欢迎访问爱发表,线上期刊服务咨询

数控系统论文8篇

时间:2023-03-21 17:07:31

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇数控系统论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

数控系统论文

篇1

数控技术利用数字信号控制执行机构完成某种功能,实现自动化。随着我国计算机技术的变革,微小型计算机数字控制CNC是当今制造高精度、高质量以及形状复杂产品的基础设施,属于制造技术的关键环节。对于一般数控系统组织,运算器接收、运算、处理输入装置的指令或数据,并不断向输出装置送出运算结果。控制器能根据指令控制运算器和输出装置来实现各种操作及控制整机的循环工作,使数控系统执行所要求的运动,其中伺服驱动把来自控制器的脉冲信号经过功率放大、整形后,转换成执行部件的平移、进给或旋转等运动,主要包括驱动装置和执行结构两大部分。驱动装置由进给驱动单位电机、主轴驱动单元等组成,步进电机、直流和交流伺服电机是常用的伺服元件。执行机构根据控制器发出的指令信号,完成驱动装置对系统旋转和进给运动的控制。作为数控系统改进生产设备的实例,数字喷印技术是非接触印刷技术的主流,以低廉的价格和精美的印刷质量越来越受到用户的青睐。数字喷印吸收喷墨打印等新技术,墨水经过喷腔组件的小孔射出,喷印器在基材上方以高速度喷射墨水,同时晶体振荡器高速纵向振荡,使墨线分裂成一系列大小和间距相等的墨点,机器内部微处理器监视回馈的信号,随着物体的移动,更多的墨点打在物体表面就形成了字符或图线。经调研,市场上还没有针对薄膜开关制造工艺而开发的专业喷印设备,部分生产厂家引入用于广告喷印的喷墨打印设备进行面板的喷墨印刷,主要有2种:热泡式喷墨打印机和平板式喷绘机。深圳某公司生产的热泡式喷墨打印机,采用爱普生配件,底座同步,并采用步进交流电机和IC芯片控制模块化。由于该打印机源于办公打印机技术,墨量不厚,所以不能采用UV油墨,不能立体打印,且印制速度慢,无法满足规模化生产。广州某公司生产的平板喷印机,采用陶瓷压电式工业高速Konic,XAAR等喷头,由多色喷头组成单模组,且UV光跟随固化,可形成立体墨痕和喷印彩色图案,但不能用于电路喷印。由于该打印机在制造中各工序对位困难,故不能完全满足彩色面板、上电路、绝缘层、下电路的套印,工序切换速度慢,不符合一次流水套打的工艺要求。为了提高定位精度,采用计算机视觉定位技术、MARK高精度光学影像定位系统及图像AOI技术,印制精细度达0.1mm,对位精度≤0.2mm。采用多喷头阵列高速流水喷印技术,以4—12个喷头为1组并行喷印,从而实现高速输出。为消除喷头间喷印干扰,对12个喷头的喷印进行同步控制。采用2套独立控制电路,分组传输,每组喷头数不超过6个,从而能保证一般的4色彩油墨、金属导电油墨、特色工艺油墨的喷印阵列。DSP的定位圆图像采集及参数提取更进一步提高了定位精确度和喷印速度。设计的阵列双模式喷印平台基于数字控制器现场可编程门阵列(FPGA),DSP,PC及软件,由程序协调操作FPGA等多芯片运作,同时解决数据分配、时分信号和信号优化等数据处理问题。在数控系统中可以利用FPGA处理接口板与上位主控板之间的数据传输,接收下位伺服的反馈信号,监测伺服电机的工作状态。针对x,y,z和w方向的移动,利用可靠性、可编程多轴控制器构建精确位置控制系统。以PLC控制变频电机为执行元件,通过RS-485通信实现驱动单元的远程控制,提高系统的集成度与可靠性。基于以上设计和工艺,集成高速、柔性、精密配套技术以及制造工艺,利用数控系统的核心技术,喷印平台简化了传统工艺流程,只需改变电气参数就能完成不同的喷印任务,不需要为新产品的每一次改动而制作网版。设计的阵列喷印流水式装置通过交错及斜装阵列组合模式,由12通道静态喷头阵列与4通道动静双模式喷印模组构造,双模式构造能保证喷印清晰度和速度,解决缝接及拉线等问题。该装置能快速完成维护和喷头更换,提高了设备的灵活性和生产效率,其平台抗震、抗干扰能力较好,符合IP54标准。

2阵列双模式喷印平台的控制模块

2.1主要控制单元

作为一种典型的控制不同组合对象的多参数数控喷印平台系统,既有平移、旋转运动控制和图像识别辅助控制,又有喷墨头的温度、流量等过程控制。为保证高速阵列多喷印头的数据协调、时控合理,核心控制模块采用WDM类设备驱动程序架构和MINIPort层间驱动协议,驱动程序用VC编写和调试,使其达到4路USB准同步数据传输,时间关键帧技术保证操作系统达ms级响应。发挥硬件和软件的开放性,实现数控系统和伺服控制系统间的通讯、加工代码的自动生成、最佳模切顺序和最短空程路径。模块化设计后则重点关注控制器、数据处理、I/O系统、驱动接口等子模块,以上位机数控系统来扩展网络控制系统,使用计算机数控系统与FPGA控制器完成接口驱动,控制模块见图2。喷印控制电路系统重点包括基于FPGA的主控部分、基于DSP的定位圆图像采集及参数提取部分。采用现有控制技术的理论方法和技术条件,以FPGA嵌入式为主控制系统,FPGA有丰富的逻辑硬件资源,CycloneIIFPGA芯片有DSP系统、硬件协处理器、接口系统、通信系统、存储电路以及普通逻辑电路等功能子系统,能解决传统宽幅喷印机对大量图像数据在上下位机之间和系统内部传输速度的瓶颈。利用DSP实现复杂的电气控制算法,提高对字车电机和走纸电机运动的精度控制,从而提高宽幅喷印机的喷印精度。系统还开发了FPGA的时钟同步系统,在上位机获取时间戳并通过FPGA硬件电路矫正晶振频率的动态补偿,实现数控系统的精确时钟同步。FPGA主控部分主要包括USB接口模块、喷印数据处理模块、喷头驱动模块、温度控制模块、驱动电压调整模块、喷印图像存储及纠偏模块与DSP接口模块等7部分。

2.2模组控制单元的数据处理

FPGA接收数据并处理数据,发送数据到喷嘴、电机、相机等数字终端,数据缓冲区则使用多片DDR2,以加快数据传输速度。对输入数据进行分组,基于FPGA内核改变时钟域意味着整个喷墨头的处理在1个时钟周期内实现多目标的同步时钟系统。通过使用VHDL编写的时序程序发送控制字到FPGA的UART接收模块,根据控制字的不同,调整相应的数据,电机模块根据控制字产生相应的脉冲和控制信号,控制喷头电机的启停、方向和速度等数值,利用FPGA实现复杂的逻辑时序的控制信号。事件驱动控制的机电驱动系统也在FPGA实现,由有限状态机(FSM)定义所有可能的实现方向数据。其中,USB接口模块在每批次喷印开始前用于接收计算机发送下来的原始喷印图像,并将存储在外部缓存当中的定位原图像上传至计算机,用于在人机界面上检查初始标定参数是否正确。当喷印过程开始后,USB接口模块用于与计算机交互喷印过程中的实时参数,喷印数据处理模块用于将待喷印图像的像素数据进行拆解,并重新封装成适合喷头喷印的数据格式。喷头驱动模块用于计算时设置的有关喷印参数信息转化为适合喷头喷印的时序,以此时序来精确控制喷头的喷印。温度控制模块用于实时调整并显示喷头的温度,驱动电压调整模块用于实时调整喷头驱动电压的幅值及幅宽,存储喷印图像及工艺MARK参数信息处理,可以保证喷印位置的准确性。利用CycloneIIFPGA的并行执行特点,对2—4排喷嘴的数据进行处理及分配,实现实时喷射控制、装置控制逻辑与状态管理。多排喷嘴的数据收发1次,先将此行像素拆分成奇数像素数据和偶数像素数据,再将这2部分像素以相反的顺序发送至喷头,就能喷印1行完整的像素点矩阵。此时,将首先在存储中开辟一个动态的全局缓存,存放所要喷印的一排像素数据,再为若干个喷头分别开辟单独的缓存区和独立的进程,这些独立的进程将通过一定的交换机制,与其他相关进程进行数据交换,所有与喷头相关的进程完全并行,因此整个过程除了USB数据的接收外,其他部分所消耗的时间只相当于处理一个喷头数据所消耗的时间,从而提高数据处理的速度。

3结语

篇2

PLC以其可靠性高、逻辑控制功能强、体积小、适应性强和与计算机接口方便等优势在工业测控领域广泛运用,已大量替代由中间继电器和时间继电器等组成的传统电器控制系统。近年来,PLC技术发展迅猛,新产品层出不穷。高端PLC不仅擅长开关量检测和逻辑控制,而且能够处理模拟信号、进行位置控制和回路控制,还可以连接各种触摸屏人机界面并具有强大的网络功能。高端PLC配备适当的位置控制单元和触摸屏人机界面,并根据计算机集成制造系统(CIMS)或柔性制造系统(FMS)的具体要求,配置相应的网络模块或网络单元,即可实现网络互连,构成开放的数控系统。本文介绍一种基于OMRON高端PLC的磨削数控系统,这种数控系统装备的位置控制单元可以实现两轴联动,并可根据实际需要,任意扩展控制轴数;触摸屏人机界面可以根据操作需要灵活设计;还可通过DeviceNet、ControllerLink和TCP/IP协议单元进行多层次的网络互连。这种数控系统目前已在3MZ2120磨床数控技术改造中获得成功应用。

1.数控系统的开放特征与典型模式

开放式数控系统一般基于PC平台,具有模块化、标准化、平台无关性、可二次开发和适应联网工作等特征。基于PC平台的开放式数控系统目前有3种典型模式。第一种为衍生型(专用NC+PC),在传统CNC中插入专门开发的接口板,使传统的专用CNC带有PC的特点。此种模式是由于数控系统制造商不能在短期内放弃传统的专用CNC技术而产生的折中方案,尚未实现NC内核的开放,只具有初级开放性;第二种为嵌入型(PC+NC控制卡),将基于DSP的高速运动控制卡(NC控制卡)插在PC的标准扩展槽中,由PC机执行各种非实时任务,NC控制卡处理实时任务。是目前基于PC平台的开放式数控系统的主流;第三种为全软件数控系统,PC机不仅能够完成管理等非实时任务,也可以在实时操作系统的支持下,执行实时插补、伺服控制、机床电器控制等实时性任务。这种模式的数控系统实现了NC内核的开放和用户操作界面的开放,可以直接或通过网络运行各种应用软件,是真正意义上的开放式数控系统。与PC平台开放式数控系统相比,基于高端PLC的数控系统的开放性主要体现在网络层面和系统扩充层面。高端PLC采用类似于PC的总线结构和面向操作的梯形图语言编程,模拟量处理单元、位置控制单元、回路控制单元、网络模块或网络单元等高端部件都有专用控制语句,具有系统构建灵活、扩充能力强、应用软件设计便捷等优点。编程语言标准化和部件可互换性的不断增强,现场总线技术和工业以太网络标准的普遍采用,都使基于高端PLC的数控系统变得更加开放,将成为面向CIMS或FMS的设备层的重要组成部分。

2.基于高端PLC的磨削数控系统

2.1开关信号监测与逻辑控制

当前系统输入输出单元是PLC的基本组成部分,在磨削数控系统中承担所有开关信号的监测和全部逻辑控制功能。监测信号主要有:机械手进出、机械手上下、料盘正反转、修整器起落等动作的位置信号,磨削设备和辅助装置上的各种工作状态信号和异常报警信号。系统输出单元控制磨削设备上所有电磁阀和机床电器系统等,通过磨削设备上的液压系统,控制机械手、料盘、工件卡盘、砂轮轴、床身、修整器等基本部件和冷却、、过滤等辅助装置按照磨床动作和磨削工艺要求工作,实现磨削加工过程的自动化。

2.2工件与砂轮运转速度控制

保持工件与砂轮转动速度恒定,对提高磨削加工质量十分有利。为此系统配备了2台带RS-485串口变频器,分别驱动工件轴和砂轮轴。PLC采用联机随动控制保证两者之间速度的配合与稳定。操作人员依据磨削加工要求设定工件轴变频器速度参数,PLC接收该参数后,参照砂轮直径(设定或记忆值)和转动速度比例关系,计算并自动设定砂轮轴变频器的速度参数。在磨削加工过程中,PLC对砂轮在磨削及修整过程中的损耗给予速度自动补偿。PLC最多可以控制32台变频器,不同厂家的变频器可采用协议宏通信联接。PLC按照变频器地址(0-31)、指令代码和相关数据顺序向变频器传送命令,对变频器运行、停止、正转、反转等实施控制;PLC还可以监视变频器运行状态,当变频器发生过电流、过电压、变频器过载、硬件异常、电机过载、过力矩检测、电源异常、通信超时等情况,可将异常参数传输给PLC,由PLC作出相应处理。

2.3位置控制单元(PCU)与位置控

制高端PLC配备单轴位置控制单元,与步进电机或交流伺服电机驱动器配套使用,可以完成开环或半闭环位置控制及速度控制,配备两轴联动位置控制单元可以进行实时插补控制,实现直线和圆弧曲面等加工控制。目前全球各主要PLC制造商都已推出与高端PLC配套的PCU,具备高速和高精度的位置控制功能。OMRON公司的CJ1MCPU自带PCU的位置脉冲速度为1kBPS,高级PCU的速度可达到500kBPS,松下PP2或PP4系列的位置控制速度高达1MBPS。采用高端PLC设计数控系统,需根据控制精度、运行速度和运行轨迹要求选择适合的位置控制单元(PCU)。磨削数控系统控制精度要求较高(F1μm),一般选择数字交流伺服系统。OMRON高端PLC专用高级指令控制脉冲输出,可选择梯形、S形或三角形速度曲线运行,实现定程、点动、返回原点和原点搜索等运动控制。程序设计可选择相对坐标系或绝对坐标系,按照图2所示的梯形图编程运行,可实现各种磨削加工所应遵循的运行曲线。图3表示该数控系统准确实现铁路轴承内套挡边粗、精、光磨削加工和3MZ2120磨床快进、快退几个阶段的速度控制和位置控制的运动轨迹。

2.4触摸屏人机界面设计

基于高端PLC的磨削数控系统可选用触摸屏人机界面(ProgrammableTer2minal,PT),采用组态工具软件和图形库(开关、灯、棒图等)以及动画功能等,按照磨削工艺流程要求进行系统操作界面设计。下面以3MZ2120磨削数控系统操作界面为例介绍设计过程和效果。根据磨削数控操作和显示的需要,该系统主界面下设8个子画面(图4)。系统上电自动进入主界面,核对操作密码后弹出主菜单,在主界面上点击操作可转移相应的子界面。加工参数和修整参数设置界面提供设置数控磨削相关参数提示;手动操作和手动修整界面用于快前、快退、慢前、慢退、返回等手动位置控制和手动修整砂作,为设备调试提供便利;自动报警界面利用触摸屏人机界面本身具有的报警功能设计,对油雾、液压系统、机床电器系统、料槽状态、冷却系统和伺服电机等实施监测和自动报警,当发生故障时触摸屏立刻弹出报警信息(报警时间、故障代码及应对措施等);自动运行界面(图5)采用棒图显示当前磨削余量值;采用动画方式实时显示加工状态和加工位置等。还设有“紧急停车”等应急按钮。PT有RS232/422/485通讯口,能够兼容众多厂家的PLC。人机界面应用程序可脱机编制和调试,然后下载到PT上运行,PLC一般通过RS232接口与PT相连。许多PT还配备并行接口,可直接与打印机连接,实时打印数据或进行屏幕拷贝。

2.5网络结构与联网功能灵活的网络结构和强大的联网功能是高端PLC的重要特征。OMRON高端PLC配有标准RS232接口连接触摸屏人机界面、上位机或编程工作站。还可扩展DeviceNet通信单元,使各种符合DeviceNet通信协议的产品都可以连入系统中,以构成基于DeviceNet开放式现场总线的数控系统;系统与车间管理层计算机及车间其它高端PLC的连接可以采用ControllerLink方式,在PLC中扩展ControllerLink通信单元,车间管理层计算机装备ControllerLink支持卡即可实现互连,由底层DeviceNet设备、基于高端PLC的数控系统或其它测控设备和车间管理层计算机构成3层递阶结构的网络测控系统。高端PLC一般都可配置符合TCP/IP协议标准的以太网单元,全面支持远程监控等应用。

篇3

[关键词]数控系统伺服电机直接驱动

中图分类号:TP2文献标识码:A文章编号:1671-7597(2008)0820116-01

近年来,伺服电机控制技术正朝着交流化、数字化、智能化三个方向发展。作为数控机床的执行机构,伺服系统将电力电子器件、控制、驱动及保护等集为一体,并随着数字脉宽调制技术、特种电机材料技术、微电子技术及现代控制技术的进步,经历了从步进到直流,进而到交流的发展历程。本文对其技术现状及发展趋势作简要探讨。

一、数控机床伺服系统

(一)开环伺服系统。开环伺服系统不设检测反馈装置,不构成运动反馈控制回路,电动机按数控装置发出的指令脉冲工作,对运动误差没有检测反馈和处理修正过程,采用步进电机作为驱动器件,机床的位置精度完全取决于步进电动机的步距角精度和机械部分的传动精度,难以达到比较高精度要求。步进电动机的转速不可能很高,运动部件的速度受到限制。但步进电机结构简单、可靠性高、成本低,且其控制电路也简单。所以开环控制系统多用于精度和速度要求不高的经济型数控机床。

(二)全闭环伺服系统。闭环伺服系统主要由比较环节、伺服驱动放大器,进给伺服电动机、机械传动装置和直线位移测量装置组成。对机床运动部件的移动量具有检测与反馈修正功能,采用直流伺服电动机或交流伺服电动机作为驱动部件。可以采用直接安装在工作台的光栅或感应同步器作为位置检测器件,来构成高精度的全闭环位置控制系统。系统的直线位移检测器安装在移动部件上,其精度主要取决于位移检测装置的精度和灵敏度,其产生的加工精度比较高。但机械传动装置的刚度、摩擦阻尼特性、反向间隙等各种非线性因素,对系统稳定性有很大影响,使闭环进给伺服系统安装调试比较复杂。因此只是用在高精度和大型数控机床上。

(三)半闭环伺服系统。半闭环伺服系统的工作原理与全闭环伺服系统相同,同样采用伺服电动机作为驱动部件,可以采用内装于电机内的脉冲编码器,无刷旋转变压器或测速发电机作为位置/速度检测器件来构成半闭环位置控制系统,其系统的反馈信号取自电机轴或丝杆上,进给系统中的机械传动装置处于反馈回路之外,其刚度等非线性因素对系统稳定性没有影响,安装调试比较方便。机床的定位精度与机械传动装置的精度有关,而数控装置都有螺距误差补偿和间隙补偿等项功能,在传动装置精度不太高的情况下,可以利用补偿功能将加工精度提高到满意的程度。故半闭环伺服系统在数控机床中应用很广。

二、伺服电机控制性能优越

(一)低频特性好。步进电机易出现低速时低频振动现象。交流伺服电机不会出现此现象,运转非常平稳,交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能,可检测出机械的共振点,便于系统调整。

(二)控制精度高。交流伺服电机的控制精度由电机轴后端的旋转编码器保证。例如松下全数字式交流伺服电机,对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。

(三)过载能力强。步进电机不具有过载能力,为了克服惯性负载在启动瞬间的惯性力矩,选型时需要选取额定转矩比负载转矩大很多的电机,造成了力矩浪费的现象。而交流伺服电机具有较强的过载能力,例如松下交流伺服系统中的伺服电机的最大转矩达到额定转矩的三倍,可用于克服启动瞬间的惯性力矩。

(四)速度响应快。步进电机从静止加速到额定转速需要200~400毫秒。交流伺服系统的速度响应较快,例如松下MSMA400W交流伺服电机,从静止加速到其额定转速仅需几毫秒。

(五)矩频特性佳。步进电机的输出力矩随转速升高而下降,且在较高转速时转矩会急剧下降,所以其最高工作转速一般在300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩。

三、伺服电机控制展望

(一)伺服电机控制技术的发展推动加工技术的高速高精化。80年代以来,数控系统逐渐应用伺服电机作为驱动器件。交流伺服电机内是无刷结构,几乎不需维修,体积相对较小,有利于转速和功率的提高。目前交流伺服系统已在很大范围内取代了直流伺服系统。在当代数控系统中,交流伺服取代直流伺服、软件控制取代硬件控制成为了伺服技术的发展趋势。由此产生了应用在数控机床的伺服进给和主轴装置上的交流数字驱动系统。随着微处理器和全数字化交流伺服系统的发展,数控系统的计算速度大大提高,采样时间大大减少。硬件伺服控制变为软件伺服控制后,大大地提高了伺服系统的性能。例如OSP-U10/U100网络式数控系统的伺服控制环就是一种高性能的伺服控制网,它对进行自律控制的各个伺服装置和部件实现了分散配置,网络连接,进一步发挥了它对机床的控制能力和通信速度。这些技术的发展,使伺服系统性能改善、可靠性提高、调试方便、柔性增强,大大推动了高精高速加工技术的发展。

另外,先进传感器检测技术的发展也极大地提高了交流电动机调速系统的动态响应性能和定位精度。交流伺服电机调速系统一般选用无刷旋转变压器、混合型的光电编码器和绝对值编码器作为位置、速度传感器,其传感器具有小于1μs的响应时间。伺服电动机本身也在向高速方向发展,与上述高速编码器配合实现了60m/min甚至100m/min的快速进给和1g的加速度。为保证高速时电动机旋转更加平滑,改进了电动机的磁路设计,并配合高速数字伺服软件,可保证电动机即使在小于1μm转动时也显得平滑而无爬行。

(二)交流直线伺服电机直接驱动进给技术已趋成熟。数控机床的进给驱动有“旋转伺服电机+精密高速滚珠丝杠”和“直线电机直接驱动”两种类型。传统的滚珠丝杠工艺成熟加工精度较高,实现高速化的成本相对较低,所以目前应用广泛。使用滚,珠丝杠驱动的高速加工机床最大移动速度90m/min,加速度1.5g。但滚珠丝杠是机械传动,机械元件间存在弹性变形、摩擦和反向间隙,相应会造成运动滞后和非线性误差,所以再进一步提高滚珠丝杠副移动速度和加速度比较难了。90年代以来,高速高精的大型加工机床中,应用直线电机直接驱动进给驱动方式。它比滚珠丝杠驱动具有刚度更高、速度范围更宽、加速特性更好、运动惯量更小、动态响应性能更佳,运行更平稳、位置精度更高等优点。且直线电机直接驱动,不需中间机械传动,减小了机械磨损与传动误差,减少了维护工作。直线电机直接驱动与滚珠丝杠传动相比,其速度提高30倍,加速度提高10倍,最大达10g,刚度提高7倍,最高响应频率达100Hz,还有较大的发展余地。当前,在高速高精加工机床领域中,两种驱动方式还会并存相当长一段时间,但从发展趋势来看,直线电机驱动所占的比重会愈来愈大。种种迹象表明,直线电机驱动在高速高精加工机床上的应用已进入加速增长期。

参考文献:

[1]《交流伺服电机控制技术的研究》,中国测试技术,郑列勤,2006.5.

篇4

传统的电力监控系统所使用的是有线通信技术,虽然该技术性能更好,但是并不适合城市电力监控系统的建设。而且所需要花费的资金较高,在任何一段线路出现问题就会导致整个监控系统无法正常运转,那么在这种情况下就要发展无线通信技术。以往电力监控系统的通信主要分为三种,首先是利用电力线载波通信技术,其次就是利用电缆和光纤实施通信。最后就是利用大微波技术实现通信。但是这三种通信方式都有其缺陷,例如电力载波通信技术需要电网要达到35kv以上,但是在电力监控系统中主要是监控城市的用电情况,而城市的电网电压通常是10kv,所以电力载波技术室无法运用在电力监控系统中的,通常电力载波技术是运用在长途电力监控系统中,因为长途输电电网中的电压都超过了35kv。而通信电缆和通信光纤虽然通信质量较好,但是相应的其建设资金也较高,而且城市电网的建设速度较快,通信电缆和通信光纤无法及时加快建造步伐。另外还有不少城市为了保证城市形象就使得一些电力设施进行改造,即通信电网建设在地下,那么通信电缆和通信光纤也要随之改道,这样无形之中又增加了电力监控系统建设的成本。所以这种方法也没有得到较多的运用。大微波通信属于无线通信技术在电力监控系统中也得到了较多的运用,不过运用的范围有限,因为大微波技术受到微波传输特点的影响一般运用在长距离的输电线路监控系统中,并不适合城市的电力监控系统。城市电力监控系统的建设对于城市居民用电有很大的影响,但是电力监控系统中最重要的通信技术没有得到较好的解决。而无线通信技术则可以处理电力监控系统中的通信难题,无线通信技术不仅传输的速度较快,而且在数据的传输过程中不需要通信电缆,信号更为稳定、质量也更高。

2无线通信技术在电力监控系统中的应用

目前电力监控系统中的无线通信技术主要采用的是ZigBee技术,ZigBee技术适用于近距离的电力监控系统,可以进行双向通信。

2.1快速的传输数据

电力监控系统需要快速的数据传递,这样才能够在终端计算机上对电网进行控制,ZigBee技术的优点之一就是传输的速率较快,电网的运行状态是瞬息万变的,如果采集设备所采集到的信息不能够及时的传递给终端计算机,那么电力工作人员就无法快速的得知电网的实时运行动态,从而无法对电网进行管控。

2.2提高了工作效率

电力监控系统更大限度的加快了电力部门的工作效率,使其能在电力故障发生之后迅速的反应,并排除故障。但是在没有运用电力监控系统之前是无法实施快速的检修与抢修。因此在电力故障发生之后会造成较大的经济损失。电力监控系统可以很好的改变电力故障中存在的问题,使得电力工作人员能够在发生电力故障之后迅速的找出故障位置,快速的消除故障,更大限度的挽回经济损失。

2.3降低系统建造成本

篇5

在数控系统中,有时采用多台电机联动虚拟为一个坐标轴,来驱动机床坐标的运动。最常用的多电机驱动为同步(Synchronous)运动的形式,比如,要求两台以相同的速度和位移运动的电机带动齿轮与齿条啮合作为一个坐标轴运动。这样的坐标轴被称为“同步轴”,如图1。同步技术被广泛应用在数控技术中,比如大跨距龙门机床的龙门直线移动、大型三坐标测量机的双柱直线移动,为保持运动的均匀,都需要两个电机同步驱动。曲轴车床、曲轴磨床的双头工件夹持架,为保持加工时不扭搓工件,在作旋转运动时也必需同步。

图1同步轴

除此之外,为保证正确地加工出螺距相同的螺纹,车床在车螺纹时的主轴和进给轴必需同步。滚齿机的工作台的分齿运动与滚刀的运动在滚齿时也必需同步、刚性攻丝的Z轴进给与主轴同步等,但这种同步是指多个电机的运动速度、位移之间成一定的关系,而不是相等的关系,对这种同步运动,本文不予讨论。

实现同步一般有两种方法。一是机械同步:同步系统由机械装置组成。这种同步方法容易实现,但机械传动链复杂,传动件加工精度要求高,所需的零件多,难以更换传动比,且占用的空间大。二是电伺服同步:同步系统由控制器、电子调节器、功率放大器、伺服电机和机械传动箱等组成。所需机械传动链简单、调试方便、精度高、容易改变电子齿轮比。FANUC数控系统的电伺服同步功能对不同生产机械的要求可提供不同的配置,实现其同步要求。

在某些情况下,一个伺服电机驱动机械坐标轴转矩不够用,但改用一个更大的伺服电机又嫌体积或惯量过大,於是以两个伺服电机取代一个伺服电机驱动机床的坐标轴,这种坐标轴被称为串联轴,如图2所示。这样由於两个伺服电机以一个恒定的转矩相互作用,或者通过预加负荷,在机床内部减少间隙。这就是所谓串联控制(TandemControl),是另一种多电机控制。

图2串联轴

同步控制的概念

在电伺服同步系统中,“同步”的概念是指系统中具有两个或两个以上由电子控制的伺服放大器和伺服电机组成的“控制对象”,其中一个为“主(Master)控制对象”,另外一个或多个为“从(Slave)控制对象”,控制量为机械的位移或速度(对旋转运动为转角或转速)。通过控制器使“从控制对象”和“主控制对象”的输出控制量保持一定的严格比例关系,这种运动系统称为同步系统。一般同步系统的输出控制量为位置和速度。前面所提到的“同步轴”,“主控制对象”与“从控制对象”的输出控制量相等。

为了简化讨论,同步系统中的控制装置可被简化为具有一个积分环节的位置系统,其框图如图3A所示。其中KV为简化後控制装置的位置控制器的开环增益,XC、XO为位置输入、输出;FC为速度指令,Δ为位置误差。KF为速度环增益,当KF》1时,可把速度环近似为1;於是该控制装置的开环增益变为KV/S,如图3B所示。

图3简化的控制装置框图

利用图3的控制装置可以组成两种同步系统:

自同步系统(ActiveSynchronousSystem):该控制系统具有两个相同参数的控制装置和驱动电机,分别驱动主、从轴。控制器送出指令同时给主控制装置和从控制装置,经测量同步误差反馈给从控制装置的输入,用来校正同步的误差,以保证主、从的输出保持严格的比例关系,如图4A所示。

图4两种同步系统

A)自同步系统B)他同步系统

其中XAMO为自同步系统主控制装置的输出,XASO为自同步系统从控制装置的输出,由於从控制装置是数字控制的伺服系统,其输出跟随输入变化;也即从控制装置的输出可以自动跟随主控制装置的输出变化,故称它具有自同步能力。用C表示自同步能力:C=¶ASO/¶XAMO(1)

他同步系统(PassiveSynchronousSystem):在同步系统中,由控制器发出指令提供给主控制装置,同时也提供给从控制装置,用同样的指令控制主从装置使这两种控制装置的输出同步,如图4B所示。其中XPMO为他同步系统的主控制装置的输出,XPSO为他同步系统从控制装置的输出。这种同步系统如果由於某种原因,比如负载发生变化,主控制装置输出XPMO发生变化,从控制装置的输出不受控制,所以不能跟随其变化,即

C=¶XPSO/¶XPMO=0(2)

因此该系统缺乏自同步能力,被称为他同步系统。

自同步系统主要采用在要求主、从两轴有自同步能力的机械中,并要求从控制装置严格跟随主控制装置运动。

他同步系统主要应用在要求主、从控制装置的输出的位置和速度基本相同并且具有较小的误差的机械。比如大型龙门式双轴同步的驱动系统。除了上面提出的自、他同步系统外,还可以由这两种系统混合组成的混合系统。

FANUC数控系统具有两类不同的同步功能:

简易同步控制(SimpleSynchronousControl):控制器发出坐标轴移动信号送给主、从控制装置和两伺服放大器,以控制伺服电机运动。系统不进行同步误差补偿,一般情况下不对同步误差发出警报信号。把主、从伺服电机看做一个坐标轴的运动。但在手动回零时,主、从伺服电机一起运动一直到减速开始动作,然後分别检测栅格,分别进行螺距补偿和间隙补偿。这种简易同步控制见图4B,是他同步控制系统,由於系统不进行同步误差补偿,根据式(2)可知,系统缺乏自同步能力,说明这种控制比较适合於主动轴与从动轴负载条件不太相同,或者主、从两轴对同步误差没有特别要求,而又要求同步运动工作的情况。简易同步控制简单,容易实现;用软件也很方便实现,在数控系统中得到了广泛的应用。

同步控制(SynchronousControl):控制器发出主动轴移动的信号同时送给从动轴,於是,主、从具有相同的路径。同时移动过程中不断检测同步误差,并向从动侧输出补偿指令。如图4A所说明,这种控制是一种自同步控制系统,由於系统不断向从动侧输出补偿指令,设主、从控制器的增益为k1、k2,且k1=k2;那么根据式(1)可以推出,C=¶XSAO/¶XAMO=1,因此系统具有较好的同步能力。比较适合主动轴与从动轴间的转矩干涉较少的机械,但主动轴与从动轴间刚性较低。

对於长行程的同步轴,由於测量尺的绝对精度(误差)和热膨胀可能发生扭搓,在这样的情况下,同步轴的主、辅电机互相拉,由此如果电机流过大电流,电机可能过热,这主要是测量的位置误差所致。螺距补偿可以补偿测量尺的误差,但不能补偿因温度变化而产生的热膨胀误差。在此情况下,FANUC数控系统采用同步轴的自动补偿法进行补偿,该功能检测主、从轴的转矩差值并把这差值用来校正从动轴的位置以减少转矩误差。如图5所示。

图5同步轴自动补偿

串联控制的概念

串联控制的概念与电机的串联工作相似,以直流伺服电机为例,假定图6为两个相同参数的伺服电机串联在一起,电源电压为U,如果两个伺服电机所承受的负载一样,那麽,两个电机的反电势相等。如果M1电机承受较大的负载,电机的电流就会加大,流过电机M2的电流增大,M2的输出转矩也会加大,电机也加速。如果M1电机承受较大的负载而使电机速度有降低的趋势,那麽,由於M1速度降低,M2将施加较大的电压,因而也使M2反电势加大,其速度有增大的趋势,抵消M1的速度降落,使两个电机转矩相等,速度相等达到平衡。这类串联控制在机床驱动领域很早就得到了应用,如龙门刨床的刨台运动。对於大型机械的控制,在一个伺服电机的转矩不足以移动工作台时,往往采用两个电机。FANUC数控系统串联控制的两个电机,分别称为主(Main)电机和辅(Sub)电机;以区别於同步控制中的主(Master)电机和从(Slave)电机。以上利用两个电机说明了对串联控制的原理。

图6串联工作的电机

实际FANUC数控系统串联控制功能工作原理见图7。它是由数字伺服控制来实现。对於大型工作台的负荷,如果一个电机的转矩带不动,或者一个电机的惯量太大,那麽可以用两个电机代替,由软件控制给主和辅电机相同的转矩指令。於是可以把它当作一个“串联轴”进行处理,这就构成了串联控制。一般速度反馈从主电机反馈,如果机械具有较大的间隙,并且辅电机的移动在间隙之内,速度控制就进行不了,且机械会发生大的冲击。为了防止这种现象发生,把主、辅电机速度的平均值作为速度反馈值比较合理。

应该注意,同步控制是以同样的位置指令同时送给主轴和从轴;而串联控制是以同样的转矩指令同时送给主轴和辅轴。

图7串联控制原理

预加负荷与间隙的消除

一般来说,具有大齿轮降速比的机械,总存在机械间隙量。为了减少主、辅轴间的间隙,经常采用预加负荷的方法减少间隙。FANUC数控系统在串联控制时,可以加一个固定的预负荷到主、辅电机的转矩指令上。那麽相反方向的转矩可以一直维持主、辅电机的张力。在串联控制时,预加负荷可以很容易去除齿轮、齿条这样的机构主轴与辅轴间的间隙。不过这种预负荷并不能降低滚珠丝杆和工作台间的间隙。如图8所示,当预加负荷的机械在加速、减速时,主、辅电机产生相同方向的转矩,串联控制系统工作在负荷均分的工作方式,像图8的2和3;

图8预负荷的功能

当它在常速运行的情况,系统的工作取决於摩擦力与预负荷的情况,工作在负荷均分或者反间隙的工作方式。在预负荷大於摩擦力时,工作在反间隙的状态;在摩擦力大於预负荷时,工作在负荷均分的状态;当系统的进给停止时,这时预负荷在主、辅轴间产生张力,系统工作在反间隙的工作方式。根据上面的分析,可以合理选择预负荷的特性而保证在传动过程中消除间隙。

应用

上文已说明,多电机可采用同步轴和串联轴虚拟为一个数控坐标轴;那么什么情况下采用同步轴?什麽情况采用串联轴呢?串联控制主要用在下列场合:

一个驱动电机转矩不够,可用两个较小的驱动电机代替;

篇6

暖通空调系统的主要功能是调节空气的温度、湿度、洁净度以及气流的运行速度。现代空气环境的恶化使得暖通空调的功能要求增加,指标更加严格。在暖通空调的设计安装过程中,节能环保技术可以应用在整个生产使用流程中。从建筑工程布局的设计到新型可再生能源的使用,再到使用环节的合理安排,均能降低能源的消耗,保证环境污染最小化,实现整个系统的健康运作。

2暖通空调系统中环保节能方法与措施

2.1调整建筑物的规划设计

对房屋进行热工改造时,要提高房屋的舒适度,就需要合理运用房屋围护架构的特点。研究表明,在建筑物墙体外侧刷上保温性能的材料之后,用电量明显降低。由此可见,房屋围护架构的优化设计有明显的节能效果。此外,建筑物的规划设计中,房屋的地址选择、朝向、体形、季节性等因素也需要在从节能环保的层面进行充分的考虑。

2.2合理设计安装暖通空调系统

在设计安装暖通空调系统时各种子系统包含的设备很多,设计者要严格按照规定的工作流程,保证设备的正常运行。同时,需将节能减排的理念充分的应用到设计的各种环节中。相关工作人员加强施工设计的管理,严格监督,保证系统实现设计目标。

2.3开发利用新型清洁能源

新型环保型能源在暖风空调系统中前景广阔。采用天然气作为空调制冷设备的能源,能有效控制CO2和SO2和排放量,减少环境污染。各种可再生能源,例如地源热、地下水、风力、海洋能等均可运用到暖通空调系统中。其中,地源热空调冬季吸收地下土壤、水等天然能量为建筑物提供热能;夏季向地下释放热量,提供给建筑物冷空气。

3暖通空调系统中环保节能技术的应用

3.1蓄冷空调

蓄冷空调是专为节能环保研制的设备,通过水、冰两种介质实现能量交换。一般地,城市用电白天紧张,而夜间则缓解很多,蓄冷空调针对这一现实,在夜间通过制冷机组制冰,白天融冰,释放存储的能量,提供给建筑物使用。这种方法有效的缓解了城市白天用电紧张的问题,节约了成本。

3.2热回收技术

热回收技术能够真正实现能源的节约和环境的保护。该技术将空调排放出的热量进行回收,实现二次利用。这种方法能够防止排放的空气直接排出室外造成环境污染,又能提高能源的利用效率。

3.3变频技术

目前空调设计有定频和变频两种。变频空调性能优越,节能效果好。通常情况下,空调设计均留有一定的冗余以便减少运行压力。使用变频技术,能够在室外温度、湿度、风力等变化导致系统运行负荷变化的情况下灵活调节系统的工作状态,真正变废为宝,避免不必要的资源浪费。

3.4低温地板辐射采暖技术

低温地板辐射采暖技术现在已广泛投入使用,既实现节能环保,又安全实效。该技术在地板下安装热水管,热水在地板下流通,释放热量,提高房间的温度。该技术的应用过程中,应注意保持地板温度低于45度。它通过对流的方式实现热量的传递,让人脚上温暖,头部凉爽,有很高的舒适度。此外,这种技术能有效的节省空间,方便计量改造,从多方面实现了节能环保的目标。

3.5替代制冷剂的应用

目前,随着大气环境的恶化,许多空调已不再使用传统的制冷剂—氟利昂。为保护臭氧层,暖通空调行业研究了可替代制冷剂—CFCS和HFCS,并取得了一定的进展。人工合成的制冷剂、天然制冷剂、碳氢化合物等亦可作为替代资源。这些环境友好型制冷剂将不会对臭氧层造成破坏,保护人类免于紫外线的伤害。

4暖通空调系统中环保节能技术的展望

科技的发展推动着各行各业的进步,应节能环保的要求,暖通空调系统中先进技术的研究也十分广泛。新型的暖通空调节能环保技术有多种方式。新风预处理系统是为全面提高空调品质提出的全新的概念,它保持了传统空气处理模式,增加了对新风的预处理功能,消除了新风对空调调节的干扰。新风预处系统能改善风量、降低相对湿度、提高空气质量。独立新风系统能够承担建筑物内的全部新风负荷、室内的全部潜热载荷及部分显热载荷。它能够解决商用建筑中的新风问题、改善室内的相对湿度。并且由于该种技术无回风,可以大大增强建筑环境的舒适度和安全性。此外,环保节能技术必然依赖于新型能源的开发推广,一旦新能源能够投入使用,暖风空调系统也必然进入一个新的阶段。

5结语

篇7

1.1超程

当进给运动超过由软件设定的软限位或由限位开关决定的硬限位时,就会发生超程报警,一般会在CRT上显示报警内容,根据数控系统说明书,即可排除故障,解除超程。

1.2爬行

一般是由于进给传动链的状态不良、伺服系统增益过低及外加负载过大等因素所致。尤其要注意的是,伺服和滚珠丝杠连接用的联轴器,由于连接松动或联轴器本身的缺陷,如裂纹等,造成滚珠丝杠转动或伺服的转动不同步,从而使进给忽快忽慢,产生爬行现象。

1.3窜动

在进给时出现窜动现象,其可能原因有:1、接线端子接触不良,如紧固的螺钉松动;2、位置控制信号受到干扰;3、测速信号不稳定,如测速装置故障、测速反馈信号干扰等。如果窜动发生在正、反向运动的瞬间,则一般是由于进给传动链的反向间隙或者伺服系统增益过大引起。

1.4过载

当进给运动的负载过大、参数设定错误、频繁正、反向运动以及进给传动链状态不良时,均会引起过载的故障。此故障一般机床可以自行诊断出来,并在CRT显示屏上显示过载、过热或过电流报警。同时,在进给伺服模块上用指示灯或者数码管显示驱动单元过载、过电流等报警信息。

1.5伺服电动机不转

当速度、位置控制信号未输出、或者使能信号(即伺服允许信号,一般为DC+24V继电器线圈电压)未接通以及进给驱动单元故障都会造成此故障。此时应测量数控装置的指令输出端子的信号是否正常,通过CRT观察I/O状态,分析机床PLC梯形图(或流程图),以确定进给轴的启动条件,观察如、冷却等是否满足。如是进给驱动单元故障则用交换法,可判断出相应单元是否有故障。

2伺服进给系统常见故障典型案例分析

(1)一台配套FANUC7M系统的加工中心,进给加工过程中,发现Y轴有振动现象。

为了判定故障原因,将机床操作方式置于手动方式,用手摇脉冲发生器控制Y轴进给,发现Y轴仍有振动现象。在此方式下,通过较长时间的移动后,Y轴速度单元上OVC报警灯亮。证明Y轴伺服驱动器发生了过电流报警,根据以上现象,分析可能的原因如下:

①电动机负载过重;②机械传动系统不良;③位置环增益过高;④伺服电动机不良,等等。

维修时通过互换法,确认故障原因出在直流伺服电动机上。卸下Y轴电动机,经检查发现2个电刷中有1个的弹簧己经烧断,造成了电枢电流不平衡,使电动机输出转矩不平衡。另外,发现电动机的轴承亦有损坏,故而引起-轴的振动与过电流。更换电动机轴承与电刷后,机床恢复正常。

(2)一台配套FANUC6ME系统的加工中心。轴在运动时速度不稳.由运动到停止的过程中,在停止位置出现较大幅度的振荡,有时不能完成定位,必须关机后,才能重新工作。

分析与处理过程:仔细观察机床的振动情况,发现,X轴振荡频率较低,且无异常声。从振荡现象上看,故障现象与闭环系统参数设定有关,如:系统增益设定过高、积分时间常数设定过大等。

检查系统的参数设定、伺服驱动器的增益、积分时间电位器调节等均在合适的范围,且与故障前的调整完全一致,因此可以初步判断,轴的振荡与参数的设定与调节无关。为了进一步验证,维修时在记录了原调整值的前提下,将以上参数进行了重新调节与试验,发现故障依然存在,证明了判断的正确性。

在以上基础上,将参数与调整值重新回到原设定后,对伺服电动机与测量系统进行了检查。首先清理了测速发电机和伺服电动机的换向器表面,并用数字表检查测速发电机绕组情况。检查发现,该伺服电动机的测速发电机转子与电动机轴之间的连接存在松动,粘接部分已经脱开;经重新连接后,开机试验,故障现象消失,机床恢复正常工作。

(3)一台数控铣床,采用FUNAC6M系列三轴一体型伺服驱动器,开机后,X轴工作正常,但是手动移动Z轴,发现在较小范围内,Z轴可以运动,但继续移动Z轴,系统出现伺服报警。

分析和处理过程:根据故障现象,检查机床实际工作情况,发现开机后Z轴可以少量运动,不久温度迅速上升,表面发烫。

分析引起以上故障的原因,可能是机床电气控制系统故障或机械传动系统不良。为确定故障部位,考虑到本机床采用半闭环结构,维修时首先松开伺服与丝杠的连接,并再次开机实验,发现故障现象不变,故确认报警是由于电气控制系统不良引起。

由于机床Z轴伺服带有制动器,开机测量制动器的输入电压正常,在系统、驱动器关机的情况下,对制动器单独加入电源进行试验,手动转动Z轴,发现制动器松开,手动转动轴平稳、轻松,证明制动器工作良好。

为了进一步缩小故障部位,确认Z轴伺服的工作情况,维修时利用不同规格的X轴在机床侧进行互换实验,发现换上的同样出现发热现象,且工作时故障现象不变,从而排除了伺服本身原因。

为了确认驱动器的工作情况,维修时在驱动器侧,对Z轴的驱动器进行互换实验,即将X轴驱动器与Z轴伺服链接,Z轴驱动器与X轴连接。经实验发现故障转移到X轴,Z轴工作恢复正常

根据以上实验,乐意确认以下几点:

①机床机械传动系统正常,制动器工作良好;

②数控系统工作正常,因为当Z轴驱动器带动X轴时,机床无报警;

③Z轴伺服工作正常,因为将它在机床侧与X轴互换后,工作正常;

④Z轴驱动器工作正常,因为通过X轴驱动器在电柜侧互换,控制Z轴后,同样发生故障。

综合以上判断,可以确认故障是由于Z轴伺服的电缆连接引起的。

仔细检查伺服的电缆连接,发现该机床在出厂时电枢线连接错误,即驱动器的L/M/N端子未与插头的A/B/C连接端一一对应,相序存在错误,重新连接后,故障消失,Z轴可以正常工作。

(4)一台配套FUNAC6ME系统的加工中心,X轴在静止时机床工作正常,无报警;但在X轴运动过程中,出现振动,伴有噪声。

分析与处理过程:由于机床在X轴静止时机床工作正常,无报警,初步判定数控系统与驱动器无故障。考虑到X轴运动时定位正确,因此,进一步判定系统X位置环工作正常。检查X轴的振动情况,经观察发现,振动的频率与运动速度有关,运动速度快振动频率较高,运动速度慢则振动频率低,初步认为故障与速度反馈环节有关。分析引起以上故障可能的原因有:

①测速发电机不良;②测速发电机连接不良;③直流伺服电动机不良。

维修时首先检查X轴伺服电动机的测速发电机连接,未发现不良。检查X轴伺服电动机与内装式测速发电机,发现换向器表面积有较多的碳粉,用压缩空气进行清理后,故障未消除。进一步利用数字万用表,测量测速发电机换向片之间的电阻值,经比较后发现,有一对极片间的电阻值比其他各对极片间的电阻值大了很多,说明测速发电机绕组内部存在断路现象。更换新的测速发电机后,机床恢复正常。

篇8

工作的开展都离不开对数控机床的控制原理的应用,数控机床是一种高度自由化的机床,相对于普通的机床其加工表面形式及方法是协调的。最根本的不同就是在自动化控制原理及方法的应用上。数控机床需要进行数字化信息的控制应用,这涉及到与加工零件相关的信息。也就是工件及刀具的相对运动轨迹的尺寸参数的应用。这些工作的开展,都离不开切削加工工艺参数的应用,其主要涉及到主运动及进给运动速度的协调,通过各种辅的操作,保证各种加工信息的协调,实现了规定文字、数字、符合等代码的应用,按照一定的格式需要进行程序的编写,这就需要进行加工程序的应用,进行控制介质的输入,保证数控装置的良好应用。这些工作的开展,都要进行数控装置的分析及处理,进行相关加工程序信号及指令,从而实现数控机床的加工。这就需要遵循相关的数控机床控制原理,进行数控机床的系统的协调,保证其功能的实现。

2数控机床组成及其优化设计方案

为了提升工程的效益,进行数控机床体系的健全是必要的,这需要针对数控机床应用过程中的各种问题进行分析,比如进行数控机床构成、程序编制等的分析,进行程序载体等的分析,保证数控机床自动加工零件的良好应用。这离不开良好的加工零件的工艺分析,保证零件坐标的基础坐标体系的相对位置优化。通过对机床及其零件的安装位置的协调,更有利于提升刀具及零件的效益,保证其满足尺寸参数的应用需要。这就需要实现机床安装位置及零件的协调,保证刀具及零件的良好协调性,满足尺寸参数的应用需要,这离不开零件加工工艺体系的健全,实现其加工顺序的协调性,实现切削加工工艺参数的健全,保证辅助装置的良好工作。在数控机床的应用过程中,为提升工作效益,进行数控代码体系的健全是必要的,这涉及到电脉冲信号模式的应用,将其进行数控装置的有效应用,做好数控装置及强电控制装置的协调工作,这是数控机床良好工作的核心,从而进行输出位置的脉冲信号的回馈。当然,这也需要进行数控装置系统软件的应用,做好逻辑电路的编译工作。进行相关机床部分的控制,需要做好规定运算及其相关的逻辑处理,进行有关信号及其动作的协调。这离不开驱动系统及位置检测装置环节的应用,保证伺服驱动系统体系的健全,实现驱动装置的良好设置,从而满足数控机床的进给系统分析。在这个环节中,机床的机械部分也扮演着重要的地位,数控机床的应用部分是非常多的,比如主运动部件、进给运动执行部件,比较常见的应用方式是工作台、拖板及传动部件,这些都是实现支撑性工作的关键,为了提升工作效益,进行相关工作步骤的冷却是必要的,需要保证辅助装置的协调。在数控系统的优化方案中,做好硬件部分的控制是必要的。数控铣床系统需要进行铣床专用数控器的应用,满足半闭环数数控系统的工作要求,在基本结构优化过程中,进行机床本体、铣床专用数据器等的协调是必要的。在其系统硬件的应用过程中,需要做好铣床专用数控器的应用,做好信号板的控制工作,进行交流伺服驱动器如交流伺服电机的应用,从而实现无刷直流电机及无刷直流电机驱动器的应用,以满足实际工作的要求,其中也涉及到很多的工作步骤要求。

在数控系统操作过程中,做好软件设计的工作是必要的,从而落实好铣床专用数控器的应用方案,保证数控铣床的系统效益的提升,这里我们也要进行铣床专用数控器参数的设置,针对其应用程序,做好编辑输入工作,满足程序设计的诸多要求,按照其具体指令完成规定工作。在参数设置过程中,需要应用到相关的参数设置方法,保证参数修改模式的更新应用,做好参数修改效益的应用工作。需要进行分辨率情况的分析,认真的做好分析,更有利于进行机械轴向转动装置的应用,实现伺服电机回授脉波数的正常应用。这离不开工作台的良好设计,保证不同工厂的设置优化,保证伺服马达的良好安装,从而满足工作台的工作需要,实现参数的良好设定,进行工作台方向的修正。进行数控铣床的实际情况的不同轴电机旋转方向的控制,满足当下马达旋转方向的设定要求。在这个阶段中,需要实现不同轴的最高进给速度的控制,针对数控铣床的应用趋势,保证不同轴的行距的控制,进行过高速度的控制,从而有效应对其冲击情况,保证电机工作的良好开展。这些工作的协调,离不开各轴的最高进给速度的控制,满足不同轴向的进给速度控制需要。在这些工作的优化过程中,进行程序的选择是必要的,这里可以进行H4C-M铣床专用数控器的应用,在这些程序工作过程中,可以进行相关程序编辑及执行工作。在其程序选择过程中,可以进行编辑及程序选择,进入程序选择模式,通过对输入键及选取键的选择,以满足当下工作的开展。在实际操作中,进行程序的画面选择也是必要的,从而满足旧程序的应用需要,在旧程序的修改及应用中,需要针对不同情况,进行工作方式的协调,进行指令的增加或者修改,保证程序语句区的良好操作,保证其所增加指令的单节的移动。在数据输入区进行相关指令字数的添加或修改。在程序语句区,需要将光标移动到所删除指令中,在数据输入区,需要进行相关指令所需字母的输入。在程序语句区,可以进行单节的插入,将其光标进行所需单节程序的插入。在数据输入区,可以进行插入单节的第一个指令的字母或者是数字,再进行输入键的按下。从而保证单节的删除。在程序语句区,需要将光标移动到需要删除的单节处,再进行删除键的按下。在数控系统的应用过程中,进行机械部分的分析是必要的,从而进行机床本身误差及其所需要加工零件精度的分析,更好地落实好机床的误差补偿控制。在数控铣床的工作应用中,进行数控技术、电子技术等的协调是必要的,这需要满足机床设计的诸多理论,保证数控机床的加工工作,从而满足机械设计制造的工作要求。为了实际工作的要求,需要协调好机械设计及自动化应用方向。

3结束语

推荐期刊