欢迎访问爱发表,线上期刊服务咨询

燃料电池技术论文8篇

时间:2023-03-21 17:06:53

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇燃料电池技术论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

燃料电池技术论文

篇1

关键词:质子交换膜燃料电池;双极板;电极;催化剂

1质子交换膜燃料电池的结构及原理

按照电解质的不同可将燃料电池分为磷酸燃料电池、碱性燃料电池、固体氧化物燃料电池、熔融碳酸盐燃料电池及质子交换膜燃料电池(PEMFC)等五类。PEMFC单电池由质子交换膜、气体扩散电极、双极板等构成,图1是其结构与工作原理示意图。

PEMFC的基本工作过程如下:

(1)氢气通过双极板上的导气通道到达电池的阳极,氢分子在催化剂的作用下解离形成氢离子和电子;

(2)氢离子以水合质子H+(xH2O)的形式通过电解质膜到达阴极,电子在阳极侧积累;

(3)氧气通过双极板到达阴极后,氧分子在催化剂的作用下变成氧离子,阴、阳极间形成一个电势差;

(4)阳极和阴极通过外电路连接起来,在阳极积聚的电子就会通过外电路到达阴极,形成电流,对负载做功。同时,在阴极侧反应生成水;

(5)只要持续不断地提供反应气体,PEMFC就可以连续工作,对外提供电能。

2质子交换膜燃料电池的特点

(1)高效率。PEMFC以电化学方式进行能量转换,不存在燃烧过程,不受卡诺循环限制,其理论热效率可达85-90%,目前的实际效率大约是内燃机的两倍。传统动力源为了提高效率必须将负荷限制在很小范围内,而PEMFC几乎在全部负荷范围内均有很高效率。

(2)模块化。PEMFC在结构上具有模块化的特点,可根据不同动力需求组合安装,采用“搭积木”式的设计方法简化了不同规模电堆的设计制造过程。

(3)高可靠性。由于PEMFC电堆采用模块化的设计方法,结构简单,易于维护。一旦某个单电池发生故障,可自动采取适当屏蔽措施,只会使系统输出功率略有下降,而不会导致整个动力系统的瘫痪。

(4)燃料多样性。PEMFC动力系统既可以纯氢为燃料,也可以重整气为燃料。氢气的来源可以是电解水的产物,也可以是对汽油、柴油、二甲醚等化石类燃料重整的产物。氢气的存储方式可以是高压气罐、液氢、金属氢化物等。

(5)环境友好。当采用纯氢为燃料时,PEMFC的唯一产物是水,可以做到零排放。以重整气为燃料时,相对于内燃机而言,排放也极大降低。此外,PEMFC噪声水平也很低,各结构部件均可回收利用。3研究现状

3.1关键部件

电解质膜、双极板、催化剂及气体扩散电极是质子交换膜燃料电池的四大关键部件。

电解质膜是PEMFC的核心部件,它直接影响燃料电池的性能与寿命。1962年美国杜邦公司研制成功全氟磺酸型质子交换膜,1966年开始用于燃料电池,其商业型号为Nafion,至今仍广泛使用。但由于Nafion膜成本较高,各国科学家正在研究部分氟化或非氟质子交换膜。

双极板在PEMFC中起着支撑、集流、分割氧化剂与还原剂并引导气体在电池内电极表面流动的作用,目前广泛采用的是以石墨为材料,在其上加工出引导气体流动的流场,基本流场形式有蛇形、平行、交指及网格状等。

铂基催化剂是目前性能最好的电极催化剂,为提高利用率,铂以纳米级颗粒形式高分散地担载到导电、抗腐蚀的担体上,目前广泛采用的担体为乙炔炭黑,比表面积约为250m2/g,平均粒径为30nm。

PEMFC的气体扩散电极由两层构成,一层为起支撑作用的扩散层,另一层为电化学反应进行的场所催化层。扩散层一般选用炭材如石墨化炭纸或炭布制备,应具备高孔隙率和适宜的孔分布,不产生腐蚀或降解。根据制备工艺和厚度不同,催化层分为厚层憎水、薄层亲水及超薄三种类型。

3.2测控系统

PEMFC的工作性能受多种因素(温度、压力等)的影响,为确保PEMFC正常运行,提高其可靠性和有效性,就必须监测各个影响因素。即运用有效的措施来连续监测PEMFC运行的关键或重要状态,并对收集到的信息进行必要的分析和处理,以便做到故障预测和及时诊断,为PEMFC管理系统提供依据。目前,进行PEMFC测试系统相关方面研究的公司和机构众多,但仍没有制定出有关PEMFC测试的国际标准和相应的标准测试设备,不过已有实用的测试系统投入使用。加拿大Hydrogenics公司的燃料电池测试站(FCATS)、美国Arbin公司的集成燃料电池测试系统(FCTS)是其中的突出代表。

4质子交换膜燃料电池的应用

质子交换膜燃料电池是目前各种燃料电池中实用程度较高的一类。其优越性不仅限于能量转换效率高、工作温度低,还体现在其可在较大的电流密度下工作,适宜于较频繁启动的场合。因此世界各大汽车生产厂商一致看好其在汽车工业中的应用前景,PEMFC已成为现今燃料电池汽车动力的主要发展方向。目前,通用、丰田等世界上知名的汽车公司,都在积极开发以PEMFC系统为动力源的PEMFC电动车,曾先后推出各种类型的样车,并进行PEMFC电动车队的示范运行。PEMFC电动车以其优异的性能和环境污染很少等突出特点引起了人们的普遍关注,甚至被认为将是21世纪内燃机汽车最为有力的竞争者。

此外,在航空航天特别是无人飞行器领域,以及家庭电源、分散电站、移动电子设备电源、水下机器人及潜艇不依赖空气推进电源等方面也有广泛应用前景。

5质子交换膜燃料电池的发展趋势

在关键部件方面,围绕电解质膜、催化剂及双极板的研究方兴未艾。全氟型磺酸膜价格昂贵,开发非全氟的廉价质子交换膜是今后的研究方向。近年来,新型质子交换膜的的研究热点是开发能够在100℃以上使用的高温电解质膜。在催化剂方面,研制高性能抗CO中毒电极催化剂是最紧迫的任务,此外,还要寻找非贵金属氮化物或碳化物作为现有铂催化剂的替代。目前广泛使用的石墨板具有较好的耐腐蚀能力和较高的热导率,但成本较高,加工难度大,强度、电导率和可回收性均不如金属板。金属板目前急需解决的问题是表面处理,以提高其耐腐蚀能力。复合材料双极板则结合了纯石墨板和金属板的优点,具有耐腐蚀、体积小、质量轻、强度大及工艺性良好等特点,是未来发展的趋势。

在电堆方面,今后的研究重点将是使电堆中的电池单元的性能接近于单电池的性能,这就需要对电堆的结构进行优化,保证电堆中每一片电池单元的整个活性面积处于一致的操作环境,并优化水、热管理,改善电流密度分布的均匀性。

参考文献

篇2

燃料电池是一种不经过燃烧而以电化学反应方式将燃料的化学能直接变为电能的发电装置,可以用天然气、石油液化气、煤气等作为燃料。也是煤炭洁净转化技术之一。按电解质种类可分为碱性燃料电池(AFC)、磷酸型燃料电池(PAFC)、熔融碳酸盐燃料电池(MCFC)、固体氧化物燃料电池(SOFC)、质子交换膜燃料电池(PEMFC)、再生氢氧燃料电池(RFC)、直接醇类燃料电池(DMFC),还有如新型储能电池、固体聚合物型电池等。

氢和氧气是燃料电池常用的燃料气和氧化剂。此外,CO等一些气体也可作为MCFC与SOFC的燃料。从长远发展看,高温型MCFC和SOFC系统是利用煤炭资源进行高效、清洁发电的有效途径。我国丰富的煤炭资源是燃料电池所需燃料的巨大来源。

燃料电池具有高效率、无污染、建设周期短、易维护以及成本低的诱人特点,它不仅是汽车最有前途的替代清洁能源,还能广泛用于航天飞机、潜艇、水下机器人、通讯系统、中小规模电站、家用电源,又非常适合提供移动、分散电源和接近终端用户的电力供给,还能解决电网调峰问题。随着燃料电池的商业化推广,市场前景十分广阔。人们预测,燃料电池将成为继火电、水电、核电后的第四电方式[1],它将引发21世纪新能源与环保的绿色革命。

1,中国燃料电池技术的进展

“燃料电池技术”是我国“九五”期间的重大发展项目,目标是,利用我国的资源优势,从高起点做起,加强创新;在“九五”期间,使我国燃料电池的技术发展接近国际水平。内容包括“质子交换膜燃料电池技术”、“熔融碳酸盐燃料电池技术”及“固体氧化物燃料电池技术”三大项目[2],其中,用于电动汽车的“5kW质子交换膜燃料电池”列为开发的重点。此项任务由中国科学院及部门所属若干研究所承担。所定目标业已全部实现。

在质子交换膜燃料电池(PEMFC)方面,我国研究开发的这类电池已经达到可以装车的技术水平,可以与世界发达国家竞争,而且在市场份额上,可以并且有能力占有一定比例[1]。我国自把质子交换膜燃料电池列为"九五"科技攻关计划的重点项目以后,以大连化学物理研究所为牵头单位,在全国范围内全面开展了质子交换膜燃料电池的电池材料与电池系统的研究,取得了很大进展,相继组装了多台百瓦、1kW-2kW、5kW、10kW至30kW电池组与电池系统。5kW电池组包括内增湿部分,其重量比功率为100W/kg,体积比功率为300W/L。质子交换膜燃料电池自行车已研制成功,现已开发出200瓦电动自行车用燃料电池系统。百瓦级移动动力源和5kW移动通讯机站动力源也已开发成功。千瓦级电池系统作为动力源,已成功地进行了应用试验。由6台5kW电池组构成的30kW电池系统已成功地用作中国首台燃料电池轻型客车动力源。装车电池最大输出功率达46千瓦。目前该车最高时速达60.6km/h,为燃料电池电动汽车以及混合动力电动汽车的发展打下良好的基础。该电池堆整体性能相当于奔驰、福特与加拿大巴拉德公司联合开发的MK7质子交换膜燃料电池电动车的水平[3]。我国目前正在进行大功率质子交换膜燃料电池组的开发和燃料电池发动机系统集成的研究。

在熔融碳酸盐燃料电池(MCFC)方面,我国已经研制出α和γ型偏铝酸锂粗、细粉料,制备出大面积(大于0.2m2)的电池隔膜,预测隔膜寿命超过3万小时。在进行材料部件研究的基础上,成功组装和运行了千瓦级电池组。

在固体氧化物燃料电池(SOFC)技术方面,已经制备出厚度为5-10μm的负载型致密YSZ电解质薄膜,研制出一种能用作中温SOFC连接体的Ni基不锈钢材料。负载型YSZ薄膜基中温SOFC单体电池的最大输出功率密度达到0.4W/cm2,负载型LSGM薄膜基中温SOFC单体电池的最大输出功率密度达到0.8W/cm2。这些技术创新为研制千瓦级、十千瓦级中温固体氧化物燃料电池发电技术的研发奠定了坚实基础。

2,国外燃料电池技术发展迅猛

燃料电池是新世纪最有前途的清洁能源,是替代传统能源的最佳选择。因此,燃料电池技术的研究开发受到许多国家的政府和跨国大公司的极大重视。美国将燃料电池技术列为涉及国家安全的技术之一,《时代》周刊将燃料电池电动汽车列为21世纪10大高技术之首;日本政府认为燃料电池技术是21世纪能源环境领域的核心;加拿大计划将燃料电池发展成国家的支柱产业。近十年来,国外政府和企业在燃料电池方面的投资额超过100亿美元。为开发燃料电池,戴姆勒-克莱斯勒公司一家近年来每年就投入10亿美元,丰田公司的年投资额超过50亿日元[4]。

欧、美发达国家和日本等国政府和企业界都将大型燃料电池的开发作为重点研究项目,并且已取得了许多重要成果,PEMFC技术已发展到实用阶段,使得燃料电池即将取代传统发电机及内燃机而广泛应用于发电及汽车上。2MW、4.5MW、11MW成套燃料电池发电设备已进入商业化生产,用于国防、航天、汽车、医院、工厂、居民区等方面;各等级的燃料电池发电厂相继在一些发达国家建成,其中,国际燃料电池产业巨头加拿大巴拉德公司筹资3.2亿美元,建成的燃料电池厂已于2001年2月正式投产。美国和欧洲将成批生产低成本的家用供电-供暖燃料电池作为最近的开发计划。目前,在北美、日本和欧洲,燃料电池发电正快速进入工业化规模应用的阶段。

目前,车用氢燃料电池已成为世界各大汽车公司技术开发的重中之重。迄今为止,世界6大汽车公司在开发氢燃料电池车上的开发费用已超过100亿美元,并以每年10亿美元的速度递增[5]。1997年至2001年,各大公司研制出的车用燃料电池就达41种。

3,我国开发燃料电池技术相对乏力

我国研究燃料电池有过起落。在20世纪60年代曾开展过多种燃料电池的实验室研究,70年入大量人力物力开展用于空间技术的燃料电池研究,其后研究工作长期停顿。最近几年,我国才开始重新重视燃料电池技术的研究开发,并取得很大进展。特别在PEMFC方面,达到或接近了世界水平。但是,在总体上,我国燃料电池的研究开发刚刚起步,仍处于科研阶段,与国外相比,我国的燃料电池研究水平还较低,我国对燃料电池的组织开发力度还远远不够。作为世界上最大的煤炭生产国和消费国,开发以煤作为一次能源的高温型MCFC和SOFC具有特别重要的意义。但是我国在MCFC、SOFC研究方面与国外的差距很大,要实现实用化、商业化应用还有很长的路要走。迄今为止,我国还没有燃料电池发电站的应用实例。这和我国这样一个大国的地位很不相称。尽管国家也将燃料电池技术列为"九五"攻关项目,国家和企业投入的资金却极为有限,年度经费仅为千万元量级人民币,与发达国家数亿美元的投入相比显得微不足道;承担研究任务的也只是中科院等少数科研院所,且研究力量分散,缺少企业的介入,难以取得突破性进展,尤其是难以将取得的研究成果进行实际应用试验,以形成产业化趋势。从表1所列国外燃料电池的研究和开况看,欧、美国家和日本等大多是以公司企业为主在从事燃料电池的研究开发和制造生产,而且规模很大,例如,仅加拿大的Ballard一家公司的资产就达10亿美元。

4,大力发展燃料电池技术势在必行

从世界燃料电池迅猛发展的势头看,本世纪头十年将是燃料电池发电技术商品化、产业化的重要阶段,其技术实用性、生产成本等都将取得重大突破。预计燃料电池系统将在洁净煤燃料电池电站、电动汽车、移动电源、不间断电源、潜艇及空间电源等方面有着广泛的应用前景,潜在市场十分巨大。可以预料,分散电源供电系统——燃料电池发电厂必将在21世纪内取代以“大机组、大电网、高电压”为主要特征的现代电力系统,成为电力行业的主力军。而燃料电池的普遍推广应用,必将在能源及相关领域引发一场深刻的革命,促进新兴产业的形成,带动国民经济高速发展。能源领域的这场革命是我国政府、企业、科研院所、高等院校不得不正视的课题,我们对此必须有充分认识并给予足够的重视。我们应该准确把握这场革命所带给我们的机遇,毫不迟疑地投入足够的人力、物力、财力,推动燃料电池发电技术的研究开发和应用工作,使之早日实用化产业化,为我国的国家能源安全和国民经济可持续发展服务。

国家计委在1997年提出的中国洁净煤技术到2010年的发展纲要中,已把燃料电池列为煤炭工业洁净煤的14项技术重点发展目标之一[6]。在“十五”科技发展规划中,燃料电池技术被列为重点实施的重大项目[7]。

篇3

PAFC技术开发的现状与动向:

日本自实施月光计划以来,作为国家级项目,正在实施5000千瓦级加压型和1000千瓦级常压型电厂实证运行。目前,磷酸型燃料电池的发电效率为30%~40%,如果将热利用考虑进去,综合效率可高达60%~80%。

除日本外,目前世界约有60台PAFC发电设备在运转,总输出功率约为4.1万千瓦。按国别和地区划分日本为2.9万千瓦,美国8000千瓦,欧洲3000千瓦,亚洲900千瓦。运转中的发电设备除3台(日本2台,意大利1台)为加压型外,其他均为常压型。磷酸型燃料电池的制造厂家目前主要为日本和美国,设备主要销往欧、亚。

美国已完成基础研究,200千瓦级电厂用电池近期有望商品化,但大容量电厂用电池处于停滞状态。德国已引进美国200千瓦级电厂用电池进行试验运行。另外,瑞典、意大利、瑞士等国也引进日、美的电池进行试运行。

2.熔融碳酸盐型燃料电池(MCFC)

日本对MCFC发电系统的技术开发始于1981年度的月光计划,该计划围绕开发1千瓦级发电机组这个目标展开了对MCFC燃料、电极等的开发。该开发研究进展顺利,从1984年开始,进而对10千瓦级发电机组进行研究开发。1986年,日立、东芝、富士电机、三菱电机、IHI分别对5台10千瓦级机组进行发电试验,其结果是输出功率为10千瓦,初期性能为电池电压0.75伏,电流密度150毫安/平方厘米。

1987年起,日本在对1000千瓦级实验电场(外部改质型)进行主要开发的同时,对100千瓦级发电机组以及1000千瓦级机组的设备的开发研究也取得了进展。1993年度,日立、IHI的2台100千瓦级外部改质型机组和三菱电机的1台30千瓦级内部改质型机组开始试验发电运行。其试验结果以及1994年度进行的5-25千瓦级机组的试验结果表明,电池电压0.8伏,电流密度达15毫安/平方厘米,单位时间内的劣化率小于1%。

在此基础上,1994年度起开始着手开发1000千瓦级试验工厂。1995年10月在中部电力(株)川越发电所开始建厂,确立了1000千瓦级实用化发电系统试验工厂的基本系统,对现有的事业用燃料电池电厂的运行进行评价,计划1999年开始试验运行,其目标为:燃料利用率为80%,千小时电池的劣化率小于1%,初期性能为:电池电压大于0.8伏,电流密度1500毫安/平方厘米,计划试验运行5000小时。

为使电池实用化,在上述研究开发的基础上,还进行了机组长寿命化研究,计划连续实验运行4万小时,每千小时单位劣化率小于0.25%。除此之外,还在开发200千瓦级内部改质型燃料电池发电系统。

美国能源部和美国电力研究所,正在积极开发MCFC。美国ERC公司开发的2兆瓦级内部改质型机组发电系统于1996年5月在圣克拉拉开始试验运行。MC-power公司开发的250千瓦级外部改质型机组发电系统,1997年2月起在圣迭戈开始试运行。

在欧洲,MCFC作为共同项目正在研究开发,取得了一些进展,其主要项目如下:

①高级DIC-MCFC发展计划(1996-1998年)。荷兰、英、法、瑞典等国参加研究,欧洲在市场分析、系统开发以及内部改质型机组的开发等方面取得进展。

②ARGE项目(1990年起计划10年内完成)。德、丹麦参加,并在内部改质型发电系统的开发上取得进展。

③MOLCARE。由意、西班牙参加,并在外部改质型发电系统开发上取得进展。

韩国从1993年起开始开发MCFC,1997年以开发100千瓦外部改质型发电系统为目标,开始了第二阶段研究开发工作。

3.固体电解质型燃料电池(SOFC)

作为SOFC开发的基础科学离子学,其开发历史很长,日、美、德等国已有30多年的开发史。日本工业技术院电子技术综合研究所从1974年起就开始研究SOFC,1984年进行了500瓦发电试验(最大输出功率为1.2千瓦)。美国西屋公司从1960年起开始开发SOFC,1987年该公司与日本东京煤气、大阪煤气共同开发出3千瓦热自立型电池模块,在国内外掀起了开发SOFC的。

日本新阳光计划中,以产业技术综合开发机构(NEDO),为首,从1989年起开始开发基础制造技术,对数百千瓦级发电机组进行测试。1992年起,富士电机综合研究所和三洋电机在共同研究开发数千瓦级平板型模块基础上,还组织了7个研究机构积极开发高性能、长寿命的SOFC材料及其基础技术。

除此之外,三菱重工神户造船所与中部电力合作,共同开发平板型SOFC,1996年创造了5千瓦级模块成功运行的先例。同时,在圆筒横缟型电池领域中,1995年三菱重工长崎造船所在电源开发共同研究中,采用圆筒横缟型电池,开发出10千瓦级模块,成功地进行了500小时试运行,之后又于1996年开发了2.5千瓦模块,并试运行1000小时。TOTO与九州电力共同开发全湿式圆筒纵缟型电池,1996年起,开始开发1千瓦级模块。同时,在日本以大学与国立研究所为首的许多研究机构在积极开发SOFC。

美国西屋公司在能源部的支持下,开始开发圆筒纵缟型电池。东京煤气和大阪煤气对25千瓦级发电及余热供暖系统进行的共同测试表明,截至1997年3月,已成功运行了约1.3万小时,其间已经过11次启动与停机,千小时单位电池的劣化率小于0.1%,可见其技术已非常成熟。西屋公司除计划在1998年与荷兰、丹麦共同进行100千瓦级模块运行外,为降低制造成本,还在研究开发湿式电池制造技术。美国Allied-signal、SOFCo、Z-tek等公司在开发平板型SOFC上取得进展,目前正对1千瓦级模块进行试运行。

在欧洲,德国西门子公司在开发采用合金系列分离器的平板型SOFC,1995年开发出10千瓦(利用氧化剂中的氧,若在空气中则为5千瓦)模块,1996年开发出7.2千瓦模块(利用氧化剂中的空气)。

奔驰汽车制造公司在开发陶瓷系列分离器式平板型SOFC上取得进展,1996年对2.2千瓦模块试运行6000小时。瑞士的萨尔泽尔公司在积极开发家庭用SOFC,目前已开发出1千瓦级模块。今后,德国还计划在特蒙德市进行7千瓦级发电及余热供暖系统现场测试。

在此基础研究上,以英、法、荷等国的大学和国立研究所为中心的研究机构,正在积极研究开发低温型(小于800℃)SOFC材料。

4.固体高分子型燃料电池(PEFC)

日本开发固体高分子膜的单位有旭化成、旭哨子、Japangore-tex等,开发改质器以及电极催化媒体的机构有田中贵金属、大阪煤气等。在开发汽车燃料电池方面,丰田制造出甲醇改质型燃料电池汽车(1997年),同时三菱电机、马自达也在着手开发汽车燃料电池。

在供电及余热供暖系统方面,PEFC排热温度较低,为70℃左右,在热利用上有所限制,与其他类型燃料电池相比,目前只开发小型系统。东芝(30千瓦)、三洋电机(数千瓦)、三菱重工和东京煤气(5千瓦)、富士电机和关西电力(5千瓦)等公司在开发以天然气和甲醇为燃料的电池系统,同时,三洋电机在开发1千瓦级氢燃料便携式商品化电源,三菱重工在开发特殊用途(无人潜水艇用)燃料电池。

PEFC主要作为汽车动力电源在开发。但在汽车上燃料的搭载方式各种各样,有高压氢、液化氢和甲醇等。这些燃料各具长短,目前还未能确定最适方式。

德国奔驰与加拿大BPS在进行共同开发,它们开发的搭载氢燃料、小底盘汽车在试运行。除此之外它们还共同开发甲醇燃料电池汽车。若在降低成本、提高运行性能等方面再取得一些进展,电池汽车就有望走向市场。

美国克莱斯勒、通用、福特三公司协力合作,计划到2000年开发出输出50千瓦、输出密度1千瓦/公斤的燃料电池。另外,BMW、Rover和西门子三家公司也在开展共同开发。

篇4

关键词:电力电子;能量管理系统;电能质量控制

中图分类号:TU852文献标识码:A文章编号:1007-9599 (2010) 14-0000-01

Power Electronics and New Energy Power Generation Technology

Yang Lin

(Institute of Electrical Engineering,Northwest University for Nationalities,Lanzhou730030,China)

Abstract:This paper discusses several new forms of energy generation and integrated power supply system transformation,control,intelligence management and safety issues,and hope in the future development of new energy power,we can overcome difficulties and achieve electronic power of new development.

Keywords:Power electronics;Energy management system;Power quality control

我们已进入21世纪,这是一个全新的时代,经济的高速发展给人们的生活带来了很多的便利,但随之而来的却是能源的耗竭,原本丰富的能源如今已变得匮乏,并危及到人们未来的生产生活。与此同时,毫无顾忌的能源利用还造成了大气的严重污染,从而又引发能源危及,这样的恶性循环会直接危及到人类的发展,甚至威胁人类的健康和繁衍。因此,开拓新能源,减少能量源浪费成为当今世界最为关注的话题。

一、新能源的发电方式

(一)太阳能发电

太阳能发电开始于上世纪50年代,当时,第一块实用的硅太阳电池研制成功,如今,太阳能发电技术已经经历了半个世纪的发展,其技术也在日益成熟。目前,占主流的太阳电池仍然是硅太阳电池,主要分为单晶硅太阳电池、多晶硅太阳电池和非晶硅太阳电池。典型的太阳能供电系统结构如图1所示,太阳电池阵列进行光电转换,把太阳能变为电能,再由功率变换器将太阳电池输入到直流电中,最后转换成用户所要使用的电源模式。根据用户的需求,功率变换器可以选择直流斩波器进行DC/DC变换,或采用逆变器进行DC/AC变换。而功率变换装置还应包括蓄电池系统,主要是为了平衡电流。如果太阳光充足,可以利用太阳能,并利用蓄电池充电;如果在夜晚或者阳光不充足时,就可以使用蓄电池供电。

(二)风力发电

如今,风力的主要运用方式就是风力发电,它的发展速度最快,也最受全世界关注。风力发电主要有3种运转方式:

1.独立运行方式,利用一台小型的风力发电机向需要的用户提供电能,它还可以通过蓄电池充电,预防无风时影响发电效果;

2.风力发电与其他发电方式相结合的联合供电方式,主要向交通不便或偏远山区供电,以及地广人稀的草原牧场提供电力;

3.并网型风力发电运行方式,将风力发电网安装在条件较好的地区,常常是一处风场安装几十台甚至几百台风力发电机,这也是风力发电的主要发展方向。风力发电机组在不同风速的条件下运行,其发电机输出的电压的幅值和频率是变化的,所以,通常要配置电力电子功率变换器,通过这种装置控制电流,保证输出的电压是平衡稳定的。

(三)燃料电池发电系统

燃料电池(Fuel Cell)是将反应物如氢气等的化学能直接转化为电能的电化学装置。它通过燃料(通常是氢气)和氧气结合所发生的光电反应来发电。燃料电池发展了这么久,根据电介质的不同,主要分为5种燃料电池:碱性燃料电池(Alkaline Fuel Cell,AFC);质子交换膜燃料电池(Proton ExchangeMembrane Fuel Cell,PEMFC);磷酸燃料电池(Phosphoric Acid Fuel Cell,PAFC);熔盐燃料电池(Molten Car-bonate Fuel Cell,MCFC);固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)。

实际上,燃料电池也有其优点,例如:发电效率高:发热少;噪音低,污染小;功率密度高。目前,燃料电池发电主要集中在以下几个方面:燃料电池特性研究;燃料电池发电系统结构和高效功率变换的研究;能量管理技术;孤岛检测和保护技术,并网电流控制;并网运行与独立运行之间的无缝切换控制技术。

燃料电池所输出的电压会随着电压的变化,发生较大范围的变化。燃料电池的输出电压在负载发生突变时还要经过一段时间才能停止反应,对于质子交换模燃料电池响应延迟达2秒。因此,燃料电池一般与负荷动态的具体要求无法很好的匹配。

二、电力储能技术

可再生能源发电装置所产生的电能主要还存在无法预测的周期性变化,例如风能、光伏发电等,如果将其电能直接输入普通电网,将会对电流带来不良影响,而电力储备装置就可以平衡能源发电输入与电网之间的矛盾。电力储能技术有蓄水蓄能、压缩空气储能、飞轮储能、电池储能等它们都各具特点,各有优势,但它们的正常运行主要是依靠电子电力技术。

蓄水储能与压缩空气储能主要是对电力高峰期进行调节,但是对地理条件的要求较高。电池储能的精密性高,需要在技术成熟的条件下进行,理论上可以用于电力调峰,单电池使用寿命有效,这成为蓄电技术的难点。飞轮储能的储能量有限,运行复杂,一般用于电能质量调节。

三、电能质量控制

(一)电源谐波检测和分析技术

谐波的测量和分析都是以思想谐波治理为前提条件的,精准的谐波测量和分析可以为谐波的治理提供准确的依据。自提出快速傅里叶变换算法(FFT)以来,基于傅里叶变换的谐波测量得到了普遍应用。然而基于傅里叶变换的谐波测量要求整周期同步采样,不然就会严重影响其效果。因此,怎样减少因同步偏差而引起的测量误差成为电子电力技术人员迫切要解决的难题。

(二)电能质量控制和管理

首先,电能质量的控制和管理主要包含功率因数校正和滤波器设计,由于传统的无源滤波器体积和重点都很大,还需要对不同的频率进行设计,而功率因数较技术正是提高功率因数和降低谐波污染的重要途径。如今,电能质量控制和管理的研究重点在与PFC控制技术上,比如:单开关、多开关以及软开关三相PFC电路的研制,软开关技术与PFC技术的融合已经成为未来的发展趋势,虽然目前的PFC产品受到功率的限制,但应用于分布式新能源发电系统却是重要机遇。

四、总结

综上所述,随着科技的发展,新能源的开拓和使用技术越来越成熟,但是,要真正做好新能源发电技术,还需要从解决先存的各种问题,因此,电子电力技术人员应在在电气、电子、控制和信息等工程技术领域加强合作研究,通过系统集成和技术融合,实现各种技术的突破,我相信,我们一定可以克服各种困难,迎来新能源造福人类的灿烂明天。

参考文献:

[1]Rechten H.可再生能源技术[A].中美清洁能源技术论坛论文集[C],2001

[2]汤天浩.新能源与变换:系统集成、技术融合及应用展望[J].电源技术学报,2004,2,1

[3]李俊峰,高虎,王仲颖.中国风电发展报告[M].北京:中国环境科学出版社,2008

[4]戴慧珠,陈默子,王伟胜.中国风电发展现状及有关技术服务[J].中国电力,2005,38,1

篇5

【关键词】燃料电池;原理;分类;应用

0.引言

时至今日,世界经济大体上仍然是化石燃料依赖型的,石油、煤和天然气占世界初级能源消费总量的85%左右,剩下的部分主要是水电和核电,真正的可再生清洁能源如风能、太阳能等所占比例不到3%。世界能源需求仍在以1.5%~2%的年率增长,而地质学家预测说,石油和天然气价格将大幅度上升,再也不会回落。

燃料电池的出现与发展,给便携式电子设备带来一场深刻的革命,并且还会波及到汽车业,住宅,以及社会各方面的集中供电系统。在21世纪中它将会把人类由集中供电带进一种分散供电的新时代。燃料电池供电,没有二氧化碳的排放,可减轻温室效应使全球气候变暖问题,它解决了火力发电使全球环境污染的问题,它是一个纯正的绿色清洁能源。

1.燃料电池的原理

1.1 燃料电池的组成和工作原理

燃料电池的基本组成:阳极、阴极、电解质和外电路。燃料电池中的电解质有不同的种类。燃料电池是靠氢氧结合成水的反应来发电的,因而不会产生氮氧化物(NOX)和碳氢化合物(HC)等易对空气造成污染的物质。它由三部分组成:阴极、阳极和电解液。

燃料电池有着几个独特的性质:

(1)燃料电池在工作时必须有能量(燃料)输入,才能产出电能。

(2)燃料电池所能够产生的电能只和燃料的供应有关,只要供给燃料就可以产生电能,其放电是连续进行的。

(3)燃料电池本体的质量和体积并不大,但需要一套燃料储存装置或燃料转换装置和附属设备才能获得氢气,而这些燃料储存装置或燃料转换装置和附属设备的质量和体积远远超过燃料电池本身。

1.2 燃料电池中的催化作用

燃料电池中的电催化作用是用来加速燃料电池化学反应中电荷转移的一种作用,一般发生在电极与电解质的分界面上。 催化剂是一类可产生电催化作用的物质。电催化剂可以分别用于催化阳极和阴极反应。这种分离的催化特征,使得人们可以更好地优选不同的催化剂。

评价催化剂的主要技术指标为稳定性、电催化活性、电导率和经济性。

2.燃料电池的特点

由于燃料电池能将燃料的化学能直接转化为电能,因此,它没有像通常的火力发电机那样通过锅炉、汽轮机、发电机的能量形态变化,可以避免中间的转换的损失,达到很高的发电效率。同时还有以下一些特点:

不管是满负荷还是部分负荷均能保持高发电效率;不管装置规模大小均能保持高发电效率; 具有很强的过负载能力; 通过与燃料供给装置组合的可以适用的燃料广泛;用天然气和煤气等为燃料时,NOX及SOX等排出量少,环境相容性优。

此外,燃料电池的能量转换效率高,不受卡诺效率限制;清洁、环保。燃料电池不需要锅炉、汽轮机等大型设备、没有SOx、NOx气体和固体粉尘的排放;可靠性和操作性良好,噪声低;所用燃料广泛,占地面积小,建厂具有很大灵活性。

3.燃料电池的分类

燃料电池可依据其工作温度、所用燃料的种类和电解质类型进行分类。按照工作温度,燃料电池可分为高、中、低温型三类。按燃料来源,燃料电池可分为直接式燃料电池(如直接甲醇燃料电池),间接式燃料电池(如甲醇通过重整器产生氢气,然后以氢气为燃料电池的燃料)和再生类型进行分类。依据电解质的不同,可将燃料电池分为碱性燃料电池(AFC)、直接甲醇燃料电池(DMFC)、熔融碳酸盐燃料电池(MC

FC)、固体氧化物燃料电池(SOFC)及质子交换膜燃料电池(PEMFC)等。

3.1直接甲醇燃料电池

直接甲醇燃料电池是以甲醇为燃料,通过与氧结合产生电流的,优点是直接使用甲醇,省去了氢的生产与存储。其电化学转化过程又可分为两种方式,一种是直接燃料电池,另一种是间接燃料电池。直接燃料电池主要是甲醇在阳极被电解为氢和二氧化碳,氢通过质子膜到阴极与氧气反应并同时产生电流。间接燃料电池是先将甲醇进行炼解或重整得到氢,然后再由氢和氧通过质子膜电解槽反应而获得供给汽车动力的电能。这种燃料电池以甲醇为能量来源,手机,笔记本电脑将不再用充电。

3.2固体氧化物燃料电池

固体氧化物燃料电池采用固体氧化物作为电解质,除了高效,环境友好的特点外,它无材料腐蚀和电解液腐蚀等问题;在高的工作温度下电池排出的高质量余热可以充分利用,使其综合效率可由50%提高到70%以上; 它的燃料适用范围广,不仅能用H2,还可直接用CO、天然气(甲烷)、煤汽化气,碳氢化合物、NH3、H2S等作燃料。这类电池最适合于分散和集中发电。

3.3碱性燃料电池

再生氢氧燃料电池将水电解技术(电能+2H2O2H2+O2)与氢氧燃料电池技术(2H2+O2H2O+电能)相结合 ,氢氧燃料电池的燃料 H2、氧化剂O2可通过水电解过程得以“再生”, 起到蓄能作用。可以用作空间站电源。采用氢氧化钾溶液作为电解液。这种电解液效率很高(可达60-90%),但对影响纯度的杂质,如二氧化碳很敏感。因而运行中需采用纯态氢气和氧气。这一点限制了将其应用于宇宙飞行及国际工程等领域。

3.4质子交换膜燃料电池

燃料电池工程中心研究双效催化剂和双效氧电极的制备方法,研制薄层电极并制备膜电极三合一组件,降低电极铂担量。目前电极的铂担量已降至0.02mg/cm2。同时进行固体电解质的水电解技术开发,已掌握水电解用膜电极的制备技术。

3.5熔融碳酸盐燃料电池

熔融碳酸盐燃料电池是一种高温电池(600~700℃),具有效率高(高于40%)、噪音低、无污染、燃料多样化(氢气、煤气、天然气和生物燃料等)、余热利用价值高和电池构造材料价廉等诸多优点,是下一世纪的绿色电站。

4.燃料电池的应用

燃料电池技术因具备低污染、高能源转换效率的特性,更能满足人类高效、环保的需求。它具有更高的能源密度。紧急备用发电机、住宅用热电共生系统、UPS、分布式发电系统、军事国防、太空与运输工具领域、机器人、笔记型计算机、PDA、手机等便携电子产品、便携电源、搬运工具、电动辅助/代步车等。采用极薄的塑料薄膜作为其电解质。这种电解质具有高功率一重量比和低工作温度。是适用于固定和移动装置的理想材料。

质子交换膜燃料电池以磺酸型质子交换膜为固体电解质,无电解质腐蚀问题,能量转换效率高,无污染,可室温快速启动。质子交换膜燃料电池在固定电站、电动车、军用特种电源、可移动电源等方面都有广阔的应用前景,尤其是电动车的最佳驱动电源。它已成功地用于载人的公共汽车和奔驰轿车上。

5.小结

高效、洁净的燃料电池必将在未来的高效、清洁发电技术中占有一席之地。但是,资金、技术、观念、基础设施上还有许多需要克服的困难。油价飙升、电价太贵,燃料电池成为未来家庭能源供应相对便宜的选择,也是目前最令人满意的解决方案。在固定电站、电动车、军用特种电源、可移动电源等方面都有广阔的应用前景。 [科]

【参考文献】

[1]石新军.燃料电池的应用和发展.现代物理知识,2006,1.

篇6

关键词:新能源;汽车;发展现状

一、新能源汽车的诞生背景

1.1能源紧缺、石油价格高昂

石油能源将出现供需矛盾,汽车使用成本越来越高,寻找既绿色环保又低廉价格的能源成了当务之急,新能源汽车便在这种情形下走进了历史舞台。

1.2环保问题

随着时代的发展,大家越来越意识到:维护生态平衡,保护环境是根本性问题。汽车尾气排放标准的高要求使得各大汽车厂商采取各种方法以提高排放质量,减少污染物,新能源汽车便进入了人们的视野。

二、新能源汽车的种类

2.1引言

新能源汽车又称代用燃料汽车,包括全部或部分使用非石油燃料的汽车。根据《新能源汽车生产企业及产品准入管理规则》[4]的规定,新能源汽车包括混合动力汽车(HEV)、纯电动汽车(BEV)、燃料电池电动汽车(FCEV) ,氢能源动力汽车、燃气汽车以及其他新能源汽车等各类别产品。

2.2新能源汽车的种类

2.2.1燃气汽车:其排放污染大大低于以油为燃料的汽车;抗爆震性好,可以提高动力性能;燃料以气态进入气缸,燃烧较充分,热效率高;采取了多项有效的技术措施和设施,使燃气使用起来更安全;天然气资源丰富,价格便宜。

2.2.2燃料电池汽车:利用氢气等燃料与氧气在催化剂的作用下经电化学反应产生的电能为主要动力源的汽车。燃料电池的反应不经过燃烧过程,能量转化效率高;并且它的排放主要是水,不产生有害物质。

2.2.3纯电动汽车:纯电动汽车已发展到较成熟阶段[5-6]。在各国政府的大力支持下,锂离子电池技术迅猛发展,己经成为电动汽车车用动力电池的主要发展方向[7]。

2.2.4混合动力汽车:指由多于一种的能量转换器能提供驱动动力的混合型电动汽车,即使用蓄电池和副能量单元的电动汽车,其副能量单元实际上是一部燃烧某种燃料的原动机或动力发电机组[8]。

2.2.5氢能源动力汽车; 以氢为主要能量作为移动的汽车,行车路远,使用的寿命长,最大的优点是不污染环境。虽然现在技术原因,在氢气的提取上有严重的阻碍,但是由于氢气燃烧后释放的完全没有污染的水,因此氢燃料电池汽车还是非常受重示。

2.2.6太阳能汽车:顾名思义,太阳能汽车就是使用太阳能电池把光能转化成电能并以此为驱动能源的汽车。太阳能发电在汽车上的应用,将能够有效降低全球环境污染。直接采用太阳能为能源,间接采用电能作为能源,可有效的节约化石燃料。

三、新能源汽车发展现状

3.1现状存在的问题:

新能源汽车产业发展战略不是很清晰;核心技术不甚成熟;发展项目重叠;基础配套设施不完善;价格昂贵;民众的环保理念知之甚少;补给能源的储存、生产问题;电动汽车的续航问题。

3.2国内外的发展:

(1) 据我国发展新能源汽车以来,2001 年, 国家把新能源汽车研究列入“十一五” 期间的 “863” 重大研究课题, 同时规划出了以汽油车为基点,向氢动力汽车大力发展的战略。

(2) 美国始终致力于提高乙醇以及生物柴油等可再生资源使用量。

(3) 日本为推进新能源汽车以及环保汽车,从 2009年 4 月1日起日本实施了 “绿色税制”。

(4) 欧盟在 2003 年了 《欧洲未来氢能图景》 ,并制订了 《欧盟氢能发展路线图》。

(5) 国务院决定免征新能源汽车车辆购置税,电解液已经实现国产化[14]。

(6) 成本较之前已经逐步下降,极大的提升了竞争优势。

结论:

目前,中国汽车产业出现了发展节能汽车和发展新能源汽车相结合,能源多元化、动力电气化、排放洁净化必将推动中国新能源汽车迅速发展,中国有望在不久的将来将成为新能源汽车的研究中心。(作者单位:南京农业大学)

参考文献:

[1]中国新能源汽车产业研究.高铭泽.2013-04-01,吉林大学硕士论文

[2]李大元.低碳经济背景下我国新能源汽车产业发展的对策研究[J].经济纵横,2011,(2).

[3]我国工业和信息化部,《新能源汽车生产企业及产品准入管理规则》,2009.

[4]邓平.快速充电技术,圆你电动客车商业化之梦[J].人民公交,2013,3:95-98.

[5]崔淑娟.燃料电池汽车的关键技术[J].汽车工程师,2009,9:15:17.

[6]卢世刚.刘莎.电动汽车车用动力电池的主要发展方向[J].新材料产业,2005,4:49-54.

篇7

本书共有46章:1.云层状况对太阳辐射质量的比较研究;2.以满足基本负荷为目标的可再生能源集成系统探索;3.可变混合物的有机朗肯循环性能研究4.以双地热为基础的集成制氢系统测评;5.基于两种可再生能源的多能源系统遗传算法优化;6.综合能源系统的性能评估;7.两段式热泵干燥系统的性能评估;8.基于核能的混合硫循环和使用HEEP方法的高温蒸汽电解系统比较评估;9.固体氧化物燃料电池和基于生物质气化微型燃气轮机的热力学分析;10.工作液可变的朗肯循环能量分析;11.热化学储能系统:设计,评估和基于充电温度的参数研究;12.季节性分层热能储藏系统的热力学评估;13.基于太阳能的微型热电发电系统发展;14.单效吸收式储能器的瞬态过程分析;15.全球变暖与建筑物形貌对地源热泵系统性能的影响;16.拉贾斯坦邦的聚光太阳能发电现状;17.带有贮热水箱的太阳能喷射式制冷系统动态性能分析;18.宿舍供电用光伏太阳能电池和燃料电池联合系统;19.低能耗示范用住宅的空气源热泵和太阳能热联合供暖系统研究;20.零下低温区的太阳能热水器;21.恒定输入功率的定日镜场中央接收器系统建模;22.无吸收器单通道太阳能空气集热器;23.带有短距散射器的太阳能发电站;24.甘油水相化可再生能源制氢与水滑石衍生物提取铜镍催化剂的利用;25.混合结构成分与官能团的热解条件;26.阿尔及利亚太阳能分布图;27.带有真空管太阳能集热器并集成加湿和除湿功能的太阳能海水淡化系统研究;28.海上风电场的选址优化;29.小型风力发电机叶片设计;30.基于液体浸没等离子体的笼形水合物变形制氢方法;31.伊朗家用、商用和农业部门中基于风能的便利分布式发电选择系统;32.麦克默里堡住宅楼地热空间加热系统的综合监测;33.地热系统中的热传输特性分析;34.阿尔及利亚地热应用前景分析;35.垂直地埋管换热器的季节性热流变化分析;36.面向家庭供暖与供冷的垂直管道地热泵系统;37.地源热泵系统中能源桩热响应试验分析;38.纵向和横向片式散热器的性能比较;39.新加坡能源系统的建模分析;40.低温热源驱动的发电供热集成系统分析;41.压缩天然气和柴油功能的垃圾收集车可靠性评估;42.厌氧混合堆中垃圾渗滤液的厌氧处理和沼气生产系统;43.对帕多瓦城市热岛的实验调查;44.微波增强型橡胶树热解;45.提高水电双供厂的装机容量和效率;46.水电双供厂的建模仿真分析。

本书第1作者Ibrahim Dincer是安大略理工大学机械工程系教授,也是工程和应用科学学院的项目负责人。他独自撰写或合作撰写过几十本书,发表过的期刊和会议论文被引用超过1000次,还发表过很多技术报告。他曾多次主持国内与国际会议、担任会议主席。他还参与了很多国际知名会议的初创工作,包括国际能源与环境专题讨论会等。他曾经担任过300余次主题演说,还担任着多种国际期刊的主编和编辑,如《国际能源研究期刊》,《国际燃烧热力学期刊》,以及《全球变暖研究》等。

本书采用独特的方式,融合了最新的技术信息、研究成果和成功示范应用,旨在吸引大量工程师、学生、工程实践人员、科学家和研究人员,为他们展现可持续能源技术的最新发展。

宁圃奇,博士,研究员

(中国科学院电工研究所)

Puqi Ning,Associate Professor

(Institute of Electrical Engineering,CAS)Giovanni Petrecca

Energy Conversion and

Management

2014

http:///book/

10.1007/978-3-319-06560-1

篇8

[论文摘要]:通信电源是向通信设备提供交直流电的电能源,是整个通信电信网的能量保证。通信电源系统由交流供电系统、直流供电系统和相应的保护系统构成。通信电源系统的设备多,分布广,不仅单个电源设备的可靠性会影响系统的可靠性,电源系统的总体结构也会对自身的可靠性造成很大的影响。

一、通信电源的发展现状

(一)供电系统的现状

通信电源是通信系统必不可少的重要组成部分,其设计目标是安全、可靠、高效、稳定、不间断地向通信设备提供能源。通信电源必须具备智能监控、无人值守和电池自动管理等功能,从而满足网络时代的需求。通信电源系统由交流配电、整流柜、直流配电和监控模块组成。

(二)通信电源设备的更新换代

近年来,随着技术的进步,特别是功率器的更新换代,新型电磁材料的不断使用,功率变换技术的不断改进,控制方法的不断进步,以及相关学科的技术不断融合,通信电源在系统的可靠性、稳定性,电磁兼容性,消除网侧电流谐波、提高电能利用率、降低损耗、提高系统的动态性能等等方面都取得长足的进步。

(三)现行通信电源的电路模型和控制技术

目前通信电源的变换电路拓扑结构主要采用双单端电路,半桥电路和全桥电路,各有优缺点。一般认为,在中、小功率场合,采用双单端电路或半桥电路是适宜的;在大功率场合则采用全桥变换电路。

二、通信电源发展趋势

(一)开关器件的发展趋势

电源技术的精髓是电能变换,即利用电能变化技术将市电或电池等一次电源变换成适用于各种用电对象的二次电源。其中,开关电源在电源技术中占有重要地位,从10kHz发展到高稳定度、大容量、小体积、开关频率达到兆赫兹级,开关电源的发展为高频变化提供了硬件基础,促进了现代电源技术的繁荣和发展。

(二)通信直流电源产品的技术发展市场需求发展

在需求与技术的共同推动下,通信直流电源产品体现了如下的发展态势:

体系架构相当长的一段时间内维持稳定。通信直流电源在相当长的时间内还是维持现有的交流配电、整流器模块(并联)、直流配电、监控单元、蓄电池等为主要组成部分的架构;功率变换模式也将维持现有的高频开关模式,暂时不会出现类似从线性电源到开关电源的阶跃性的变化。

功率密度不断提高。通信一次电源的核心部件整流器的功率密度不断提高,推动了通信直流电源整机的功率密度不断提高,但配电器件、蓄电池等密度基本维持稳定,一定程度制约了整机系统的功率密度的提高比率。

更高的可靠性。高可靠性是通信电源的最基本要求。随着器件技术、通信电源技术的成熟,以及各通信直流电源设备厂家在可靠性研究上大力投入,通信直流电源产品可靠性呈不断提高的趋势。

按照TRIZ理论(“创造性解决问题的理论”的俄语缩略语)描述的技术系统发展进化规律,一般而言,技术的生命周期包含四个阶段:婴儿期、成长期、成熟期和衰退期,种种迹象表明,通信直流电源的核心技术,开关电源技术基本上开始步入成熟期:效率的提升变得缓慢和困难、而电源损耗不能大幅度降低限制了功率密度的进一步提高,未来几年甚至十几年内,通信直流电源产品将进入一个缓慢发展的阶段,直至有一天,一种新的电源变换技术出现,通信直流电源产品就会再出现一个阶跃性的发展,就像开关稳压技术替代线性稳压技术,给电源带来了革命性的变化。

(三)通信用蓄电池技术研究的新进展

通信用蓄电池作为通信系统后备的能源供应手段,其研制、生产和应用技术一直备受世界各国通信行业的重视。随着科技的发展和技术的不断进步,国外正在研制和试验新一代的通信用蓄电池,有的已经进入商用化阶段。这些新的蓄电池,由于其材料、结构和技术上的先进性,在性能上具有传统的VRLA电池无可比拟的优越性。

1.钒电池(VanadiumRedoxBattery)。钒电池(VRB)是一种电解值可以流动的电池,目前正在逐步进入商用化阶段。

2.燃料电池。燃料电池是一种化学电池,也是一种新型的发电装置,它所需的化学原料由外部供给,如氢氧燃料电池,只要外部供给氢和氧,经过内部电极、催化剂和碱性电解液的作用,就能产生0.9V电压的直流电能,同时产生大量的热能.

3.电源监控系统的发展。随着互联网技术应用日益普及和信息处理技术的不断发展,通信系统从以前的单机或小局域系统逐渐发展至大局域网系统或广域网系统,大量人力、物力被投入到网络设备的管理和维护工作上。不过通信设施所处环境越来越复杂,人烟稀少、交通不便都会增大维护的难度,这对电源设备的监控管理提出了新的需求,保护通信互联网终端的电源设备必须具备数据处理和网络通信能力。此时,数字化技术就表现出了传统模拟技术无法实现的优势,数字化技术的发展逐步表现出传统模拟技术无法实现的优势.

4.通信电源的环保要求。环保问题,一方面的指标是通信电源的电流谐波要符合要求,降低电源的输入谐波,不但可以改善电源对电网的负载特性,减少给电网带来严重污染的情况,还可减少对其他网络设备的谐波干扰。另一个重要方面,是材料的可循环利用和环境的无污染,这方面需要产品满足WEEE/ROHS指令。

在通信电源开发、生产早期,人们主要集中研究电源的输出特性,较少考虑到电源的输入特性。例如:传统的在线式电源输入AC/DC部分通常采用桥式整流滤波电路,其输入电流呈脉冲状,导通角约为π/3,波峰因数大于纯电阻负载的1.4倍。这些谐波电流大的电源给电网带来了严重的污染,使电网波形失真,实际负荷能力降低,对于三相四线制的电网来说,还很有可能因中性线电流过大而出现不安全隐患。

参考文献:

[1]朱雄世,《通信电源的现状与展望》.

[2]《浅析全球通信电源技术发展趋势》.

[3]《通信直流电源发展趋势》.

[4]孙向阳、张树治,《国外通信用蓄电池技术研究的新进展》.

[5]《通信电源技术发展趋势及标准研究方向》.

[6]曾瑛,《浅谈通信电源》.

[7]王改娥、李克民,《谈我国通信电源的发展方向》.

[8]王改娥、李克民,《我国通信电源的发展回顾与展望》.

[9]侯福平,《UPS系统在通信网络中使用的特点及要求》.

[10]《全球通信电源技术发展呈现五大趋势》.

推荐期刊