时间:2023-03-21 17:07:04
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇数字电路设计论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
关键词:无线发射FSK射频发射器nRF902
1概述
nRF902是一个单片发射器芯片,工作频率范围为862~870MHz的ISM频带。该发射器由完全集成的频率合成器、功率放大器、晶体振荡器和调制器组成。由于nRF902使用了晶体振荡器和稳定的频率合成器,因此,频率漂移很低,完全比得上基于SAW谐振器的解决方案。nRF902的输出功率和频偏可通过外接电阻进行编程。电源电压范围为2.4~3.6V,输出功率为10dBm,电流消耗仅9mA。待机模式时的电源电流仅为10nA。采用FSK调制时的数据速率为50kbits/s。因此,该芯片适合于报警器、自动读表、家庭自动化、遥控、无线数字通讯应用。
2引脚功能和结构原理
nRF902采用SIOC-8封装,各引脚功能如表1所列。
表1nRF902的引脚功能
引脚端符号功能
1XTAL晶振连接端/PWR-UP控制
2REXT功率调节/时钟模式/ASK调制器字输入
3XO8基准时钟输出(时钟频率1/8)
4VDD电源电压(+3V)
5DIN数字数据输入
6ANT2天线端
7ANT1天线端
8VSS接地端(0V)
图1所示是nRF902的内部结构,从图中可以看出:该芯片内含频率合成器、功率放大器、晶体振荡器和调制器等电路。
通过nRF902的天线输出端可将平衡的射频信号输出到天线,该引脚同时必须通过直流通道连接到电源VDD,电源VDD可通过射频扼流圈或者环路天线的中心接入。ANT1/ANT2输出端之间的负载阻抗为200~700Ω。如果需要10dBm的输出功率,则应使用400Ω的负载阻抗。
调制可以通过牵引晶振的电容来完成。要达到规定的频偏,晶振的特性应满足:并联谐振频率fp应等于发射中心频率除以64,并联等效电容Co应小于7pF,晶振等效串联电阻ESR应小于60Ω,全部负载电容,包括印制板电容CL均应小于10pF。由于频率调制是通过牵引晶振的负载(内部的变容二极管)完成的,而外接电阻R4将改变变容二极管的电压,因此,改变R4的值可以改变频偏。
将偏置电阻R2从REXT端连接到电源端VDD对可输出功率进行调节。nRF902的工作模式可通过表2所列方法进行设置。
表2nPF902的工作模式设置
引脚
工作模式XTALREXTXO8DIN
低功耗模式(睡眠模式)GND---
时钟模式VDDGNDVDD-
ASK模式VDDASK数据VDD或者GNDVDD
FSK模式VDDVDDVDD或者GNDFSK数据
在FSK模式时,调制数据将从DIN端输入,这是nRF902的标准工作模式。
ASK调制可通过控制REXT端来实现。当R2连接到VDD时,芯片发射载波。当R2连接到地时,芯片内部的功率放大器关断。这两个状态可用ASK系统中的逻辑“1”和逻辑“0”来表示。在ASK模式,DIN端必须连接到VDD。
时钟模式可应用于外接微控制器的情况,nRF902可以给微控制器提供时钟。它可在XO8端输出基准时钟,XO8端输出的时钟信号频率是晶振频率的1/8。如晶振频率为13.567MHz,则XO8输出的时钟信号频率为1.695MHz。
在低功耗模式(睡眠模式),芯片的电流消耗仅10nA。在没有数据发射时,芯片可工作在低功耗模式以延长电池的使用时间。电路从低功耗模式转换到发射模式需要5ms的时间,从时钟模式转换到发射模式需要50μs的时间。
图2nRF902的应用电路
关键词:无线接收FSKASK频率合成器TH71101
1概述
TH71101是双超外差式结构的无线电接收芯片,工作在300~450MHzISM频段,能与TH7107等芯片配套,实现ISM频段无线模拟和数字信号传输;内部包含一个低噪声放大器、双混频器、压控振荡器、PLL合成器、晶体振荡器等电路。能接收模拟和数字FSK/FM/ASK信号。FSK数据速率可达40kb/s,ASK数据速率达80kb/s,FM带宽15kHz;灵敏度111dBm。电源电压2.5~5.5V,工作电流8.2mA,待机电流<100nA。适用于ISM(工业、科学和医学)频率范围内的各种应用,如数据通信系统、无钥匙进入系统、遥控遥测系统、安防系统等。
2芯片封装与引脚功能
TH71101采用LQFP32封装,各引脚功能如表1所列。
表1TH71101引脚功能
引脚号符号功能
1VEE地
2GAIN-LNA低噪声放大器(LNA)增益控制
3OUT-LNALNA输出,连接到外接的LC调谐回路
4IN-MIX1混频器1(MIX1)输入,单端阻抗约33Ω
5VEE地
6IF1P中频1(IF1)集电极开路输出
7IF1N中频1(IF1)集电极开路输出
8VCC电源输入
9OUT-MIX2混频器2(MIX2)输出,输出阻抗约330Ω
10VEE地
11IFA中频放大器(IFA)输入,输入阻抗约2.2kΩ
12FBC1连接外接的中频放大器反馈电容
13FBC2连接外接的中频放大器反馈电容
14VCC电源输入
15OUT-IFA中频放大器输出
16IN-DEM解调器(DEMOD)输入
17VCC电源输入
18OUT-OA运算放大器(OA)输出
19OAN运算放大器(OA)负极输入
20OAP运算放大器(OA)正极输入
21RSSIRSSI输出,输出阻抗约36kΩ
22VEE地
23OUTPFSK/FM正输出,输出阻抗100300kΩ
24OUTNFSK/FM负输出,输出阻抗100300kΩ
25VEE地
26RO基准振荡器输入,外接晶体振荡器和电容
27VCC电源输入
28ENRX模式控制输入
29LF充电泵输出和压控振荡器1(VCO1)控制输入
30VEE地
31IN-LNALNA输入,单端阻抗约26Ω
32VCC电源输入
3芯片内部结构与工作原理
TH71101内部结构框图如图1所示。芯片内包含低噪声放大器(LNA)、两级混频器(MIX1、MIX2)、锁相环合成器(PLLSynthesizer)、基准晶体振荡器(RO)、充电泵(CP)、中频放大器(IFA)、相频检波器(PFD)等电路。
LNA是一个高灵敏度接收射频信号的共发、共基放大器。混频器1(MIX1)将射频信号下变频到中频1(IF1),混频器2(MIX2)将中频信号1下变频到中断信号2(IF2),中频放大器(IFA)放大中频信号2和限幅中频信号并产生RSSI信号。相位重合解调器和混频器3解调中频信号。运算放大器(OA)进行数据限幅、滤波和ASK检测。锁相环合成器由压控振荡器(VCO1)、反馈式分频器(DIV16和DIV2)、基准晶体振荡器(RO)、相频检波器(PFD)、充电泵(CP)等电路组成,产生第1级和第2级本振信号LO1和LO2。
图2FSK接收电路图
使用TH71101接收器芯片可以组成不同的电路结构,以满足不同的需求。对于FSK/FM接收,在相位重合解调器中使用IF谐振回路。谐振回路可由陶瓷谐振器或者LC谐振回路组成。对于ASK结构,RSSI信号馈送到ASK检波器,ASK检波器由OA组成。
图3ASK接收电路
TH71101采用两级下变频。MIX1和MIX2由芯片内部的本振信号LO1和LO2驱动,与射频前端滤波器共同实现一个高的镜像抑制,如表2和表3所列。有效的射频前端滤波是在LNA的前端使用SAW、陶瓷或者LC滤波器,在LNA的输出使用LC滤波器。
表2基准频率fREF、本振频率fL0、中频fIF与FRF镜像抑制关系
注入类型低端高端
fREF(fRF-fIF)/16fRF+fIF/16
fLO16·fREF16·fREF
fIFfRF-fLOfLO-fRF
fRFimagefRF-2fIFfRF+2fIF
表3在fIF=10.7MHz时,基准频率fREF、本振频率fL0与fRF镜像抑制的关系
参数fRF=315MHzfRF=315MHzfRF=433.6MHzfRF=433.6MHz
低高低高
fREF/MHz19.0187520.3562526.4312527.76875
fLO/MHz304.3325.7422.9444.3
fRFimage/MHz293.6336.4412.2455.0
4应用电路设计
论文摘要:结合高职院校数字电路实验教学现状,以培养学生的电子设计能力、实践能力与创新能力为目标,对数字电路设计性实验进行了研究,提出了构建实验课程体系、加强实验教师队伍建设、完善实验考核机制等措施,取得了良好的教学效果。
随着高职院校实验教学改革的深人,实验教学已成为高职院校教学工作的重要组成部分。实验教学已从过去单纯的验证性实验逐步深人到综合性、设计性实验,从利用实验来加深对已学理论知识的理解,深人到将实验作为学生学习新知识、新技术、新器件,培养学生实践能力、创新能力的重要目的仁‘〕。
1高职院校实验教学存在的问题
数字电路实验是高职院校电子信息类、机电类专业必修的实践性技术基础课程,对培养学生的综合素质、创新能力具有重要的地位。在传统的实验教学中,数字电路实验教学多以验证性实验为主,并按实验指导书的实验步骤去完成实验,这种实验教学模式禁锢了学生的创新思维,失去了“实验”真正的含义,培养出来的学生实践技能差,无法达到高职教育人才培养的要求〔2)0
2开设数字电路设计性实验采取的措施
通过多年来的实验教学改革实践,证明了开设设计性实验有利于巩固课堂所学的理论知识;有利于提高学生电子系统设计能力、综合素质、创新能力[’]。2005年我校电子技术实验教学中心(以下简称中心)以“加强基础训练,培养能力,注重创新”为指导思想,在面向各类专业的数字电路实验教学中,开设了以学生为主、教师为辅的数字电路设计性实验教学,取得了良好的教学效果。
2. 1构建实验教学课程体系
数字电路设计性实验是一种较高层次的实验教学,是结合数字电路课程和其它学科知识进行电路设计,培养学生电子系统设计能力、创新能力的有效途径,具有综合性、创新性及探索性[[4]。数字电路设计性实验是学生根据教师给定的实验任务和实验条件,自行查阅文献、设计方案、电路安装等,激发学生的创新思维。设计性实验的实施过程,如图1所示。
为了提高学生的电子设计能力和创新能力,中心根据高职教育教学特点与规律,构建了基础型、提高型、创新型三个递进层次的数字电路设计性实验课程体系。三个实训模块的内容坚持以“加强基础型设计性实验,培养学生的电子设计能力、创新意识”为主线,由单元电路设计到系统电路设计,循序渐进,三年不断线,为不同基础、不同层次的学生逐步提高电子设计能力、创新能力的空间,如图2所示。
基础型设计性实验是课程中所安排的教学实验,学生在完成了验证性、综合性实验以后,具有了一定的实验技能,结合数字电路的基本原理设计一些比较简单的单元电路,学生按照教师给出的实验要求根据实验室所拥有的仪器设备、元器件,从实验原理来确定实验方法、设计实验电路等,且在规定的实验学时内完成实验。如表1所示。这一阶段主要是让学生熟悉门电路逻辑功能及应用,掌握组合逻辑电路、时序电路的设计方法,培养学生的设计意识、查阅文献等能力。
提高型设计性实验对高职院校来说,可认为是数字电路课程设计。它体现了学生对综合知识的掌握和运用,课题内容是运用多门课程的知识及实验技能来设计比较复杂的系统电路,如表2所示。整个教学过程可分10单元,每个单元为4学时,每小组为一个课题。学生根据教师提供的设计题目确定课题,查阅文献、设计电路、电路仿真、电路安装调试、撰写课程设计报告等,完成从电路设计到制作、成品的全部实践过程。通过这一阶段的训练,学生的软硬件设计能力进一步提高,报告撰写趋于成熟,善于接受新器件,团队协作趋于成熟。
创新型设计性实验主要为理论基础知识扎实、实验技能熟练的优秀学生选做,为“开放式”教学,实验内容主要是结合专业的科研项目、工程实际及全国或省级电子设计竞赛的课题。通过创新型设计性实验,强化学生电子系统设计能力,充分发挥学生的潜能,全面提高学生的电子系统设计能力、创新能力,为参加大学生电子设计竞赛奠定坚实的基础。
数字电路设计性实验课程体系将数字电路基本原理、模拟电路、eda技术等多门课程知识点融合在一起,从单元电路设计到系统电路设计,深化了“系统”概念的意识。在每一轮设计性实验结束后进行总结,开展学生问卷调查,对设计性实验的教学方法、手段等进行全面评估,从而了解设计性实验教学的效果。在实验过程中,实验教师鼓励学生从不同角度去分析,大胆创新,设计不同的方案。
2. 2加强实验教师队伍的建设
近年来,中心依托省级精品课程“数字电路与逻辑设计基础”、省级应用电子技术精品专业建设,合理规划,制定了实验教师队伍培养计划;专业教师定期到企业培训;专职实验教师参加实验教学改革研讨和对新知识、新技术的培训;同时制定优惠政策,吸引企业中具有丰富实践经验的工程师、技师到实训基地担任实验教师tb},形成一支能培养高素质技能型人才、能跟踪电子信息技术发展、勇于创新并积极承担教学改革项目的专兼职结合的实验教师队伍,实现了实验教师队伍的整体优化。
2. 3开放实验室
为了保证设计性实验教学的有效实施,中心实行时间和内容两方面开放的教学方法。学生除了要完成教学计划内指定实验外,还可以根据自己的专业和兴趣,选择规定以外的实验项目。为了提高设计性实验的教学效果,学校制定了系列激励政策,调动了实验教师及学生的积极性。
2. 4建设创新实训室
为了培养学生的电子设计能力、创新能力,给优秀学生营造良好的自主学习环境,提供展现创新设计的舞台,中心先后投人了30多万元,更新了实验仪器设备,建设了一个软件环境优良、硬件条件先进的创新实训室。该实训室配置了计算机、函数信号发生器、频率计、扫频仪、数字存储示波器、单片机系统设计实验开发系统、打孔机、制版机等仪器设备〔7〕。
2. 5完善实验考核机制
对于数字电路设计性实验的考核,不能仅靠一份实验报告或作品来评定成绩,要关注设计方案的可行性、实验过程中学生的操作能力、创新能力等方面。如以100分计,分别从实验设计方案(20分)、实验方案的实施和完善(40分)、设计的创新性(20分)、实验报告或论文、成品(20分)几个环节来评定学生的实验成绩。为了激励优秀学生,激发创新欲望,中心建立了“创新设计性实验优秀论文、作品评奖制度”,对经专业教师评审选出的优秀论文、创新作品的学生给予表彰、奖励。
论文关键词:EDA,实验系统,模块
1 引言
随着电子技术的发展及电子系统设计周期缩短的要求,EDA技术得到迅猛发展。
EDA是ElectronicDesign Automation(电子设计自动化)的缩写。EDA技术,就是以大规模可编程逻辑器件为设计载体,以硬件描述语言为系统逻辑描述的主要表达方式,以计算机、大规模可编程逻辑器件的开发软件及实验开发系统为设计开发工具,通过使用有关的开发软件,自动完成电子系统设计的逻辑编译、逻辑化简、逻辑分割、逻辑综合及优化、逻辑布局布线、逻辑仿真,直至对于特定目标芯片的适配编译、逻辑映射、编程下载等工作,最终形成集成电子系统或专用集成芯片的一门新技术[1]。
目前,几乎所有高校的电类专业都开设了EDA课程,为加强教学效果,通常都使用专门的EDA实验箱来辅助教学,但是实验箱采用了一体化结构,所有的电路和器件都在一块电路板上,在功能上难以根据需要进行扩展,不利于学生的创新设计,复杂系统难以实现;实验箱体积较大,不便携带;EDA 实验箱、单片机实验箱、DSP实验箱、ARM实验箱中很多功能模块的硬件电路是相同的,但不同实验箱上相同模块不能共享,存在资源浪费。由于实验箱的上述缺点,很多高校都纷纷开始设计开发自己的实验系统模块,提高实验箱的利用率,提高学生的工程创新能力[2][3]。
2 EDA实验系统开发的特点
EDA实验系统的开发具有以下特点:
(1)实验内容由单一性向综合性发展
早期开发的EDA实验系统主要是学生用来学习EDA课程、下载程序、进行仿真的工具;使用实验系统是老师用来培养学生设计数字电路的能力、帮助学生学习和掌握开发语言的手段。因此EDA实验系统仅在电子类专业的EDA课程中使用,系统所提供的实验内容仅限于简单的数字电路设计,包括计数器、编码译码器的设计、数码管的显示等。随着EDA技术的发展,电信、通信等专业纷纷引入EDA实验系统,在“通信原理”等课程的实验教学中被广泛应用于实践[4],实验内容也从单一的基本数字电路的设计发展到集EDA技术实验、单片机实验、DSP实验等为一体的综合性的实验平台[5]。因此,EDA实验平台逐渐面向电子信息类相关专业的学生进行课程的学习,课外竞技活动,电子类设计比赛,并逐渐用于教师进行科研。
(2)系统结构从一体化向模块化发展
早起开发的EDA实验系统在结构上采用一体化的实验箱设计,所有的电路和器件都在一块电路板上[6]。这样,系统的使用虽然可以帮助学生掌握软件的应用,但也使学生对硬件电路不了解;另外,系统在功能上难以根据需要进行扩展,不利于学生进行创新设计,复杂的系统则难以实现。因此在后来的EDA实验系统的开发上,大都都采用了模块化的结构[7][8],即FPGA、单片机等做在一块核心板上,其IO口以插针形式引出,以方便和外围电路的连接;外围电路则以模块的形式单独做在不同的电路板上,比如数码管显示模块、按键模块、LED显示模块等;根据不同的实验摘要的模块搭建自己设计的电路,从而提高学习兴趣,增强实验教学的效果;此外,模块化的设计还方便老师对学生设计的重复实现,有利于教学水平的提高杂志铺。
(3)核心芯片由单一化向丰富化发展
早期开发的EDA实验系统由于仅用于EDA课程的学习,其核心芯片大都为Altera公司的FPGA等可编程逻辑器件,开发语言环境主要为界面友好、操作简便的Maxplus Ⅱ和Quartus Ⅱ。随着EDA技术向不同学科不同专业的渗透,核心芯片逐渐发展为FPGA、单片机和DSP器件的综合使用,开发语言也逐渐开始使用C语言或汇编语言等。这样,实验系统能提供的实验内容和规模均有所增加,除了基本的数字电路设计实验模块以外,还可以增设调制解调模块、帧同步模块、信号波形产生模块等,扩大了实验系统的使用率,使实验设备向大型化、先进化发展。
(4)使学生的学习由被动向主动发展
电子技术的发展日新月异,早期的实验平台由于其电路设计的封闭性,实验内容只停留在验证实验上,很难加入自己设计的外围电路。而模块化数字电路开放实验平台由于其接口电路的开放性,有能力的学生可以自行设计外围电路达到提高的目的,对于成功的设计还可以加到以后的实验教学中,成为具有自主知识产权的模块。
另外,由于整合了单片机、DSP等芯片的功能模块,实验内容得到很大扩展,学生在实验过程中可以拓宽知识面,主动去学习了解实验所需要的知识,学习的主动性得到很大的提高,并且,由于实验由简单的验证实验向综合的大型设计过渡,学生在实验过程中更容易理解数字电路设计中硬件的概念以及工程的概念。
学生在设计实验时,可能会用到一些实验系统没有开发出的模块,这时,学生需要自己设计该电路模块的电路图以及制作PCB板,直至实际制作出该功能模块。这样,学生除了掌握编程、还需要去学习怎样设计并制作电路板、学习该模块与核心板的接口电路设计等相关知识,因此,在实验过程中,学生的积极性和主动性得到提高。同时,由于实验的规模逐渐增加,同学之间需要团结合作才能共同完成一个实验,因此也锻炼了同学之间的团结合作精神。
3 结论
一个好的EDA实验平台,能培养学生开拓创新精神和团结协作精神、很强的实践操作能力、工程设计能力、综合应用能力、科学研究能力以及独立分析问题和解决问题的能力。我国高校现阶段所研制开发的EDA综合实验平台,能有效整合和优化多个电子类实验课程的功能,为单片机和 EDA技术等课程提供了综合实验平台,为高校培养创新性人才提供良好的实验条件和氛围。随着电子技术的发展以及EDA技术的不断深入发展,EDA实验平台的开发也将会日益完善:大规模可编程器件将被使用;实验系统将向体积小、功耗小的便携式嵌入式系统发展。
参考文献:
[1]廖超平,等著.EDA技术与VHDL实用教程[M]. 北京: 高等教育出版社, 2007:1
[2]刘延飞,等著.开发EDA综合实验平台,提高学生工程创新能力[J]. 实验室研究与探索, 2009,26(8):63-64.
[3]范胜利.一种基于模块的EDA教学实验系统[J]. 读与写杂志, 2009,6(11):102
[4]韩伟忠著.EDA,DSP技术与通信实验装置的总体设计[J]. 金陵职业大学学报, 2002,17(1),52-54
[5]孙旭,等著.单片机、DSP、EDA的综合实验系统的设计[J]. 实验科学与技术, 2008, 6(6): 55-57
[6]雷雪梅,等著.EDA教学实验箱的设计[J]. 内蒙古大学学报(自然科学版), 2004, 35(3): 344-347
[6]刘建成,等著.EDA实验系统的设计与实现[J]. 实验室研究与探索, 2009, 28(1): 86-88
[6]史晓东,等著.数字系统EDA实验平台的应用及发展[J]. 实验室研究与探索, 2005, 24: 78-81
关键词:EDA VHDL 自动化 数字电路
中图分类号:G71 文献标识码:A 文章编号:1672-3791(2015)11(c)-0033-02
数字电路EDA也是电子信息工程学院各个专业的一门必修课,它是一门实践性很强的课程,是实践教学中不可缺少的重要教学环节,EDA实验使学生了解通过软件仿真的方法可以高效的完成硬件电路设计的计算机技术,初步掌握自顶向下的设计方法、EDA设计流程等,会用原理图输入和硬件描述语言VHDL设计逻辑电路。
数字电路EDA课程是高等院校电气、电子信息类专业的一门重要的实践课程,具有理论性与实践性强的特点,优化该课程的实践教学,对提高课程教学质量至关重要,由注重传授知识向注重培养学生综合素质方向转变,随着大规模集成电路的飞速发展,电子类高新技术的开发也更加依赖于EDA技术的应用,通过实践课程,学生掌握使用EDA工具设计数字电路的方法,包括设计输入、编译、软件仿真、下载和硬件仿真等全过程。
1 优化课程的实践教学
数字电路课程引入EDA技术,不仅极大地丰富课程选题,而且同一课题出现多种实现方案,提高了学生的创新思维能力,对后续专业基础课程学习、电子设计竞赛、撰写论文等起到了启蒙和引导的作用。
2 综合运用基础知识,解决工程实际应用能力
EDA(Electronic Design Automation)是以计算机为平台,原理图输入法、硬件描述语言(VHDL)为设计语言,可编程逻辑器件为实验载体。
自顶向下的模块设计方法就是从系统的总体要求出发,自上而下地逐步将设计内容细化,最后完成系统硬件的总体设计。设计的三个层次如下。
第一层次是行为描述。实质上就是对整个系统的数学模型的描述(抽象程度高)。
第二层次是RTL方式描述,又称寄存器传输描述(数据流描述),以实现逻辑综合。
第三层次是逻辑综合,就是利用逻辑综合工具,将RTL方式描述的程序转换成用基本逻辑元件表示的文件(门级网络表)。在门电路级上再进行仿真,并检查定时关系。
完成硬件设计的两种选择,由自动布线程序将网络表转换成相应的ASIC芯片制造工艺,做出ASIC芯片。将网络表转换成FPGA编程代码,利用FPGA器件完成硬件电路设计。
3 应用实例
首先建立一个新的工程,然后建立新文件并输入如下的代码:
module sled(seg,dig,clock,rst_n,);
input clock;
input rst_n;
output [7:0] seg;
output [3:0] dig;
reg [7:0] seg_reg;
reg [3:0] dig_reg;
reg [3:0] disp_dat;
reg [36:0] count;
always @ (posedge clock )
begin
if(!rst_n)
count = 37'b0;
else
count = count + 1'b1;
dig_reg= 4'b0000;//
end
always @ (count[3])
begin
disp_dat = {count[7:4]};
end
always @ (disp_dat)
begin
case (disp_dat)
4'h0 : seg_reg = 8'hc0;
4'h1 : seg_reg = 8'hf9;
4'h2 : seg_reg = 8'ha4;
4'h3 : seg_reg = 8'hb0;
4'h4 : seg_reg = 8'h99;
4'h5 : seg_reg = 8'h92;
4'h6 : seg_reg = 8'h82;
4'h7 : seg_reg = 8'hf8;
4'h8 : seg_reg = 8'h80;
4'h9 : seg_reg = 8'h90;
4'ha : seg_reg = 8'h88;
4'hb : seg_reg = 8'h83;
4'hc : seg_reg = 8'hc6;
4'hd : seg_reg = 8'ha1;
4'he : seg_reg = 8'h86;
4'hf : seg_reg = 8'h8e;
endcase
end
assign seg=seg_reg;
assign dig=dig_reg;
endmodule
保存后,再编译,之后选Tools->Run EDA Simulation Tool->EDA RTL Simulation进行仿真。最后配置引脚,下载并运行。
4 营造良好的实践教学环境并建立科学的评价方法
基于EDA技术的数字电路实践教学主要由计算机,EDA软件开发工具,可编程芯片及实验硬件开发系统组成,该院已建有EDA 实验室,配有多台安装Quartus开发软件的PC机,为每人或者小组完成课题提供良好的实验条件。
如何评价设计成果,客观,合理的给出成绩,既能反映出真实水平又能激发学生的学习积极性和创新意识,不以最终结果正确性作为评价的唯一标准,而对设计过程的每个环节都给出量化的评分标准。
5 结语
数字电路实验中引入EDA技术,蕴含着数字系统设计的新思路、新方法,代表了现代数字系统设计的方向,EDA技术采用“自上向下”设计数字系统的方法,通过设计逻辑功能模块来实现数字系统功能,不仅大大提高了工作效率,而且提高了系统的可靠性,使设计更加灵活,学生在大二期间,就能够通过数字电路EDA实验,掌握EDA技术,对将来后续课程的学习,以及对学生提高创新能力,工程设计能力都是十分有利,数字电路EDA实验中应用EDA技术可使学生突破硬件资源,制作耗时的限制,充分发挥想象力和创造性,设计出别具特色的作品来,使课程设计的效果大大提高,应用EDA技术设计数字电路,可为实验的选题拓宽范围,增加了课程的趣味性、综合性、创造性,以不同类型,不同难度的设计任务供学生选择。
参考文献
[1] 邹虹.数字电路与逻辑设计[M].北京:人民邮电出版社,2008.
针对硬件课程实践环节在提高学生解决实际问题能力上效果不理想、课程之间衔接不好等问题,基于CDIO工程教育理念,结合“try”教学方法,基于数字电路设计课程的实践环节,提出一种新的教学模式。
关键词:
CDIO;教学模式;实践环节;课程衔接
由麻省理工学院等4所大学创立的CDIO工程教育理念,是继承和发展欧美工程教育改革的一种新的教育理念。该理念包括12条标准,涵盖了具有可操作性的能力培养、全面实施以及检验测评。它以产品研发到运行的生命周期为载体,让学生以主动的、实践的、课程之间有机联系的方式来学习工程的理论、技术与经验[1-2]。数字电路设计是计算机组成原理、接口与通信以及嵌入式类课程的先修课程。如果在数字电路设计的教学中没有考虑好与后续课程在理论教学与实践教学内容上的衔接,则容易导致学生在后继课程的学习中遇到困难[3]。
1数字电路设计课程实践环节的教学条件和教学现状
(1)社会对软件人才的需求量远大于对硬件人才的需求量,学生出于就业考虑,容易形成重软件轻硬件的观念。(2)硬件课程入门较难,实践环节大都是验证性的,缺乏探索性,不利于培养学生解决实际问题的能力,从而打击了学生学习硬件课程的积极性,导致学生形成“好软怕硬”的思想。(3)传统教学模式是教师课堂讲授,适当结合验证性实验,不能激发学生的学习积极性。学生学完理论、做完实验后,仍然缺乏解决实际问题的综合能力、工程实践能力及创新能力[4]。传统教学模式的弊端导致在与计算机组成原理等后继课程的衔接中,学生不能从系统的高度认识数字逻辑[3-5]。(4)计算机学院开设的数字电路设计和计算机组成原理等课程,采用同一套实验设备,在一定程度上能让学生的学习具有连续性。(5)自创的“try”教学方法可适用于数字电路设计课程及实践环节的教学[6-8],但由于算机组成原理和数字电路设计两门课程的内容和要求不同,“try”教学方法在应用于后者时,应有所调整。
2数字电路设计课程实践环节改革方案
2.1实践环节的层次设计为了获得更好的教学效果,教师探索了各种方法,其中有案例法、项目驱动法、任务驱动法等[9-12]。从实验室建设、实验手法、课程整合等不同角度来提高实践环节质量[13-14]也能够有效提高教学效果。比较上述方法后,考虑与后续课程的衔接等因素,根据CDIO标准3、5、7的要求,结合自创的“try”教学方法,我们将数字电路设计课程的实践环节分成两个层次,从最简单的门级电路编程开始,难度由低到高、循序渐进,最终让学生完成源于实际案例的综合实验,初步具备实际工程能力。表1从实验项目设计、教学方法等7方面对基本实验和综合实验进行了对比。在教学中,学生学习的主要障碍不是掌握理论方法,而是缺乏理论知识和实践问题认知的沟通[11]。因此,我们在理论教材中选择15个知识点,设计成相关的任务和实验内容,如全加器、表决器等,采用“try”教学方法并结合任务驱动法,鼓励学生多动手多尝试,通过任务、查资料、仿真、实物验证、教师验收、撰写实验报告和总结这7个步骤完成对15个理论知识点的学习。为了进一步提高学生的实际工程能力,基于科研项目,贴近实际生活,我们编写了自动售货机、出租车计费器、电梯控制器等6个综合实验。实验采用分组方式,每组学生自行选择一个题目,在规定时间内完成该综合实验。综合实验的教学过程一般包括:教师项目及要求、学生分组并认领项目、组内分工、查资料、设计方案、论证可行性、学生在宿舍仿真、学生在实验室的硬件开发板上实物验证、教师验收、提交实验报告、实验答辩、成绩评定等13个环节。教师在项目要求的时候,只给出最基本的要求,学生在设计的过程中可以自行扩充,也就是说,同一个综合实验题目,其设计可繁可简,不同学生设计的电路可能会不一样。
2.2实践环节评价体系的构建根据CDIO标准11,构建了实践环节的评价体系。
2.2.1基本实验评价方法基本实验评价指标是:①时限;②工作量;③完成质量;④验收程序;⑤实验报告。其中①、②、④、⑤考核了学生的个人能力和表达能力,指标③、④、⑤考核了学生的专业知识、建造产品和系统的能力。对这5项指标加权平均得到该基本实验项目分数,如式1所示,其中Sj表示某个基本实验的得分,Ki表示某个考查指标的系数,Mi表示在某个考查指标上的得分。由15个基本实验的得分累加后除以15,得到基本实验项目的总得分,如式2所示,其中BS表示基本实验的总得分,Sj表示某一个基本实验的得分。
2.2.2综合实验评价方法综合实验评价指标是:①时限;②查资料的能力;③实验方案;④创新性;⑤设计说明书;⑥完成质量;⑦团队合作能力;⑧工作量;⑨验收;⑩实验报告;实验答辩。其中①、②、⑤、⑦、⑧、⑨、⑩、项考核了学生的个人自身能力、探究能力、团队合作能力和表达能力,指标③、④、⑤、⑥、⑨、⑩、考核了学生的专业知识、建造产品和系统的能力。修改式1可对这11项指标的得分加权平均,从而得到综合实验的分数。
2.2.3实践环节最终成绩评定办法及选优措施实践环节总评成绩由基本实验成绩和综合实验成绩两部分加权平均得到,从工作量及投入时间方面考虑,一般建议两者各占50%。综合实验结束后,根据学生在实践环节的学习情况和成绩,特别是综合实验中的表现,向各相关学科实验室推荐优秀本科生,使他们有机会加入科研项目组,参与教师的科研工作。
3实施效果及分析
为检验课改成果,我们设计了一套课程评价系统,包括一套具有反向题的学生调查问卷、学评教的数据、学生的理论课成绩单、实践环节成绩单、一套后继课程教师评价学生掌握先修课程知识的调查问卷、一套学生所在学科实验室评价该生的调查问卷等。评价系统还包括对这些数据的统计和分析。统计数据显示,在CDIO模式基本实验和综合实验实验项目设计上,学生满意度达到81.6%,在教学内容、教学方法、实验环节考核方法等方面,学生满意度达到97.4%,比传统模式提高了20几个百分点。这些数据表明,新教学模式比传统模式更能激发学生的实验兴趣,促进他们较大幅度地提高项目设计能力、动手编程能力、团队合作能力。我们将2013级计算机科学与技术专业的学生分成两组,采用相同的教学资源和不同的教学方式分别授课,一组采用新模式教学,另一组采用传统模式教学。经过一个学期的学习,2015年1月数字电路设计课程理论考试中,在试卷相同的情况下,新模式组成绩优良率达到52.9%,比传统模式组高24个百分点;新模式组不及格率为15.7%,比传统模式组低15个百分点;新模式组平均卷面成绩为78分,比传统模式组高6.1分。由此可知,基于新标准并结合“try”方法的新教学模式能够提高实践环节的教学质量,切实促进学生深入理解理论课的相关知识点,有助于学生更好地完成课程衔接,为学生后继课程的学习打下坚实的基础。追踪这些学生后继课程的学习情况,统计2015年6月计算机组成原理课程设计期末考试成绩后发现:原新模式组优良率达到80.3%,比传统模式组高25个百分点;原新模式组不及格率为0,比传统模式组低21个百分点。计算机组成原理课程理论考试中,原新模式组平均卷面成绩为68分,比传统模式组高5分;原新模式组不及格率为17.4%,比传统模式组低5个百分点。此数据表明,数字电路设计课程实践环节采用新教学模式教学有助于学生对后继课程的学习,特别是实践环节成绩有了大幅提升,不及格率也明显下降。
4结语
新教学模式基于CDIO理论,结合“try”教学理念,将数字电路设计课程实践环节分为基础实验和综合实验两个层次,并包含了配套的成绩评定方法和课程评价系统。实践证明,新教学模式能够更好地促进课程衔接,有利于培养学生自主学习、主动探索的精神和能力,培养学生的工程实践能力、沟通交流能力及团队协作能力。改革的下一步,是根据每一门课的特点,把基于CDIO理念的教学模式推广到课程群其他课程的教学中去,以期从课程层次化、课程间网络化等多角度、多层面地把学生培养成为优秀的工程技术人才。
参考文献:
[1]百度文库.CDIO工程教育模式探析[EB/OL].(2012-09-15).
[2]查建中.工程教育改革战略“CDIO”与产学合作和国际化[J].中国大学教学,2008(5):16-19.
[3]白中英.数字逻辑、计算机组成原理两门课的衔接性[J].计算机教育,2011(19):36-36.
[4]陈进,吴柯.从一个工程实例对“数字电路”教学的反思[J].电气电子教学学报,2012,34(2):112-114.
[5]曹维,徐东风,孙凌洁.基于CDIO理念的数字逻辑实践教学探索[J].计算机教育,2012(12):75-77.[6]包健.计算机组成原理课程及实验的改革与建设[C]//全国大学计算机课程报告论坛论文集.北京:高等教育出版社,2007:75-77.
[7]FengJ,DaiG,BaoJ.PedagogicalpracticeofE-learninginthecourse“theprinciplesofcomputerorganization”[C]//IEEEInternationalConferenceonScalableComputingandCommunications&TheEighthIEEEInternationalConferenceonEmbeddedComputin.NewYork:IEEE,2009:529-532.
[8]章复嘉,包健,吴迎来.网络化计算机组成原理课程辅助教学方法探索[J].计算机教育,2012(2):67-70.
[9]贾熹滨.案例教学法在数字逻辑教学中的应用[J].计算机教育,2011(13):67-70.
[10]程书伟,张丹,程晓旭.基于“项目驱动法”的数字电路课程教学的探索与实践[J].电脑学习,2010(3):138-139.
[11]曲凌.任务驱动的小组教学法在实践教学中应用[J].实验室研究与探索,2014,33(6):200-203.
[12]李文.IACI-CDIO理念下项目驱动的数字逻辑实验教学改革与实践[J].实验室研究与探索,2014,33(6):161-164.
[13]刘小艳,金平.“电子电路与系统基础实验”教学改革与实践[J].实验室研究与探索,2014,33(6):197-199.
关键词:电磁干扰;电气隔离;看门狗
在信号的传输过程中,不可避免的会遇到各种干扰,如何有效的减少或消除干扰,使信号能够稳定传输,是系统设计中的关键问题。本文以RS-485传输电路为例,从软硬件两方面分析信号在传输过程中会遇到的各种干扰,并给出具体的解决方案。
1 硬件抗干扰设计
在传输电路的设计过程中主要出现以下问题:电气噪声干扰传输线路;强电磁(雷电)冲击;数字电路对模拟电路的干扰等。
针对上述问题的产生,本传输电路在硬件设计方面主要采取以下措施:
1) 对于芯片闲置的引脚,在不影响系统的逻辑功能的情况下接地或接电源。
2) 布线时,电源线和地线尽量粗。这样不但有利于减少压降,更重要是的是降低耦合噪声。
3) 布线时尽量减少回路环的面积,以减少感应噪声。避免90度折线,减少高频噪声发射。
4) 晶振布线时,晶振和单片机引脚尽量靠近,晶振下方尽量不要走线。
5) 采用光耦元件实现RS-485接口的电气隔离。这种方案可以承受高电压、持续时间较长的瞬态干扰,实现起来也比较容易。
6) 旁路保护方法。利用瞬态抑制元件TVS管,将具有危害性的瞬态能量旁路到大地。
7) 将电源地和模拟地相隔离,通过0欧的电阻相连。将电源地和RS-485地相隔离,通过磁珠相连。
8) 正确地处理“模拟地”与“数字地”。数字电路是非线形的,逻辑门的开关都会产生电流冲击,所以在数字地上高频扰动很强烈。因此,数字地与模拟地不能有共同路径或者环路,只应单点连接。
RS-485信号传输的具体电路如图1所示
图1 RS-485信号传输电路
2 软件抗干扰设计
系统的抗干扰措施,除了在硬件上消除干扰外,还必须从软件设计上采取恰当的措施,以便提高系统的可靠性,我们主要采用看门狗(Watchdog)监视系统的运行状态。
看门狗又称程序运行监视器,能有效的防止系统在不可预测的干扰作用下产生的程序执行紊乱,即“程序跑飞”。目前很多MCU都自带有内部看门狗,我们在整机运行是将看门狗打开,如果MCU不能在规定的时间内将Watchdog复位,Watchdog从内部触发RESET中断,将整个系统复位,从而使整个系统重新运行,避免了程序死锁。
信号传输电路的主程序如下:
void main(void)
{
uint idata i,j; 定义i,j为无符号整型变量
WDT_feed(); 为看门狗控制寄存器赋初值
for(i=0;i
{
WDT_feed(); 喂看门狗
DelayMS(30);
}
InitSystem(); 系统初始化
timer2_run; 定时器2开始工作
while(1) 进入循环
{
WDT_feed(); 喂看门狗
while(!SystemTimerFlag);当SystemTimerFlag=1,跳出本层循环
TimerTick20ms(); 保证程序的循环周期为20ms
RS23220ms(); RS232函数
KEY20ms(); 键盘输入函数
if(HardFailureFlag);
{ ;如果RS485通讯失败
RS485StateLedOff(); RS485状态指示灯灭
PizzerOn(); 蜂鸣器鸣叫
}
}
3 结语
本文针对信号在传输过程中受干扰问题,通过实例从软、硬件两方面给出了具体解决措施,极大地提高了系统的稳定性。适用于各种远距离的有线传输系统。
参考文献:
[1] 傅丰林等.电子线路基础[M].西安:西安电子科技大学出版社,2001
[2] 谢金明等.高速数字电路设计与噪声控制技术.北京:电子工业出版社,2003-4
[3] 顾海洲等.PCB电磁兼容技术—设计实践.北京:清华大学出版社,2004-6
[4] 工静.低压电力线传输特性分析.南京理工大学硕士论文,2000
关键词:VHDL,电路系统,数据选择器
1 引言
VHDL (Very HighSpeed Integrated Circuit Hardware Description Language)是美国国防部在20世纪80年代中期开始推出的一种通用的硬件描述语言。作为IEEE的工业标准硬件描述语言,又得到众多EDA公司的支持,VHDL语言在电子工程领域已成为事实上的通用硬件描述语言。VHDL为设计者提供了一种全新的数字系统的设计途径。使用VHDL语言不只是意味着代码的编写,更是为了便于建立层次结构和元件结构的设计,利用VHDL编写的电路模块可被重复利用。故可以简化设计者的设计工作,大大缩短设计时间,减少硬件设计成本,提高工作效率。
2 VHDL的优点
VHDL主要用于描述数字系统的结构、行为、功能和接口。应用VHDL进行工程设计的优点是多方面的:
(1)具有更强的行为描述能力,是系统设计领域最佳的硬件描述语言。
(2)具有丰富的仿真语句和库函数,使得在任何大系统的设计早期就能查验设计系统的功能可行性,随时可对设计进行仿真模拟。
(3)VHDL语句的行为描述能力和程序结构决定了它具有支持大规模设计的分解和已有设计的再利用功能。该功能能满足市场大规模系统高效、高速的需要,可替代多人甚至多个组共同工作。
VHDL的许多优点给硬件设计者带来了极大的方便, 自然被广大用户接受, 得到众多厂商的大力支持。使用VHDL设计数字系统已成为当今电子设计技术的必然趋势[4 ] 。
3 “自顶向下”( Top-Down) 的设计方法
随着数字系统设计规模的急剧加大,“自顶向下”的设计方法成为现代EDA设计的趋势。论文参考。传统的系统硬件设计方法是采用自下而上的设计方法。即系统硬件的设计是从选择具体元器件开始的,并用这些元器件进行逻辑电路设计,完成系统各独立功能模块设计,然后再将各功能模块连接起来,完成整个系统的硬件设计。而在VHDL的设计中,采用“自顶向下”( Top-Down) 的设计方法,设计常用流程图如图1所示,系统被分解为各个模块的集合后,可以对设计的每个独立模块指派不同的工作小组,这些小组可以工作在不同地点,甚至可以分属不同的单位,最后将不同的模块集成为最终的系统模型,并对其进行综合测试和评价。论文参考。“自顶向下”设计的基本步骤为:
(1) 分析系统的内部结构并进行系统划分,确定各个模块的功能和接口;
(2) 编写程序,输入VHDL代码,并将其编译成标准的VHDL文件;
(3) VHDL 源代码进行综合优化处理;
(4) 配置,即加载设计规定的编程数据到一个或多个LCA器件中的运行过程,以定义器件内的逻辑功能块和其互连的功能。
(5) 下载验证,通过编程器或下载电缆载入将步骤(4) 得到的器件编程文件下载到目标芯片中,以验证设计的正确性。
图1 VHDL工程设计流程图
Fig.1 The design flow based on VHDL
4 VHDL的设计举例
下面以4选1数据选择器为例说明使用VHDL的设计过程。4选1数据选择器框图如图2所示。论文参考。
该数据选择器的VHDL描述如下:
entity sel is
port(a,b,c,d,sel_1:IN bit;
out_1:OUT bit);
end sel;
architectureexample of sel is
begin图2 4选1数据选择器
process((a,b,c,d, sel_0, sel_1) Fig.2 The one-in-four selector
begin
if sel_0=‘0’andsel_1=‘0’then
out_1<=a;
elsef sel_0=‘0’andsel_1=‘1’then
out_1<=b;
elsef sel_0=‘1’andsel_1=‘0’then
out_1<=c;
else
out_1<=d;
end if;
end process;
end example;
利用VHDL强大的仿真功能,经过编译后运行仿真,之后可以产生信号波形,用以分析仿真结果。本例中产生波形如图3所示。仿真结果符合设计功能的要求。
图3 仿真结果
Fig.3The waveform of simulation
5 结束语
本文以4选1数据选择器设计为例,说明利用VHDL设计电路系统的基本方法和过程。用VHDL语言实现电路的设计过程,是一个以软件设计为主,器件配置相结合的过程。这种软件设计与硬件设计的结合,以一片器件代替由多片小规模集成数字电路组成的电路,其优势已经越来越明显。在进行系统设计时,如果系统比较复杂,所需器件数目多,并要求体积小、速度快、功耗低时,首先应该考虑使用VHDL进行芯片设计,然后再进行整体设计。
参考文献
[1] Stafan Sjoholm,Lennart Lindh. 边计年,薛宏熙译. 用VHDL设计电子线路[M]. 北京:清华大学出版社,1999.
[2] 潘松,黄继业. EDA技术实用教程[M]. 科学出版社,2002.
[3] 侯伯亨,顾新. VHDL硬件描述语言与数字逻辑电路设计[M].西安: 西安电子科技大学出版社, 2004.
[4] 赵晨光等. VHDL语言在电子设计实践中的应用. 沈阳航空工业学院学报[J]. 2004,21(1):57-59.
[5] 张利萍, 胡玉兰. 硬件描述语言VHDL应用设计及实例[J]. 沈阳工业学院学报,2002,21(2):70-73.