通过观察给出椭圆的定义。虽然生动有效,但实际上老师在数学课上带上一根绳两个图钉,就能非常直观地画出椭圆,并由此很方便地导出椭圆的定义;又如立几中柱、锥、台概念的教学,用立几模型也比用CAI更直观,效果更好。因此,数学CAI要注意选好切入点,应当运用CAI的优势克服传统教学媒体的不足,突破难点,提高教学质量。
第三,应用数学CAI要注意学生抽象思维能力的培养。CAI可通过动画、过程演示等手段抽象问题具体化,使复杂的数学思维过程被更好地展现出来,变得易于理解,从而达到化难为易的目的,但在教学过程中,若只是一味地把一切抽象问题都形象化,使学生轻易得到答案,不利于学生抽象思维能力的培养。因而教师必须在先进的教学思想指导下,用最佳的教学策略为学生创设一个更富有启发性的教学情境,发动学生积极参与,让他们去思考、发现、探索,促进学生形象思维与抽象思维能力的同步发展。
第四,应用数学CAI切忌盲目追求"多媒体"功能。开展数学CAI切忌立足于现代教学媒体的功能来设计教学活动,一味地追求视听新异刺激。如有的CAI课,整节课几乎充满了影视画面或动画,在教学过程中,学生答对了,就出现鼓掌声或来一段欢快的音乐,并出现一个笑嘻嘻的孩子的画面,当学生答错了,出现砸碎玻璃杯声或一串怪叫声并出现一个哭泣的孩子的画面。这样做的结果不仅不能增强教学效果,反而喧宾夺主,干扰学生思考,削弱课堂教学效果。
第五,数学CAI应尽量创设实验环境,促进学生有效学习。目前数学CAI中,以教为主的教学设计多,而以学为主的教学设计少,大多数课件都起着帮助教师讲解演示的作用。然而,把计算机引入教学仅仅是用大屏幕显示出来是不够的,还应尽量创设实验环境,引导学生通过计算机"实验操作发现规律提出猜想进行证明",亲历数学建构过程,逐步掌握认识事物、发现真理的方法,发展思维能力,培养创造力,提高数学素养。
[参考文献]
1.张君达、郭春彦:《数学教育实验设计》.上海教育出版社1994.12
2.潘懋德、唐玲、王珏:《信息技术师资培训教材》(应用篇).北京师范大学出版社.1999.8
3.周灵:《CAI实践中若干问题的思考》福建中学教学.2001.4
4.顾玲沅等:《青浦实验启示录》.上海教育出版社.1999.10
关键词:高中数学 研究性学习 问题 思考
2004年4月,教育部颁布《全日制普通高级中学数学教学大纲(实验修订版)》首次明确提出:在必修课的内容中安排“研究性课题学习”(12课时),并给出了其教学目标和参考课题。研究性学习,作为培养学生创新精神和实践能力的一种重要途径和载体,无疑是当前我国基础教育课程改革的热点、亮点和难点。应该说,目前中学对数学研究性学习进行了一些积极的尝试,并且取得了一定成绩,体现在推动了学校管理体制的改革,促进了学校、社会、家庭间的相互配合,从整体上推进了数学素质教育的实施,加快了教学设备的更新,为学校发展奠定了基础。而且,数学研究性学习的开展充分尊重与满足师生及学校环境的独特性与差异性,有助于学校形成支持和激励的氛围,有助于教育质量的提高。但是,我们也应该看到,由于数学研究性学习没有非常成熟的经验可供借鉴,因而在具体运作过程中,也会出现一些问题,需要我们认真审视和深入思考,并在实施前就要加以注意。
一、高中数学研究性学习的展开要学会因校制宜
高中数学研究性学习强调要结合学生学习、生活和社会生活实际选择研究专题,同时要充分利用本校本地的各种教育资源。学校内部资源包括具有不同知识背景、特长爱好的数学教师,包括图书馆、实验室、计算机、校园等设施设备和场地。也包括反映学校文化的各种有形无形的资源。有条件的地方应尽量利用高校、科研院所、学术团体等部门的数学人才和数学电子信息资源为数学研究性学习的开展提供有力支持。从某种意义上说,越是困难的地区和学校,对培养学生应用所学知识研究解决实际问题的意识和能力的需求越迫切。上海郊县一所中学的农村学生在数学和生物教师指导下,针对当地经常受到乳虫危害,造成麦子大量减产的情况,成立了“勤虫诱因与防治预报”课题组,他们的研究结果被镇植保站采纳,课题组也深受鼓舞。
除了充分利用校内外教育资源外,学校也要结合自身实际对数学研究性学习的开展进行有效管理。在这方面,上海市晋元高级中学做法有可取之处。他们有研究性学习的两级管理指导协调系统:一是学校和教师,包括研究性学习教研室,教务处、年级组、学生处、团委、总务处,大家分工明确,互相配合。二是教研室与学生之间管理协调系统,例如,他们有高一年级组研究性学习协调委员会,由学生干部担任主要角色,对包括数学研究性学习在内的各类研究性学习进行学生间的协调和管理,有助于及时发现问题,解决问题。
二、教师观念的转变和角色的转换
数学研究性学习的具体操作者是学校和教师,除了学校以外,数学教师的作用更是不容忽视。数学研究性学习是为了让学生“会学数学”,数学研究性学习应视学校学习为起点,以“终身学习”为目标,为了更好的开展研究性学习,数学教师要进行如下观念的转变:以人为本,以问题和问题解决为中心,因为“问题是数学的心脏”:数学研究性学习应面向全体学生,实现“人人学有价值的数学”,“人人都获得必需的数学’,“不同的人在数学上获得不同的发展”。在数学研究性学习的实施中,要让全体同学参与其中,乐在其中;数学来源于生活又回归于生活,因此,数学研究性学习应在学生认知发展水平和已有的知识经验基础上,帮助他们在自主探索和合作交流过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。公务员之家
在数学研究性学习的实施中,数学教师观念转变是前提,同时要求数学教师也要进行角色的转换。首先,数学教师应是学习者。因为“数学课程标准”的理念是“以人为本”,数学研究性学习是人本思想的体现,因此数学教师要摸清学生在数学研究性学习中的心理机制和认知特点,以学习者的身份去体验数学研究,以学习者的立场参与其中,去发现问题,反思问题,进而引发学生学会向数学提问,学会向数学问题解决提问。
其次,数学教师应充当指导者。数学研究性学习是与数学问题的解决密不可分的,而问题的解决又不是一朝一夕之功。为此,数学教师在选题阶段,要针对学生学习与发展需要,结合学校和社区教育资源条件、特点,开发设计适合学生研究的课题。另外,还可提出建议,让学生讨论,形成具体计划,还可提供相关背景知识,诱导学生寻找值得研究的课题:在实施阶段,教师要进行分工指导,帮助学生明确目标任务和职责。另外,数学教师还要对学生进行心理疏导,激励学生研究探索,鼓励学生克服挫折。在方法上,教师也要根据新情况新问题鼓励学生不断对实施方案进行微调。除此之外,教师要指导学生在数学研究性学习中,获得数学科学态度、科研方法、探索兴趣的感悟和体验。
再有,数学教师应充当评价者。这里的评价包括两方面,一是教师对学生的评价,在这一过程中,要注意过程评价与结果评价相结合,多注重过程,注意激励与导向的结合。注意多元化的评价,既要关注学生在数学研究性学习方面已达到的程度水平,更要关注学生行为、情感、态度的生成和变化,一些中学开展的数学研究性学习论文答辩会和成长纪录袋的评价形式值得借鉴;二是数学教师对自身的评价。数学课程的改革,要求教师对任何学习活动都要有反思与体验,对研究性学习也是如此。从这一点来讲,数学教师应当去反思自己在研究性学习中的表现,强化评价意识。只有知道什么样的选题是好的选题,自己才能帮助学生把好关、选好题,只有知道什么样的指导最到位,才会引领学生在数学研究性学习的过程中少走弯路,提高效率。
三、研究性学习的定位及其与数学教学的关系
数学研究性学习是面向全体学生的,而不是只针对少数优秀学生的,它以激发学生主动探索的积极性,培养学生的创新精神为追求目标,鼓励学生介入数学学科前沿的研究,要求学生的研究结果具有一定的科学性,但并不强求每个学生的最后研究结果都必须独一无二。。强调这样的定位,有助于预防数学研究性学习变为新的数学学科竞赛。
由于数学研究性学习的特点,大大改变了以往的教育模式,学生不再只是被动接受者,而是成为学习的主人,是问题的研究者和解决者,而教师则是在适当的时候对学生给予帮助,起着组织和引导的作用。从初步开展数学研究性学习的实践情况来看,凡是认真参加数学研究性学习的学生,基本上都没有影响数学学科内容的学习。访谈结果显示,因为开展数学研究课题的需要,学生“用然后知不足”,常常自觉的加深或拓宽了与课题相关的数学学科课程的学习:有的通过自己的亲身实践,更加加深了对数学学科课程的理解和热爱。因此,是否可以这样说,数学研究性学习和现有数学学科教学之间,不是一个反对一个,一个否定一个,而是互为补充,相互促进的关系。
四、应着眼于使学生认识数学文化的魅力,将知识融入到生活实际
毫无疑问,数学作为一种科学,描述了一种最高的文化成就。美国数学家怀尔德1981年从数学人类学的角度提出了“数学——一种文化体系”的数学哲学观,这是很长时期以来出现的第一个成熟的数学哲学观。数学作为一种文化,除了具有文化的某些普通特征外,还有其区别于其他文化形态的独有特征。数学是科学的语言,是思维的工具,也是传播人类思想的一种基本方式:数学用一种客观的方式将自然与社会连接起来,并具有相对的稳定性和延续性:数学作为一种思想方法,充满着理性精神。学校数学研究性学习的开展有助于学生认识数学文化,在数学研究性学习中,我们要发挥这种魅力对同学们的吸引。一些中学显然认识到了这一点,如在北京某中学进行数学研究性学习的活动动员中,数学组长的发言为同学们提到了海湾战争中的数学,提到了推理小说中蕴涵的数学,提到了古汉语研究中的数学,还提到了经济中的数学、化学中的数学等等,让同学们充分认识到了数学文化的无处不在,同时也认识到了数学文化的传承与发展。一斑窥全貌,由此可见,开展研究性学习有助于让学生们进入到数学文化的氛围,从而感受到数学文化的魅力。如果数学研究性学习能为人们认识数学文化、推动数学文化的发展做一些贡献,那么在未来培养出大批积极主动和有能力的年轻的数学文化传播者,也是指日可待的。
论文摘要:问题解决理论认为:思维起源于问题,问题是数学的心脏。著名教育家陶行知先生说:发明千千万万,起点是一问……智者问得巧,愚者问得笨。创新教育要求数学教师把“问题”作为教学的出发点,提出带有启发性和挑战性的问题。课堂提问是数学课堂教学的重要手段,有效的课堂提问能驱动学生“做数学”,激发学生的学习兴趣,培养学生思维能力,更好地提高课堂教学效率。那么,在数学课堂教学中怎样预设有效问题?本文主要从四个方面回答了这个问题。
新课程要求教师从“教”走向学生的“学”,倡导“对话”式教学,强调教学是师生之间的一种互动过程,课堂答问便成了必然。事实上,由于教师不了解学生的认知水平和思维发展水平,预设的问题不是太难就是太简单;不研究教材内容,不分析知识与问题之间的关联,预设的问题不能环环相扣、逐步推进,不能揭示知识发生过程;再加上教师不考虑提问的方式方法等等;学生对提出的问题根本不知道怎样思考或怎样回答,严重阻碍了师生之间的“对话”和互动。这样的问题,不但起不了好的效果,有时还误导学生,甚至打击学生的学习积极性。因此,数学课堂教学中必须预设有效问题。
一、预设问题要有“障碍”,防止“滑过现象”产生
“滑过现象”源自于英国学者EdardBeBono关于思维训练中“注意滑过”的一个形象比喻。他说:当我们驱车从A地到B地欣赏美景时,往往由于车速太快,忽略了途中更美的风景C;由A地到B地的路越顺畅,C地被忽略的可能性就越大。课堂教学也是如此,如果教师将教学任务设计得面面俱到、自然流畅,问题坡度太小,没有给学生留下跨越“障碍”的空间,学生无需要多少时间即可一蹴而就,就会使许多有价值的内容在不经意间滑过。在浙教版数学八年级(下)《三角形中位线》合作学习中有一个问题:将一张三角形纸片剪成一个三角形和梯形,如果要求剪得的三角形和梯形拼成平行四边形,应当怎样剪?对于这个问题,一教师预设了三个小问题来引导学生:
(1)、像图1那样剪,可以拼成平行四边形吗?
(2)、像图2那样剪,可以拼成平行四边形吗?
(3)、怎样剪才能拼成平行四边形呢?
SHAPE\*MERGEFORMAT
图1图2
教师预设的前两个问题,的确能很好地为第(3)问做好铺垫,是不错的引导;但是由于教师问题设计过于详尽、顺畅,没有给学生留下“障碍”,学生轻而易举地回答出第(1)、(2)问,第(3)学生短暂思考就回答出来,这个问题便显得没有挑战性,探究价值就“一滑而过”,这对提升学生的思维层次没有益处。笔者认为,这个问题先不给出任何预设的小问题,就让学生先动脑动手画,再让学生动手剪。在大部分学生没有结果的情况下给出预设第(1)问。这样整个问题的处理上坡度不会太小,学生能经历一个相对完整的思考过程,也把握了时机,在知识的关键处、疑难处预设有效问题引导学生思考。
数学教学过程应当将学生主体的“做数学”摆在突出的位置。教师对一些关键问题、关键环节且慢“说破”,留下“更美的风景C”让学生“欣赏”,使其在探索、思考问题的体验中提升思维和激发兴趣,这是防止“滑过现象”的基本策略。教师的教学智慧不是体现在“先知于学生、胜学生一筹”上,而是体现在“与学生同步”甚至“落后于学生”。“说破”的火候掌握在教师的手里,但取决于学生的需要,所谓“教不越位,学要到位”就是这个道理。
二、预设问题要符合学生的“最近发展区”理论
研究表明,知识处于“最近发展区”时,最能激发学生的学习动机。教师在预设问题时,不考虑学生现有的生活经验、知识基础、认知发展水平和思维发展水平,预设的问题坡度太大,超出学生的“最近发展区”,过于复杂,从头到尾受益的学生寥寥无几,提问也只能流于形式、走过场,结果多数情况下教师自问自答。比如说某教师在上浙教版八年级(下)数学《一元二次方程的解法》第三课时——公式法解一元二次方程中,先要求学生用已经学过的配方法解两个方程:x2+15=10x;3x2-12x=6,在学生解完这两个方程后,教师说:大家能用配方法来解关于x的方程ax2+bx+c=0吗?结果全班基本没有人解出。教师原本想用配方法解系数为常数的一元二次方程来作为解系数为字母的一元二次方程作一个铺垫,但由于教师没有充分考虑到解方程ax2+bx+c=0的复杂性,也没有充分认识到这个问题大大超出学生的“最近发展区”,因而没有为解方程ax2+bx+c=0预设引导性的问题,最后教师不得不自己一步一步讲解。
一堂课中多有几个这样的问题,学生就对这节课失去了信心和兴趣,多有几节这样的课,学生就对这门学科失去了信心和兴趣,教学效果可想而知。有经验的教师在预设问题时,能把预设问题控制在学生的“最近发展区”。一教师在上浙教版七年级(下)数学《分式方程》时,在上课导入时这样预设四个解方程的题目:
(1)3x-2=2x+3;(2)(3);(4)
听课的很多老师当时就在嘀咕:在学生连分式方程的概念还没有了解教师就给出了分式方程让学生解,这样做不恰当。其实,事实说明,这位教师这样预设问题问题,恰恰把握住了学生的“最近发展区”。学生在有解一元一次方程的基础上很容易就解出了第(1)、(2)小题。学生在解第(3)小题时,有的凑出了答案,有很多学生就是两边乘了x解出了方程。其实学生解第(2)小题时利用了去分母解了方程,这无形就为解第(3)小题作好了铺垫,学生只要在理解“字母表示数”的基础上就能利用去分母解第(3)小题。教师就是抓住了这点,放手让学生自己去解,“学习过程就不是被动地接受知识,而是主动构建知识的过程”。
三、预设问题要避免低级庸俗,应具有启发引导性
在新课程“一波未平,一波又起”改革的浪潮下,有的教师为了体现启发式原则,达到一种双边互动充分、课堂气氛热烈的效果,经常大量设问,于是不由自主地提一些不疼不痒的问题。例如:一教师在讲“雉兔同笼”问题时,提出“雉就是我们现在说的什么?”“雉有几只脚几只头?”“上有三十五头,下有九十四足的意识是什么?”这样一些不是问题的问题,还有“对不对”、“是不是”、“好不好”、“行不行”等问题。这种问题缺少启发性,难以引起学生深层次的思考,是不相信学生的能力及其主观能动性,是对学生主体性和创造性的漠视。“有疑而问”本是天经地义,但这种浅显的问题,往往问而无疑,学生对答如流,表面上互动得轰轰烈烈。但实际效果如何呢?学生从这些问题中得到了什么呢?这种设问除了在形式上给人一种热闹的感觉外,没有什么教学价值。除此,有些教师预设问题太庸俗。一教师在介绍圆柱和圆锥的三视图画法后,他给学生提出这样一个问题:“谁能画出人的三视图,就画我们的校长?”结果一学生在黑板上画了三个椭圆,引得全般哄堂大笑。这样的问题令人啼笑皆非,庸俗及至。
有经验的老师设问能提纲挈领、纲举目张,牵一发而动全身,提出的问题恰当、对学生数学思维有适度启发,能引导学生思考和探索,经历观察、实验、猜测、推理、交流、反思等理性思维的基本过程,切实改进学生的学习方式。一教师在讲三角形三边关系时,让学生带好长度分别为3cm、4cm、7cm、10cm的小木条,预设以下个问题让学生分小组后思考讨论:(1)能拼成几个三角形,三角形的边长分别是什么?(2)哪三根不能拼成三角形?这三根的长度都有什么关系?(3)三根木条符合什么要求才能拼成三角形?教师层层设问、逐步推进,充分突出学生“做数学”的同时,启发引导了学生主动发现三角形三边的关系,而不是简单的让学生记忆“三角形的任意两边之和大于第三边,任意两边小于第三边”的定理。
很多教师不研究教材内容,不分析知识与问题之间的关联,预设的问题单一且不能揭示知识发生过程。一教师在上浙教版七年级(下)数学《二元一次方程组》中,在探求二元一次方程组的解的教学环节时,教师是说:这个方程组的解是什么呢?我们利用一个表格来探求。
X
…
20
21
22
23
24
…
y
…
…
接着学生就填写表格,找出了解。笔者却要反问:用表格来探求方程组的解,为什么表格中x只列举20、21、22、23、24呢?教师没有预设其他问题,这就没有把握探求方程组的解的内在规律,没有正确引导学生探求方程组的解。
其实,初中生好奇心强,喜欢刨根问底。心理学研究表明,初中生的思维活动开始由形象思维向抽象思维过度,他们的思维活动越来越具有独创性,并试图解决问题。高明的教师会利用这一心理特征,在预设的问题往往循循善诱、层层设疑、步步为营、节节出新,最后水到渠成,让人恍然大悟,造成学生渴望、追求新知的心理状态,使大脑皮层出现“优势兴奋中心”,产生强烈的学习欲望。例如,一教师在教学“圆的定义”时,问学生:“车轮是什么形状?”同学们都会回答:“这还用问,当然是圆的。”接着问:“为什么要造成圆形?难道不能造成别的形状,比如说三角形、四边形……”同学们就会兴奋起来,纷纷说:“不能!这样的轮子无法滚动。”教师接着再问:“那就造成鸭蛋的形状吧!行吗?”学生开始感觉茫然,继而大笑起来:“若是这样,车子会忽高忽低的。”教师继续追问:“为什么造成圆形不会忽高忽低呢?”学生又一次活跃起来,纷纷议论,最终找到了答案“因为原形车轮上的点到轴心的距离处处相等!”这样自然而然地得到了圆的定义。教师在讲圆的定义时,根据学生身边的生活实例,预设了四个逐步推进的问题,学生生成圆的定义非常自然且记忆深刻,收到了很好的教学效果,同时激发了学生的学习兴趣,余味无穷。
新课程改革提出要提高课堂教学的有效性,预设有效的数学问题便是提高数学课堂教学的有效性的一个重要方面,也是教师教学环节中重要组成部分,更是“互动教学”的必要措施。当然,数学课堂教学中预设有效提问时要注意的不只是以上四个方面。比如说,预设有效问题应当在何处何时用何种方式何种方法进行预设,这些都是数学教师值得研究和探讨的问题。笔者认为教师预设的问题必须和学生的知识基础、认知水平、思维发展水平相一致;必须要吸引学生,用问题驱动学生在互动中的生成知识,激发学习兴趣;必须启发引导学生“做数学”,促进学生思维水平的发展,从而提高教学效率。
参考文献
1、林荣《关于初中数学课堂教学中有效提问的实践研究》《内蒙古教育》2008年第3期;
2、宁连华《数学探究教学中的“滑过现象”及预防策略》《中学数学教与学》2007年第2期;
培优扶困是初中数学教学工作中的一个重要环节,是使数学教学适应学生个别差异、贯彻因材施教原则的一个重要措施,它是上课的一种补充形式,但又不是上课的继续和简单的重复;培优就是对学有余力的、学习成绩比较突出或有数学天赋和潜质的学生,通过有目的、有计划、有组织的辅导和培训,使他们的学业成绩更加优秀、专长得到进一步的发展,成为具有创新能力的新一代人才;扶困就是对学习数学有困难且学习成绩和学习能力偏差或个人身心、品德、行为较差的学生通过有目的、有计划、有组织的辅导和帮助,使他们能够身心健康,学习成绩不断进步,激发他们的学习兴趣,提高他们的学习能力,逐步养成较好的生活和行为习惯。通过培优扶困,我不仅可以巩固和提高学生在课堂上所学知识,及时发现和培养有数学天赋和潜质的学生;同时通过培优扶困,我还从多种渠道获得了各类学生的反馈信息,及时发现、反馈教育和教学中优势与不足,并及时不断地加以改进、不断地提高,这对于自身的数学教育和教学起到了很好的促进作用,对我的教学水平的提高也是一副很好的催化剂。
2.和谐、融洽的师生关系,是做好培优扶困工作的剂
数学教学工作是一种多层次、多因素的比较复杂的工作。虽然它与相邻学科的教学工作有许多共同之处,但数学教学还具有自己独特的教学规律和理论体系。因此,开学初,我根据所教两个班级的学生数学成绩及思想表现情况,精心选择确定好培优扶困的对象,并制定出具体的培优扶困计划和措施。
我积极主动地做好思想方面的培扶教育,我十分注重与学生交朋友,深入细致地了解和关心他们的学习与生活,洞察学生的生理、心理,尤其是思想上的变化及波动情况,及时帮助他们解决学习上的困难和成长过程中产生的一些困惑,抑制了学生思想上的一些不良观念;让他们从内心中感觉到老师一直像自己的亲生父母在一样关心和爱护着他们,从而从心理上接受、信任和佩服我,时时刻刻、事事处处,都按照学校的要求去做,学习上变被动为主动,认真学好各门文化科学知识,成为社会所需要的有用人才;特别是学困生,他们对学习缺乏兴趣,对自己缺乏信心,因此我经常利用课外时间与他们谈心,关爱他们的身心健康、关注他们的健康成长,想尽一切办法激发他们的学习积极性;充分挖掘他们身上的闪光点,一有进步就对他们进行表扬、鼓励和鞭策,尽可能地让他们在集体活动(如班会、义务劳动、校运会等等)中大显身手,充分表现自己,发挥他们自身的优势和潜能,让他们在同学之间找回属于自己的那份自信;同时我深入细致地了解每一个学困生、做好学情分析,对学困的不同原因,采取多样的转化策略,协助他们共同分析、查找落后的原因,然后对症下药,帮助他们克服心理障碍,树立战胜困难的自信心,再根据具体情况帮助他们把比较差的功课补上去,并认真做好课后的思想沟通及跟踪辅导工作;鼓励他们鼓起勇气,笑着面对人生,找准人生的目标,实践表明,建立和谐、融洽的师生关系,对于做好培优扶困工作起着剂和催化剂的作用。
习热情和积极性,增强了他们学好数学的勇气和力量。
3.将培优扶困渗透于课外辅导及作业批改之中
学生的素质是有差异的,对数学知识的理解和掌握程度也是参差不齐的,因此我在课外辅导中贯彻因材施教的原则,有的放矢,对于数学成绩较好的学生,通过个别辅导,强化他们对数学的兴趣与爱好;课外作业,鼓励他们一题多解,寻求最佳解题途径,偿试写出解题心得体会;对于数学有特长的学生,有目的、有计划地培养他们的逻辑思维能力和数学理解能力,指导他们多看课外书籍,多答辩一些竞赛题,以拓广他们的知识视野。
【关键词】教学方法信息技术教学探究学习
信息技术教育更是要立足改变学生的学习方式,积极倡导探究性学习,让学生成为知识的“发现者”、“探究者”和“运用者”。从信息技术这门课程本身来说,其具有一定的特殊性。第一、在高中阶段只是一门毕业会考科目,学生的重视程度不够;第二、这门学科又主要是以学生的应用、操作为主;第三、这门学科的教学又受到学校自身硬件条件的限制。多方面都给该学科的教学造成了很大的难题,因此要搞好该学科的教学,作为教师要下的功夫就更多,面临的问题也更艰巨,那么如何利用好有限的课堂,提高课堂的质量是非常重要的。通过几年的教学经验,我觉得在信息技术教学中认真开展“探究性学习”非常必要。那么,怎样才能在信息技术学科中更好地开展探究性学习呢?
一、教师教学观念的转变是开展探究性学习的前提
由于传统教学观念的影响,学科教学过程中存在着过于注重知识传授的倾向,过于强调接受学习,死记硬背,学生的学习兴趣被忽视,学习主动性被压抑,因而不利于培养学生的创新精神和实践能力。现代教师教学应当以学生为中心,教师要改变传统的灌输式的教学方法,在教学过程中要通过讨论、研究、试验等多种教学组织形式,引导学生积极主动的学习,使学生学习成为在教师引导下主动的富有个性的过程。尤其对于信息技术这种操作性强的科目,学生必须要有充足的、独立的时间。
二、营造开放和谐的学习环境
民主宽松的学习环境,平等愉悦的学习气氛,开放自主的学习内容,有利于调动学生学习的兴趣,发挥学生学习的积极性与主动性,使学生在学习过程中敢想敢说敢问敢做,在知识的掌握和技能的形成过程中,充分展示自我,体验探究的快乐。教学中,教师要充分地信任学生,相信学生的知识底蕴、操作能力与发展潜力,让学生在开放的学习环境中大胆探索。教师积极运用赏识表扬的教学评价艺术,及时对学生的探究成果予以肯定,加以赞赏。以科学研究的态度,正确对待学生在探究过程中出现的偏差,通过共同研究,独立思考,分析问题,纠正误差,并有可能创造性地解决问题,完成探究任务。
三、创设有利于探究性学习的情境,激发学生探究的动机是开展探究性学习的关键
现代心理学认为,人的行动都是由动机引起的。所以激发学生探究的动机是引导学生主动探究的前提。因此,教学中,教师要利用各种手段、创设情境,点燃学生思维的火花,谱写丰富多彩、生动有趣的教学篇章。
1.以旧引新,沟通引趣
在新旧知识的联结点上,提出启发性、思考性强的问题,使学生感到新知不新,难又不难,激发学生尝试探究新知识的欲望。
例如,教学《在幻灯片中插入图片》时,教师先出示一张插有剪贴画和图片文件的幻灯片,先让学生观察欣赏,然后指出:本作品中插入剪贴画和图片文件使用了你以前在word里学过的方法,请你用探索和研究的学习方法来制作一张同样效果的作品。这样,会使全体学生都参与到尝试探究中去。
2.制造误区,设疑生趣
学生的认识是从不全面、不深刻甚至常出谬误的多次反复中逐步发展起来的。制作误区就是针对教学中学生易错易漏的知识内容、难以掌握的基本技能等预设陷阱,让学生预先体验错误,以杜绝或少犯同样的错误。
如在讲授windows98的目录操作和文件目录属性的设置后,可故意将学生以往建立的文件拷贝到一个隐含的目录中,学生上机时便发现自己的文件“不见了”,纷纷提出为什么?此时再适时引导学生进行分析,他们便可能找出“被删除、被更名、被设置为隐含属性、被复制到其它目录中后再删除源文件”等多种答案。教师再对他们的想法给予进一步分析,肯定其正确的方面,通过这样的学习来加深对知识的理解。
掉进陷阱的体验往往比走一段直路更容易使人记忆犹新,通过制造误区,激发了学生探索新知的积极性。
3.安排游戏,寓学于乐
将益智游戏引入课堂,寓学于乐,激发学生学习兴趣,让学生带动手实践中主动去探索知识,真正成为学习的小主人。
鼠标的操作是windows操作的基础,单纯练习鼠标的操作是枯燥乏味的。因此,在教学中我安排了《纸牌游戏》内容。要求学生自己研究怎样启动纸牌游戏?怎么玩?兴趣是最好的老师,学生们两人一组边看书边操作边研究,紧张地忙碌起来。
4.设置故事情境,引发求知欲
教师根据教材内容的特点和需要选讲一些有趣的故事片段,使学生在聚精会神听故事的同时,进人到新课意境。
例如,在“画直线和曲线”教学时,首先设置一个故事情境:有一只很爱冒险的小熊坐着热气球去环球旅行。一天,它乘坐的热气球坏了,降落在一个孤岛上。同学们,你有什么办法帮助小熊离开孤岛吗?教师然后指出:让我们一起造一艘帆船带小熊离开孤岛吧。
通过故事导入,新颖、自然、能立刻引起学生的好奇心,产生强烈的求知欲望。
5.说明意义,激发兴趣
通过一定的方式告诉学生本节课的学习目的,说明当前学习对未来学习的意义或社会实践的意义,激发学生参与学习的热情,从而产生探究的动机。
例如:学习画图时,告诉学生电视上的动画都是用计算机画的,让那些画面之所以能动起来是由动画设计者编好了程序,然后在电视上放出来,我们就可以看到动画了,你们如果学好了计算机画图,那你们也可以自己编动画了。
此外,还可以触及儿童的情感领域,唤起心灵的共鸣,由情感驱使学生要探究。无论是好奇、好动、求知,还是情感的需求,都促其形成一种努力去探究的心里。这种探究心理的形成,对具有好奇心、求知欲强的小学生来说,本身就是一种满足,一种乐趣,其过程可以简单地概括为:探究—满足—乐趣—内在动机产生,这就保证学生在接触新知时,带着积极的情感,主动地参与教学活动中去。
四、明确学习过程中的师生关系
在探究式学习中,师生关系是一种尊重主体、尊重差异的平等、民主、合作的交往关系。学生是探究学习的主体,教师的组织者、引导者、合作者和共同研究者。教师在学习活动过程中要少讲、精讲,让学生有充足的学习时间和活动空间。教师要注意根据学生的个体差异来组织调控学生的学习活动,给予学生及时、必要的指导和帮助。凡是学生自己能发现和解决的问题,教师决不能暗示和代替,而是要及时抓住学生在知识习得过程中取得成果的机会,组织成果展示、信息交流,让学生体验成功的快乐。在探究性学习中,学生间的关系是自主探索活动和共同合作活动相结合的关系,在学习过程中可以取长补短,相互学习,共同研究。
一、实施情境教学,集中学生的注意力
传统的教学方式,只注重理论基础知识的学习,很少与现实生活相联系起来,难以引起学生的学习兴趣.如何才能让学生有兴趣主动学习高中数学呢?教师可以将数学与实际生活联系起来,在教学中提出与生活相关的数学问题,让学生对问题产生兴趣,从而对高中数学产生兴趣,主动学习数学.在教学中设置问题时,教师要尽可能地将学习的内容与生活中经常会遇到的问题相结合,从学生熟悉的事情入手,让学生认识到数学在生活中的重要性,容易引起学生的学习兴趣,让学生能够积极地发散思维进行思考,从而主动参与到课堂活动中.
二、联系已学知识,引导探究新的知识
高中数学的难度相对于小学和初中来说,其难度有了不少的提升,特别是高中数学中的理论知识较多,这让不少学生在一开始接触数学的时候就望而生畏,再加上理论知识学习起来比较枯燥乏味,如果教师不能针对学生学习进程中的这些问题,巧于设计,将新学知识与学生的已有知识紧密联系起来,必然导致学生逐渐丧失学习数学的兴趣.因此,在传授新知时,教师要以学生的已有知识为基石,建立起新旧知识的连接点,从而促使学生理解数学知识.数学中的大部分理论知识都是在旧知识的基础上推理而来的.在教学中,教师可以引导学生复习旧知识,并将新旧知识进行类比,能够促使学生主动学习和探究新知识.
三、课后扩展延伸,鼓励学生巩固探究
重视学生自主探究性学习,需要教师注意对课后问题的扩展和延伸.在设计教学内容时,教师可以精心设计一些有利于学生发散思维,对学习内容进行扩展学习的数学题目.在教学中,教师可以引导学生自主探究这些问题,并且在课外对相关课题进行探究活动,激发学生学习兴趣的同时,巩固课堂教学内容.