欢迎访问爱发表,线上期刊服务咨询

数学文化欣赏论文8篇

时间:2023-03-21 17:04:26

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇数学文化欣赏论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

数学文化欣赏论文

篇1

参考文献

[1]理科非数学专业高等数学教学内容和课程体系改革课题组人才培养与大学

数学教育改革[J],教学与教材研究1999.2

[2]大学数学课程报告论坛大学数学报告论坛2006论文集[c],北京:高等教育出版社,2007。6

[3]恩格斯反杜林论[M],北京:人民出版社,1970P35

[4]恩格斯自然辩证法[M],北京:人民出版社,1971P190

[5]张景斌等中学数学教学教程[M],北京:科学出版社,2000.12

参考文献:

[1]阳妮.大学数学分层教学的理性思考[J].高教论坛,2007.(5):87-89.

[2]郑兆顺.新课程中学数学教学法的理论与实践[M].北京:国防工业出版社,2006.

[3]郭德俊,李原.合作学习的理论与方法[J].高等师范教育研究,1994,(3):43-54.

[4]付海峰.在层次教学中培养学生的思维能力[J].中学数学参考,1997,(10).

参考文献:

[1]曹之江.现代数学教学的原理和实践(一)——论数学教学的完全性[J].高等理科教育,2006(01).

[2]张景中.什么是“教育数学”[J].高等数学研究,2004(06).[3]王青建.数学史与数学教育改革刍议[J].数学教育学报,1995(04).

[4][美]莫里斯克莱因(MorrisKline)著,张理京等译.古今数学思想[M].上海科学技术出版社,2002.

[5]齐民友著.数学与文化[M].湖南教育出版社,1991.

参考文献:

[1]陈朝坚.大学数学教学中渗透数学文化的途径[J].开封教育学院学报,2014

篇2

 

对数学文化的思考与实践

 

六合励志双语学校  俞晓强  13405881122

 

[内容摘要]

数学是思维的体操,体操给人的感觉是轻巧的,灵动的,柔美的,数学也应该是灵动的、活跃的。但在实际的教学中,数学对于很多学生却是沉重的,思维没有应有的跳跃。

在对教师的教学方法的思考之外,笔者认为还应考虑到教学的内容在促进学生学习数学的兴趣和思维发展方面的重要作用。

在教学中,笔者把数学课外活动当作实践教学“让学生感兴趣的数学”的“试验田”。通过数学史话、数学家故事、拓展训练 、科学性小研究等多种活动,达到了“感受数学趣味、体现思维灵性、发展创造才能、激发学习兴趣”的效果。

在正文中,我从理性思考、具体实践两个方面进行阐述。

 

[关键词]  数学   文化    思维

[正  文]

一、思考:什么样的数学才是最吸引学生的?

“数学是思维的体操”,数学的学习从根本说就是对人思维的培养。数学思维品质具有广阔性、深刻性、灵活性、创造性、批判性等几个特性。数学应该是充满灵性和智慧的一门学科。

数学教师经常为学生不爱学习数学而苦恼,我们经常抱怨学生“不动脑筋”。而越是到初中阶段,我们越是发现学生对数学是苦恼的,畏难的,思维是停滞的,他们经常把解题结果正确性寄希望于老师的讲解。

纵观我们的数学教学:单调的讲解,人为制作的所谓“思维难度”,为了形成技能而进行大运动量的练习。数学缺少了思维的快乐,缺少了文化的内涵,缺少了所该有了的灵性。

因此,我们呼唤数学文化的回归,呼唤数学灵性的体现,创设最能吸引学生的数学内容。

什么是数学文化?它是人们很自然地用数学的思维方式、数学问题解决的方法去看待现实生活中的问题,并丰富我们的生活的一种活动,这种活动不是刻意的,而是自然的习惯思维结果。

知识可作为学习的最重要的内容,但如果不增加数学文化的元素,就不会培养出真正有数学素养的人。现在的课堂中把解题训练作为数学学习的全部内容,使数学文化在课堂学习中无法体现,而学生在枯燥的训练中,随着年级的升高,对数学越来越惧怕,数学何以能促进改革其思维的发展。

从对数学知识的掌握,到对数学文化的理解是对数学知识一种全新的提升,数学文化的范畴比数学知识当然是大的多,同时它真的成为本身数学素养的一部分,而不是一种机械的解题能力。缺乏文化氛围的简单的知识教授,只会使学生限于无穷无尽的记忆和解题中,最终是兴趣的消失,思维的停止。如同数学中的奥数原来是培养学生的思维能力的,最后却是越来越多的学生在接触奥数后逐步散失了对数学的兴趣,数学成了学生最不喜欢的一门课。

在对现行的数学教学的反思中,对数学文化的回归的呼唤表明:如果数学本身的价值和意义,数学教学对促进人的发展、构建人的精神、形成人的理性思维能力的价值和意义在学生数学中得不到体现,数学教学何以能培养有“文化”的,有创造性思维的人。

在教学中,我一直在不停的实践,寻找最能打动学生的数学知识。在教学中,最让学生感兴趣的不是我教授教材的内容,而是我的丰富多彩的数学课外活动。

上完上一节,学生就关注我的下一节的内容,他们努力做好作业,以使我不占用课外活动来讲解题目。

在对学生进行数学文化的渗透中,课本是其主要的内容,但课本中对数学文化不是主要内容,数学文化是教师在渗透中进行的。

在这里我重点谈一下在数学活动课中数学文化的渗透,在这里,学生将充分感受到数学的乐趣。数学文化作为一种精神层面的力量,对学生的数学意识、数学兴趣的培养有重要的作用。

二、实践:在课外数学活动中渗透数学文化:

1、体验——形成积极思维的动力:

中国在数学研究上自古以来一直有突出的成就。这方面的知识所表示出的中国人的智慧,对学生来说既是一种思想道德教育的内容,也是激发学生在数学知识产权的学习上有积极思维的动力。

由数学故事所引发的思考会使学生在体验一些数学家的故事中感受数学的真实性,同时促使学生在数学思考中感受数学家的研究快乐从而内化为自己的情感体验。

如学生学习算术平方根的时候,查到平方根“ ”,1220年意大利数学家菲波那契使用R作为平方根号.十七世纪法国数学家笛卡尔在他的《几何学》一书中第一次用“ ”表示根号。“ ”是由拉丁文root(方根)的第一个字母“r”变来,上面的短线是括线,相当于括号 。学习数学,是从学习数学符号开始的。每一个数学符号,它的产生都有一段鲜为人知的经历。让学生通过查阅资料,对它们寻踪探源,可以让学生在了解数学发展史的同时,体会到数学符号并非枯燥乏味,而是充满着智慧灵光、闪烁着生命活力。 数学符号故事也将会引发学生对数学的强烈好奇心,增强学习数学的兴趣。

再如:八卦一般是与封建迷信相联系的,而这里也有着丰富的数学知识,尤其是德国大数学家莱布尼兹(Leibniz,公元1646-1716年)曾经为设计乘法计算机而绞尽脑汁时,他收到了一个到中国来的传教士寄给他的八卦图。使他从中受到启示:如把“--”看成“0”,把“-”看成“1”,形成了下面的联系:

 

 

学生听后非常兴奋,现代的电子计算机的发明路上,也曾经有过中国古人的智慧。

 

2、探索——培养学生思维的广阔性:

在数学教学中,对知识技能的培养大于对学生思维的培养,在现在新课程理念的指引下,更重视对学生的思维多样性的重视。但这种思维多样性的培养,经常受到课程内容的限制。同时在应试的思想下,多种思路的解法经常只是在新授时的展示,在练习中又逐渐被老师所希望的那种方法固定下来。

从课本中走出来,提供更丰富的探索内容,消去了担心学生的多样性的解法会对考试成绩产生影响的顾虑,教师的教和学生的学更自由和灵动了。在数学活动课上,根据学生掌握数学的程度,适当地安排介绍古今中外数学史上的一些名题。如向学生介绍中外数学家解决“幻方”的不同策略:杨辉法、罗伯法;介绍欧拉哥尼斯堡的“七桥问题”、牛顿的“牛吃草问题”等等。这些历史数学名题,因其精妙的解题思想与策略,向学生展现了数学的无穷魅力,将会深深地吸引着他们,启迪着他们的心智,激荡着他们的心灵。

    例如:在教学勾股定理这一节内容时,向学生展示了勾股定理名证欣赏片段

如图1,ABC 为一直角三角形,其中∠CAB为直角,在边 AB、BC 和 AC 上向外分別作正方形ABFG、BCED 和 ACKH,过点 A 作直线AL垂直于DE交DE于点L,交BC于点M,连接CF、AD。

图1  欧几里得证明

             

这个证明巧妙地运用了全等三角形和三角形面积与长方形面积的关系来进行。不单如此,它更具体地解释了“两条直角边边长平方之和”的几何意义,这就是以ML将正方形分成BMLD与MCEL的两部分!这就是各种证明方法中最为著名的欧几里得证明法!

在这种证明方法中体现着一种很重要的思想方法(幻灯片演示:图2):

 

 

 

图2  动态演示欧几里得证明方法

 

本案例以勾股定理的证明为介绍内容,分面积法、拼拆法、剖分法、直接法四种典型的思考方法进行介绍。通过介绍历史上一些有名的证明方法,如:欧几里得证明方法及其动态演示、赵爽的弦图证法、伽菲尔德证明方法等等,引导学生在欣赏历史上的勾股名证时体味数学家思维的精妙,数学证明的灵活、优美与精巧,感叹数学的美!

在传统的勾股定理教学中,教师往往对证明方法一笔带过,而将重点放在定理的结论介绍与应用训练上,探究文化内涵也只是利用其“谁比谁早多少年”来对学生进行爱国主义教育。

设计这样一堂“勾股定理名证欣赏课”,将多元文化引入数学课堂,我们就会发现“谁比谁早多少年”已经不是最重要的了,重要的是:数学是全人类共同的遗产,不同文化背景下的数学思想、数学创造都是根深叶茂的世界数学之树不可分割的一枝,从而消除民族中心主义的偏见,以更加宽阔的视野去认识古代文明的数学成就,同时,通过不同数学思想方法的对比,如介绍的各种方法中所涉及的进与退、分与合、动与静、变与不变、数与形、一与多等等的辨证思想,可提高学生数学创造性思维能力,并学会欣赏丰富多彩的数学文化。

在教学的过程中,可安排足够多的时间让学生在欣赏的基础上自己动手进行拼、补、凑的实践活动,亲自体验发现的过程,感受动手的乐趣。

再如:我在班上给学生上了“与众不同”一节找规律的课。首先给学生呈现了以下的图形让学生探求规律。

 

 

 

 

   

 

学生的观察角度一开始就多样起来,与我的预设答案完全不同的想法,我都给以了充分的肯定。结束前,我尝试着要求学生自己能想这样创造一些与众不同不同的图像吗?并且能说出合理的理由。作业交上来后,合理而有趣的构思非常出色。下面就是就个出色的作品。

 

 

 

 

图一

 

 

 

图二

 

 

 

图一的同学对汽车感兴趣,他设计的图案全是用汽车的标志作素材,他说这里面也有与众不同不同的数学内容。比如说;其它图案的图形内部的线段交点都多于一个,只有最后一个图形的内部线段的交点只有一个。

图二的同学巧妙的利用数学中的运算符号编题,只有图六的图形不是运算符号,其它图案的图形都是+、-、×、÷、=、[  ]组成的。设计巧妙,图性直接和数学联系起来。

    在具体的情景和物体中能用数学的眼光观察分析它们,这是学生数学素养培养的重要方面,在这里数学不在是“与我无关”的枯燥的内容,而是有了文化的气息,数学文化与学科教学联系了起来。

3、创造——拓展学生思维的创造性。

    在今天的教育教学中,培养学生的创造性的思维是一种达成共识的教学趋势。决定一个民族和一个国家今后发展力量的是有大量的创造性的人才,大量的模仿式的解题训练使学生的创造思维被扼杀,灵活多变的解题变成了只是机械的对解题方法的套用。在日本非常流行一些几乎没有实用价值的异想天开的节目,如《超级变变变》》《鸟人比赛》等,有研究表明正是这些民间的创造性很强的节目使日本在创造发明方面有很了不起的成果。

    我把趣味数学引入到课堂中,“异想天开”就是我的尝试。给学生一组图片,如:

 

                                                         ……

 

 

让他们自由的展开想象的翅膀,把简单的线条组成的图案具体转化为生活的物象。思维完成了由抽象到具体的自由转换。在这里数学的意义被放出大了。简单的枯燥的学科数学变成了有包容性的“大数学”

第一个图形,有人说它是瓦片;有人说它是书的背脊;有人说它是一个圆柱的一半……,第二个图形,有人说它是一面扇子;有人说它是一面将要打开的门;有人说它是墙的一角……。“积极思考,踊跃发言”不再是老师一再强调的内容,真正变成了学生的自我表现需要,最不喜欢说话的孩子也有了发言的冲动。

我要求他们把自己的想象在纸上画出来,一个个生动的名字又出现了:我的思维仓库、我的思维百宝箱、世界上最古怪的想象……

学生在课堂上享受着想象,他们想象着并快乐着。合理想象、合理推理、抽象能力都得到了体现。

这样的数学课堂使学生产生了什么变化呢?超过了我的预期想象。在数学活动课开始之前,他们反复询问:今天上什么?临时改动数学活动课内容,需要先和学生商量,否则学生会极力反对。在这里老师和学生都享受到数学的“教”与“学”的快乐。

在整个实践中,我主要是侧重于数学史话,数学故事,智力数学等与课本知识完全不同的知识进行教学,虽然是数学文化中的一种较浅的层面。但它对学生学习数学的兴趣,形成积极思维的动力,拓展探索的能力方面仍然发挥了明显的作用。当数学文化的魅力真正渗入教材、到达课堂、溶入课堂教学时,数学就会更加平易近人,数学教学就会通过文化层面让学生进一步理解数学、喜欢数学、热爱数学,而要实现数学文化走进课堂的目标这需要我们教师坚持不屑的努力。

 

参考文献

[1]陈琦,刘儒德《当代教育心理学》  北京师范大学出版社出,1997年4月

[2]邓东皋,孙小礼,张祖贵.数学与文化[M].北京:北京大学出版社,1999.

[3]张楚庭  数学文化[M].北京:高等教育出版社,2000.

[4]沈康身  历史数学名题赏析[M].上海:上海教育出版社,2002.

[5]涂荣豹 《数学教学认识论》 南京 :南京师范大学,2007.9.13

 

[作者简介]:

篇3

从教学实践来看,中国大陆的数学教育取得了许多长足的进步与发展,一些经验甚至走出国门,走向世界,成为全球讨论的焦点。但是必须承认,在中国数学教育取得巨大影响的同时我们也有无法回避的隐忧。我们学生的计算能力、分析能力较好,但是解决实际问题的能力并不强,同时因为片面追求升学率的原因,造成学生一边为了取得高分而被迫“恶补”数学,但是从心里却痛恨数学,一旦考入大学,便会丢弃数学。换句话说,他们仅仅把数学当成“敲门砖”,用完后即过河拆桥,没有把数学作为现代科学的典型自学带入自己的专业学习和生活应用。这与我们的科学传统缺失有关,也与我们的不当教学方法有关,更与我们数学课程的过分抽象、缺少文化元素有相当的关系。让人欣喜的是,我们的数学教育界已经关注此问题,并开始了探索数学文化的步伐。

通过调查研究和从现实出发,并借鉴其他中学开设数学文化课程的经验与教训,我们尝试在我校的初高中开设《人文数学欣赏》新课程,几年的实践取得了一些成效。本文在此基础上试作探讨。

1.数学课程价值的不可替代性

数学课是中学的一门核心课程,对于理解数学与自然界、数学与人类社会的关系,认识数学的科学价值、文化价值、应用价值、思维价值,锻炼提出问题、分析和解决问题的能力,训练理性思维具有基础性的作用,对于学生其他课程学习及职业生涯的终身发展,具有十分重要的意义。[2]虽然数学课程如此重要,但是学生普遍感觉很难,有厌学的倾向,使一线教师进退两难,怎么办?

数学课程的重要性,决定了我们必须重视数学教学,努力培养好学生的数学能力,就要努力提升质量,借其他课程的力量和文化的内驱力激发学生内心的激情和强烈的学习动力。

2.课程改革的必然趋势

许多数学教育工作者对数学课程进行了深刻的探究。面对数学教学有效性左右徘徊的现实,许多教师和研究者提出了许多方案,但是并不能彻底解决问题。要切实解决问题,需要从源头分析,从大处着眼,从小处着手,研究学生需要,研究学生实际,研究学生接受能力,研究学生的实际想法[1]。

在近年的高中数学课程改革中,“数学与文化”系列课题成为数学教育工作者最关注的问题之一,相关的数学杂志《数学教育学报》、《中学数学教学参考》、《中学数学教与学》、《数学通报》近年来发表了许多讨论的文章,几位数学家、数学教育家、院士相继出版了一些数学文化的书籍。其实,在一段时间内,数学教育工作者都在积极探索这个问题:在进行理论思考的同时也积极开发一些课程资源的教学案例、课例,尝试如何将“数学文化”渗透到日常教学中,让学生从其中获得营养、提高数学修养,进而再进行一些理论构思上的完善,从实践到理论,开展一些实证研究工作[2]。

在课程改革的形势发展中,高中的数学选修课和高校普遍开设数学文化课程(包括理科、文科和工科几乎所有专业都开设),相比之下,我们学校的数学课程显得比较单调,学生没有选择提升自己数学素质的余地,无法根据自己的发展需要进行选择和调节,拓展自己的视野[3]。所以变革是必须的。

数学知识比较枯燥无味,无法调动学生的兴趣,但是数学文化中有许多激动人心的美学因素能引人入胜、激荡人心。借鉴其他学校开设的《数学文化》课程和普通高校开设的《数学史与数学美学》等课程,以及在高校文科专业开设的《文科数学》课程,我们尝试在本校开设《人文数学欣赏》课程[4]。

二、开设人文数学课程的意义

1.借用人文教育力量,提高数学教学效能

数学教育要想取得高效益,就要走进学生心中,必须借用人文教育为工具,激发学生内心的激情,形成对数学浓厚的情感态度价值观。

人文教育,是指对受教者进行教育,目的是促进其人性境界提升、理想人格塑造以及个人与社会价值实现,实质是人性教育,核心是培养人文精神。这种精神的养成一般要通过多种途径,包括广博的文化知识滋养、高雅的文化氛围陶冶、优秀的文化传统熏染和深刻的人生实践体验等。人文教育既重视由外而内的文化熏陶,更强调自我体悟与心灵觉解。归根结底,它使人理解并重视人生的意义,并给社会多一份人文关怀,在根本上体现教育的本质与理想。人文教育的主阵地在学校,学校教育要使学生获得生存能力,也应提升做人境界,丰富精神世界,让学生有尊严、有幸福感[5]。

数学是一种文化。不仅是人类文化的要素成分,而且始终是推进人类文明进步的力量源泉。对一个人来说数学具有基础性和工具性的作用,但更为重要的也容易被忽略的是它是人可持续发展的重要力量,这些往往要靠人文教育来实现。单纯的数学知识和训练容易导致学生厌学,而人文教育因素,就能调动学生心中柔软的情感,吸引他们探究数学,从而提升教学效能。

2.数学课程包含许多人文因素,能让学生亲近

数学教育中包含不少人文因素,比如数学能培养真理精神、理性风格、审美情操、良好人格、辩证思维等,数学学科特点与课程价值,决定了其在人文教育中应该并且能够承担更多的责任。数学是人类社会的一种重要文明,它在人类历史发展的昨天、今天和明天都起着巨大的作用[6]。

从某种角度衡量,数学是经济社会生产力发展水平的标志,是一种重要的“生产工具”。因此中国要提升实力,首先要有数学实力[7]。数学早已成为与自然科学(主要是理化生等学科)平行发展的独立科学体系,传统的“数理化”平分秋色的科学体系已经无法体现数学的核心价值。近日,有学者提出在科学与技术的研究方法体系中,除了大家通常所讲的理论与实践的两大类方法,必须承认特别重要的第三类方法——数学方法。数学是独立于人文科学与自然科学之外的一门独特科学。数学不仅是科学的工具,更是一种文化;数学教育不仅有科学价值,还具有文化价值,对人的全面发展、形成完善的人格具有不可替代的作用[8]。

当前许多中小学的数学教学模式仍然是满堂讲,一个显然原因是相当的一批中小学教师都深受传统数学教学影响,采取“讲授式”教学方式,课堂中过于偏重于演绎论证的训练,重结果轻过程,忽视人格提升的培养、数学文化的熏陶、理性精神的领悟,从而完全削弱了数学教育的人文内涵,导致数学教育的形式化、机械化、枯燥化,缺少人文美感和引人入胜的吸引力。另一原因是由于许多教师平时缺少读书,缺乏数学历史中的文化知识,以及忽视教学的评价体制等主客观原因,使教师不愿意在数学文化传递中多思考,极少考虑如何通过活生生的数学教育,使学生从内心理解和全身心地体验数学的价值,其中包括:理解数学是模式的科学、是一个多元复合体、包含深刻的人文精神、审美情趣、有助于高层次的技术交流和创新等[9]。

兴趣是最好的老师,数学故事一定能调动学生参与的激情,数学游戏必然引发学生全身心地投入和深层次的思考,数学审美活动肯定能让学生获得强烈的心灵震撼,从而产生认知需求,引导学生进入数学王国,亲近数学,从而提高数学学习的动力。

3.数学的人文内涵能提升学生素质

人类历史上的科学与人文并未分离,而是密不可分的整体,中世纪的科学起源其核心是数学和哲学,数学与人文没有区分,因此数学内部天然地包含许多人文元素,数学是科学与文化沟通的纽带、是描述科学的语言、是大自然的记录密码,又是人文学科走向现代化的代表性工具、是社会发展无法取代的重要推动力。从根本上说,数学来源于现实生活,又始终高于现实生活。它促进人类社会的一切文明的发展与进步,它为人们日常生产、生活及科学、技术、经济、管理、医药等各方面工作提供方法和工具;数学为所有创新创造提供核心的思想、模型和方法。往往在社会、科学与技术发展的关键时刻,数学总能透过现象抓住本质问题,促进人类取得突破性进展;它对社会发展起着普遍、巨大的推动作用,对国家各方面的发展发挥基础性价值[10]。

众所周知,“知之者不如好之者,好之者不如乐之者”,趣味而益智的数学活动必然能引发学生学习的欲望,数学悖论能激发学生的认知冲突,数学历史轨迹能让学生陷入深思,数学问题解决能促使学生调动自己的潜能,数学广泛的应用价值能调动学生的好奇心。

数学教育能提升人的素质。数学教育完全可以通过数学的思想和精神,提升人的精神生活,培养既有健全人格,又有生活技能;既有明确生活目标、高雅审美情趣,又能创造、懂得生活的人,把传递人类文化的价值观念和伦理道德规范与传授数学知识有机结合起来,以实现人文教育和科学教育的充分融合。数学教育的人文价值体现在许多地方[11]。

三、《人文数学欣赏》课程的开设实践与课程简介

《人文数学欣赏》课程用数学课程中鲜活而生动的内容激发、影响学生的情感,用人文的力量打动学生调动其学习积极性,通过生产案例、生活事例渗透数学的思想、精神和方法,探讨数学与人文的交叉,引领学生欣赏数学、认识到数学的巨大应用价值。

1.开设《人文数学欣赏》课程的尝试

为了有效地提升学生的学习效果,我们学校根据学生各门学科的基础尝试通过分层次教学来让学生取得适合的教学进展,从而通过个性化的进步达到教学双方双赢的效果。通过走访与问卷调查学生,我们获悉部分数学基础特别差的学生对正常开设的数学课程兴趣很小,因为自己的基础不好而厌学,他们大部分认为数学对他们没有用,只要会加减乘除法就够用了,没有必要再学数学。现实的逼迫让我们走上教学探索的道路,从2007年开始我们尝试开设《人文数学》课程。

在广泛调研与征求意见的情况下,我们尝试进行数学课的改革。最早在几个数学基础比较差的初中二年级班级进行尝试,每周拿出一节课时间专门开设“开心数学”,由师生共同搜集查找与数学相关的素材资料,每节课由学生轮流几人上台讲解、表演,然后由教师点评,再补充相关知识——数学史、数学美学、数学民俗、数学文化、数学在生活中的事例等等[12]。

两年后,我们尝试在高一几个班级开设《人文数学课程》,用文化的力量影响学生,用美学因素调动学生情绪,用数学的应用价值推动学生提高学习兴趣。曾经有几个假期,我们布置学生特别的数学作业——回家乡采集测量土地、面积与其他日常用品体积的方法、工具以及数学在日常生活中的具体应用。学生带回来许多事例,活生生的素材让人大开眼界。

平时一有时间我们会有意识地深入其他人文学科的课堂(语文、英语、政治、历史、地理等),听听文科课程的涉及范围,从中受到不少启发。并且选取文科课的一些事例作为典型素材,尝试在数学课中借用,引发学生思考。这样形式的课不像是纯粹意义的数学课,而是综合许多人文知识与数学应用的“趣味课”。在传统观念看来,有些另类,但是学生却是格外地欢迎。我们还与人文课教师交流,把文科课的知识难点和实践走向了然于胸,尝试用数学思想与方法加以解决,学生从中充分体会到数学巨大的价值,深刻地领会数学的实践本性。这些才是活生生的“问题解决”[13]。

在此基础上,我们把我们几年来积累的素质加工成校本教材进行使用,通过教学实践进行取舍再加工,修改充实后出版,作为校本教材正式使用。

2.《人文数学欣赏》课程简介

(1)课程性质与目的

《人文数学欣赏》课程目前在我校是一门公选课,它向学生们展示了数学丰富多彩的文化性一面。它不是平时数学课上的概念、公式、计算和题海,而是数学的思想、方法和精神、价值。引导学生用审美的眼光来看待数学,走进历史长河,去回溯数学家的足迹;追寻多元视角下的数学文化,从中体会数学浓郁的人文主义精神。

《人文数学欣赏》课程主要是以数学史为载体渗透数学文化,以趣味数学为载体渗透数学思想,以数学应用为渠道传授数学精神,以数学美学为工具体会数学方法,以数学家及数学故事为途径感悟数学文化力量,以数学审美为动力进行数学欣赏,目的是提高学生数学素养。

(2)课程内容与安排次序

主要课程资源包含数学史、趣味数学问题、数学知识、数学家与数学故事,介绍数学思想、数学方法、数学精神、数学文化,以校本教材《数学乐读》、《数学物语》、《数学先知》、《数学神曲》等为蓝本选取合适的内容进行教学。

初一年级主要讲解趣味数学、数学小故事和知识,渗透数学思想,培养科学态度;初二年级主要讲解数学史、数学家故事,渗透数学方法,训练科学方法;初三年级主要讲解数学美学、数学问题,渗透数学精神,培养科学精神;高一年级主要讲解数学应用案例,渗透数学文化,培养科学观念;高二年级讲解数学哲学,进行数学美学欣赏与数学研究性学习,完成数学小论文课题。

(3)教学原则

①理论联系实际原则。以数学史、趣味数学问题、数学家及数学故事、数学知识为载体,重点渗透数学思想、数学方法、数学精神。

②直观性原则。涉及的数学知识不要过深,以能讲清数学思想为准,使各专业的学生都能听懂,都有收获。

③启发性原则。通过美学欣赏的方法让学生学会思考,通过案例剖析让学生学会解决实际问题。对于数学的历史、现状和未来,都要有所涉及。

④趣味性原则。通过趣味知识让学生开阔眼界,纵横兼顾,每讲要穿插一定的古今中外的趣味数学名题,既是消闲娱乐,又是学习思考。有助于活跃课堂气氛、启迪学生心智。

⑤以点带面原则。不要求系统性,只要求教学时要科学性、人文性、可接受性。论点集中,论据充分,并且有血有肉,既有知识性,又有思想性,还有趣味性。

⑥科学性、人文性和可接受性结合的原则。总之,选材要贯彻素质教育的思想,既要着眼于提高学生的数学文化素质,又要着眼于提高学生的数学审美情趣。

3.教学方法

(1)师生合作探究法

每讲基本上是互不相关的,可以独立成篇、集中地讲授一个内容,并且围绕这一内容展开其中的数学文化。从每一讲的角度看数学文化,是不系统的,但它们的总和又体现了数学文化的系统性。

(2)媒体整合展示法

论点集中,论据充分,并且有血有肉。选材合理生动,浅显易懂,语言幽默趣味,渗透思想方法。比如在第四讲中对于数学在哲学中的应用,学生感到不理解,因为他们对于哲学的理解不深刻,对历史上哲学与数学起源的早期没有经验,我们就从网上找到一些资源制作成为电子投影展示给学生看,从特定的年代背景来理解此时的科学与技术存在情况,使学生慢慢地用材料来体会数学的厚重。

(3)启发讨论法

对于有些内容,比如数学文化内容、数学与文化文明、文学的关系,相对来说难度较小,与学生联系比较紧密,每个学生都会从自己角度进行理解。这时我们就改变教学方法,调整教学进程,进行研究性、探究性学习,开放教学形式,让学生真的参与教学,进行个人活动和个性化理解。比如布置小论文,写读书笔记和感受。对有的内容注重平等的讨论交流,深入浅出,让师生共同研究,引导学生参与读书、实践、调查研究,共同解决问题。设计研究性、探究性问题,既有知识性,又有思想性,还有趣味性,培养合作精神。

参考文献

[1] 陆广地.数学课程价值学生错觉纠正教学探究.江苏五年制高职教育,2012(2).

[2] 陆广地.对数学课改革的思考.职业技术教育,2007(12).

[3] 课题组.江苏五年制高职数学课程标准.苏州:苏州大学出版社,2011。

[4] 刘洁民.数学与现代社会.学科教育,1999(1).

[5] 梁剑.现代数学思想推进社会发展的哲学意义.长春师范学院学报,2006(2).

[6] 高宏.数学与社会进步之关系.现代技能开发,2002(12).

[7] 邓东皋,孙小礼,张祖贵编译.数学与文化.北京:北京大学出版社,1999.

[8] 张秀英.试论数学的作用与魅力——以经济学科为例.高等理科教育,2005(5).

[9] 易南轩.数学美拾趣.北京:科学出版社,2004.

[10] 谈祥柏.乐在其中的数学.北京:科学出版社,2005.

[11] 彭翕成.数学与文学.职教论坛,2002(4).

篇4

摘 要:数学作为一种文化,是人类思维的产物,被视为一种创造性的活动。数学文化既对数学教师及教学具有重要意义,又对学生学习数学有启迪作用。本文围绕数学文化在数学教育中的科学价值、应用价值、人文价值展开研究,探讨数学文化在数学教育中价值的体现。旨在通过数学文化的熏陶,帮助学生培养热爱数学知识、自主进行数学技能训练,逐步将知识、技能内化为一种数学性格,生成良好的数学素养。

关键词:数学文化;科学价值;应用价值;人文价值

中图分类号:G632 文献标识码:B 文章编号:1002-7661(2013)28-188-01

数学是人类的一种文化,体现数学教育的价值,成为数学课程改革的基本理念之一。新的课程改革促使我们再一次来反思数学教育中的文化价值体现,数学应该作为一种文化走进课堂,渗入实际数学教学,努力使学生在学习数学过程中真正受到文化感染,产生文化共鸣,体会数学的文化品位。这就是要求数学学习的内容在范围、题材和呈现方式上更多地反映社会现实,联系学生生活实际以及数学的现实和历史,让数学课堂充满生命活力。如何让数学文化的价值融入中学数学课堂?以下是我在实践中进行的一些探讨。

一、数学文化的“科学价值”――通过数学文化丰富数学课堂,激发学生学习数学的兴趣

“数学原本是有趣的。作为一名学生,不以这样的心情去学习是学不好数学的。作为一位教师不能激发起学生的学习兴趣,就不是好老师。”兴趣是推动学生学习的内在动力,它决定着学生能否积极、主动地参与学习活动。在新的教育理念下,培养学生学习数学的兴趣,使其变被动学习为主动学习已成为数学教学的目标之一。

(1)在数学教学中融入数学史充实教学内容。数学史是研究数学概念、数学方法和数学思想的起源与发展的一门学科。它记载了各时期数学家的数学成就及各种数学研究的思维方法。例如被开普勒誉为几何学两大法宝之一的勾股定理在古代中国、希腊、印度、阿拉伯以及近现代欧洲都有证明,其中毕达哥拉斯、欧几里得、赵爽(3世纪)、刘徽(3世纪)等人的证明方法都非常精彩,完全可以引入课堂教学。

历史上利用几何图形证明数学公式的方法更是妙不可言,将其引入课堂教学,不仅能够帮助学生直观地理解数学公式,还能使他们感受到数学的美。

在教学中,教师若能适当将数学史有机结合于教学,便能使课堂教学丰富多彩,使学生的思维得到启迪,能力得到更好的训练。

(2)插入数学家的故事或数学名题等活跃课堂气氛

许多学生不喜欢数学是因为他们觉得数学课枯燥无味。如果我们在数学课堂上能适当插入数学家的故事或数学名题,不仅能活跃课堂气氛,激发学生学习数学的兴趣,还能使学生在轻松愉快的学习中扩展知识面,更重要的是促进了学生的数学思想水平的提高。

同时,还可以布置一些与教材内容相适合的阅读材料,拓宽学生的知识面,培养学生学习数学的兴趣,从而改变学生旧有观念。如:学习解析几何前,让学生阅读笛卡尔生平;在学习勾股定理时,让学生阅读毕达哥拉斯定理的发现,以及中国古代的弦图等。

二、数学文化的“应用价值”――通过数学文化培养学生“用”数学的能力

数学活动是培养学生“用”数学的能力重要途径。《数学课程标准》中关于数学教学活动是这样要求的:教师要向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流过程中真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动的经验。因此,学生在老师的指导下所进行的以拓展数学知识、培养数学能力、提高数学素养为目的数学活动,可以引导学生更好的体验数学、理解数学、运用数学,激发他们的创新意识,培养他们科学探索精神,启迪科学思维,开拓知识视野。开展数学活动的方法与途径主要有以下几种:

(1)开展数学讲座和数学竞赛。

(2)创办学生自己的刊物。

(3)进行初步数学建模实践活动。

(4)进行数学小论文评比。

为什么要开设数学课?也许最简单的一个理由就是“有用”。正如“学以致用”是我们一直所倡导的。有些教师理解数学在实际生活中的应用,常常是干巴巴的几道应用题,所选题材也常常让学生感觉数学距生活依然遥远。我们强调应用是要培养学生用数学的意识,学会用数学的理论、思想和方法分析解决其它学科问题和生活、生产实际问题,真正体现数学的应用价值。

三、数学文化的“人文价值“――通过数学文化实现数学教育的德育功能

数学作为一种文化,其重要性不仅在于它与其它学科有着重要的联系,以及它在社会实践中有着广泛应用,更重要的是数学的学习能训练人的思维,完善人的个性品格。数数学教育作为学校教育的重要组成部分,以它独特的风格,承担着德育的任务。

(1)爱国主义教育。从《九章算术》到《陈氏定理》,都是极具说服力的史料,都是向学生进行爱国主义、民族自尊、勤奋自强的思想教育的好素材。中学数学课本中多次涉及数学家、数学发现、数学方法等方面的内容,并以习题、注解、课文、附录等多种形式出现。这些内容都是进行爱国主义教育的生动素材。例如:刘徽的“割圆术”,祖冲之的“圆周率”,杨辉三角,华罗庚教授发起、推广的优选法等。这些真实典型的数学史实不仅可以激发学生强烈的爱国热情和民族自豪感,而且也激励起学生学习的进取精神。

(2)辩证唯物主义教育。教材内容中充满了辨证唯物主义观点,教师可利用教材中极其丰富的辨证唯物主义内容,有的放矢的对学生进行辨证唯物主义教育,运用此观点、立场和方法传授知识,有助于学生形成科学思维方式和正确的世界观。如“已知与未知”、“相等与不等”、“有限与无限”、“分析与综合”等都充满着“对立与统一”的辨证关系。

(3)个性品质方面的教育。数学精神是指在数学发展过程中凝结并体现出来的人类精神。数学教育必须充分揭示数学与人类文化的联系、数学精神与人类精神的联系,方能达到其应有的德育功能,培养学生的个性品质。数学精神主要包括以下几个方面:数学的理性精神;数学的求真精神;数学的创新精神;数学的合作精神。

四、对“数学文化“的思考

新一轮课程改革无疑是对传统数学教学的挑战,从理念到内容,从方法到模式,蕴含着古今中外杰出数学人才成长史、数学演变史、数学思维发展史。。在中学数学教学中渗透数学文化,进行数学愉快教学,让学生学会体验、欣赏数学,是中学数学教学必须承担的任务。

作为一名新形势下的数学老师,对数学文化的研究应该更加深入。在平时的教育教学中,合适而巧妙地让数学文化走进课堂,渗透到实际数学教学中,充分体现数学文化的科学价值、应用价值、人文价值,让学生在学习数学过程中寻求数学进步的历史轨迹,激发对于数学创新原动力的认识,真正受到文化感染,产生文化共鸣,体会数学的文化品位。当数学文化的魅力真正渗入教材、到达课堂、溶入教学时,数学就会更加平易近人,数学教学就会通过文化层面让学生进一步理解数学、热爱数学,进而领会数学的美学价值,从而提高学生的数学素养和创新意识。

参考文献:

[1] 张维忠.王晓勤等.文化传统与数学教育现代化.北京:北京大学出版社.

[2] 郑毓信,王宪昌,蔡 仲.数学文化学.成都:四川教育出版社.

[3] 尹德霞.中学数学教育实践中的数学文化案例探究.首都师范大学教育硕士学位论文.

篇5

如今生活中随处可见各种图形图表、数据分析、逻辑推理等与数学相关的信息,大到GDP、CPI,小到房贷车贷、投资收益、商城折扣、时间估算等,这就需要我们用数学知识对现实问题进行分析、推断并提出解决办法,也就是说需要我们具备一定的数学素养。我国研究者曾选取与人民日常生活紧密相连的十几份报刊杂志作为获取数据信息的基本来源,了解人们日常生活中的数学。研究表明:[1]大数和百分数以相当高的比例出现在经济、科技、政治、生活的新闻和广告中,这说明在以商品经济为主和科技日益发展的社会中,信息的传递和交流更多的是定量的。[2]图形图表,尤其是各种各样的统计图表、统计表(如直方图、扇形统计图以及一些形象的统计图)出现较多,它们以清楚、明了、信息量大、对比度强等特点出现在报刊中。[3]与生活相关的报道以及广告中的数学内容很多也很丰富。在广告中,这些内容多与保险、房地产、储蓄、旅游等行业有关,如,方位图、直方图、数学术语、公式等。在一些报纸甚至出现了比较复杂的数学表达式(主要是代数式)。以上事实说明,不管我们愿不愿意,数学已经渗透到我们生活中的各个角落,数学在社会生活中的广泛应用需要公民具有一定的数学素养。数学素养是指主体在已有数学经验的基础上,在数学活动中通过对数学的体验、感悟和反思,并在真实情境中表现出来的一种综合性特征。数学素养可以通过数学知识素养、数学应用素养、数学思维素养、数学思想方法素养和数学精神素养等来分析。数学文化素养是指个体具有数学文化各个层次的整体素养,包括数学的观念、知识、技能、能力、思维、方法、数学的眼光、数学的态度、数学的精神、数学的交流、数学的思维、数学的判断、数学的评价、数学的欣赏、数学价值取向、数学的认知领域与非认知领域、数学理解、数学悟性、数学应用等多方面的品质。从数学素养、数学文化素养的内涵可以看出在数学素养的各个组成部分中或多或少都有数学文化素养的表现特征,所以对数学文化素养的研究可以借鉴数学素养的研究,而对数学文化素养的研究又有助于对数学素养的理论研究。目前国内外对数学文化、数学素养的研究较为成熟,但对数学文化素养的研究较少。应用技术型大学是我国近几年才提出的一种办学理念,在2013年6月由35所地方本科院校发起的应用技术大学(学院)联盟,地方高校转型发展研究中心才成立。将应用技术大学在校生作为数学文化素养的研究对象是一项开创性的工作。

2数学文化素养的研究现状

2.1国内外对于数学文化的研究现状数学是一种文化现象,一直以来都受到人们的普遍重视,但数学文化这种特殊的文化形态却一直没有被人们所重视。一直到20世纪的下半叶,美国著名的数学史学家M.克莱因在他的三本著作《古今数学思想》《西方文化中的数学》《数学———确定性的丧失》中对数学文化进行了系统地,见解独到的阐述。1981年美国著名学者怀尔德在其代表作《数学是一个文化体系》中指出:数学文化的发展己经到达一定的高度,被认为可以构成一个独立的文化系统。数学文化,是数学作为人类认识世界和改造世界的一种工具和能力,是数学与人文的结合。随后引发了对数学文化内涵界定的广泛关注。国内最早使用“数学文化”一词的学者是北京大学的邓东皋、孙小礼等人,他们在1999年合作编写了《数学与文化》一书,书中汇集了一些数学名家的关于数学文化的论述,该书是从自然辩证法的角度对数学文化进行了研究和思考。在这十几年中许多著名的学者李大潜、张奠宙、张顺燕等都从不同的角度发表了自己对数学文化的界定与理解。张奠宙认为数学是一种文化现象,并从文学、语言学和美学方面解释了数学是一种文化。李大潜从数学的知识性、工具性、基础性、科学性、技术性以及数学的语言等方面论述了数学是一种先进的文化,进而讨论了通过数学的训练,可以获得的数学素养并对数学文化教学提出了一些有益的建议。张顺燕在文化背景下的数学教学提出了实现四结合:历史与逻辑想结合、数与形相结合、理论与应用相结合、科学理论与方法论相结合,培养四种本领:以简驭繁、审同辩异、判美析理、鉴赏力的数学教学建议;并从数学与教育、数学与文明、数学与艺术三个方面论述了数学文化进行了论述。还有蔺云、胡良华、陈晓坤、黄秦安等人也对数学文化进行了相关的讨论。

2.2国内外学者对数学素养的研究现状数学素养的提出最早源于1982年英国的“学校数学教学调查委员会”编写的《考克罗夫特报告》(原名((Mathematicalcounts))。《报告》指出数学教育的根本目的是为了满足学生今后的成人生活、就业以及学习的需要。《报告》阐述了为满足这三种需要,学校数学的课程内容和教学方法;论述了进行良好的数学教学所需的多种条件和支持。《考克罗夫特报告》报告以后,立即引起了全世界的关注:提高学生的数学素养以便满足学生成人生活的需要成为各国数学教育改革的趋势,进而引起各国关于数学素养的评价研究。随后对数学素养的研究多是从数学素养的内涵、数学素养的生成策略、数学素养的评价这几个方面展开。由国际经济合作与发展组织组织(简称OECD)进行的国际学生评估项目(PISA)旨在评估OECD成员国15岁学生在阅读、数学及自然科学方面的知识、能力和技巧,以及跨学科的基础技能,希望了解即将完成义务教育的各国初中学生,是否具备了未来生活所需的知识与技能,并为终身学习奠定良好基础。通过国际间的比较找出造成学生能力差异的经济、社会和教育因素,从而进一步为各国改善自身的教育体制提供必要的参考指标和数据。PISA每三年将进行一次评价。2000年PISA评价中,阅读素养是主要领域,2003年数学素养是主要领域,2006年科学素养是主要领域。PISA把数学素养定义为:个人能认识和理解数学在现实世界中的作用,作为一个富于推理与思考的公民,在当前与未来的个人生活中,能够作出有根据的数学判断和从事数学活动的能力。数学素养包括:数学思考与推理、数学论证、数学交流、建模、问题提出与解决、表征、符号化、工具与技术八个方面。国际成人素养调查(IALS)中,把数学素养的概念建立在工作需要、不断扩展的生活需要、教育的需要、研究的需要和一些评价项目(如成人评价和学生评价)等五个方面。另外各国都在自己的课程标准中对数学素养提出了一定的要求。我国学者对于数学素养具体内涵的认识具有以下几种代表性的观点:(1)数学素养是一个广泛的具有时代内涵的概念,它包括逻辑思维、常规方法(符号系统)和数学应用三方面的基本内涵(孔启平)。(2)数学素养是数学科学所固有的内蕴特性,是通过教育培养赋予的一种特殊的心理品质和数学知识、数学能力与数学素养的关系这两个前提出发,认为数学素养涵盖创新意识、数学思维、数学意识、用数学的意识、理解和欣赏数学的美学价值五个要素(王子兴)。(3)文化的角度认识数学,理解数学,认为数学素养应包括以下几个方面:基本的数学知识;基本的数学技能;数学思想方法;数学应用意识和数学美学价值的欣赏。这几个方面彼此联系,互相渗透(张亚静)。(4)数学素养是在数学价值、数学方法、数学思想、数学精神的交替作用下生成的。数学素养的生成是通过不断反省而改善的,是一个长期反复、螺旋上升的过程。数学素养具有内隐性、超越性、长效性和反省性四个特征。数学素养的构成要素是数学“思维块”、数学方法、数学思想以及数学人文精神(全)。在数学素养的培养策略问题上,主要是一些一线数学教师通过了其具体的教学归纳总结。全对小学生数学素养的培养策略从联系生活实际、关注学习过程、重视实践应用三个方面阐述了具体的培养策略。王荣和罗铁山在教学中认为培养和提高学生的数学素养关键要提高教师素质,树立正确的数学观、教育观;在数学教学中要突出基本的数学思想和数学方法,重视数学语言的运用,从而达到用好数学的目的。潘小明分别从数学活动的视角和全球教育的视角对数学素养的培养进行了分析。目前我国还没有对数学素养进行专门的评价,不过已经有很多学者关注并提出建议。如黄华对比了上海数学中考对学生数学的测试和PISA对数学的测试,认为中考不仅可以对学生学习数学的成绩认定,而且可以诊断数学教学的问题,改善数学课程的教学。上海的数学中考应该参照PISA的测试,对其稳定性、一致性进行分析和研究,进而反馈、诊断和改进,从而较为准确的判断中学数学学业水平的发展趋势,并从中找寻原因、总结经验教训、改进实际教学。马云鹏认为数学素养评价最终还是为了提高学生的数学学习,改善其学习方式。从课程目标、学生学习的角度,提出数学素养的评价要有利于促进数学教学全面落实课程标准所给出的课程目标,通过评价的反馈和诊断可以使学生改善自己的数学学习方式,从而提高他们学习数学的效果,通过有效地评价可以全面了解学生的数学素养的整体水平。

2.3国内学者对数学文化素养的研究现状数学文化素养是伴随着数学文化的发展而产生的一个新的词语,目前对数学文化素养的界定学者间的看法不尽相同,因此对数学文化素养的研究还不够深入,对数学文化素养的研究成果还比较少。周家全等在《论数学建模教学活动与素质培养》中提到“数学文化素质是指树立正确的数学观和数学信念,掌握数学的思想和方法。懂得数学这门科学的语言,会使用数学软件和计算机这一工具。”张明明在其硕士学位论文《高师院校数学与应用数学专业学生数学文化素养的现状调查与分析》中,指出数学文化素养数学文化素养是数学素养的一个分支,是指个体具有数学诸多方面的品质,包括数学文化各个层次,以及对人类文明进步具有深远影响的数学科学知识的方方面面。杨海艳在《数学专业大学生数学文化素养的调查研究》中认为:数学文化素养是指人们对数学文化的认识,从而使人们具有数学的思想、精神、方法、观点、语言和能力等数学文化多方面的品质。还在文中对培养大学数学文化素养的途径进行了阐述。

篇6

1.数学阅读是数学课程改革的需要当前我国的基础教育课程改革正在如火如茶的进行,高中数学标准(试验)中明确指出学生的数学学习活动不应只限于接受、记忆、模仿和练习,高中数学课程还应倡导自主探索、动手实践、合作交流、阅读自学等学习数学的方式,①让学生通过不同形式的自主学习、探究活动,体验数学的“再创造”过程以及数学发现和创造的历程,发展他们的创新意识,让学生的数学学习活动成为一个生动活泼的、主动的和富有个性的过程。所以“数学课程以及教学承担起更重要的责任:重新认识并着力改变学生的学习方式,使他们在数学课程中学会学习,以适应终身学习的需要。”②然而阅读是自学的基础,要教会学生学会学习无疑要先从阅读做起。此外,新的课程标准强调,通过对数学的学习,使学生“具有一定的数学视野,逐步认识数学的科学价值、应用价值和人文价值”。③数学是人类文化的重要组成部分,通过数学阅读可以传承数学文化、欣赏数学文化、研究数学文化、体悟数学文化、创造数学文化。

2.数学阅读是“社会数学化”的需要在知识经济时代,随着社会的进步,科学技术突飞猛进的发展,现代人要想在信息社会中应付自如、准确获取信息、表达自己的思想,仅凭一般的语文阅读能力已经远远不够。如今,数学已渗透到人们工作和生活的各个方面:在每天的电视、报纸、网络等媒体中,经常不可避免的看到一些与数学有关的符号、图表,如产品说明书、股市走势图、银行利率表等。对这些信息的理解、把握和灵活运用,都需要具备较高的数学阅读能力。但是,随着“知识年龄”的增长,学校数学教学内容不断增多的同时,“知识老化”的现象也在加快。正如苏联教育家赞科夫所说:“无论教学大纲多么完善,学生在毕业后必然会遇到他们所不熟悉的科学上的新发现和新技术,那时候他们将不得不独立地、迅速地弄懂这些新东西并掌握它”④。所以学生在学校所学到的知识,到走向社会时真正能用得上的就已经不多了。所以,为了适应未来科学数学化和社会数学化的发展,当代社会对①中华人民共和国教育部.普通高中数学课程标准仁M.北京:人民教育出版社,2003.②刘兼,孙小天.数学课程标准(试验稿)解读【M〕.北京:北京师范大学出版社,2002.③中华人民共和国教育部.普通高中数学课程标准[M].北京:人民教育出版社,2003.④胡继武.现代阅读学[M].广州:中山大学出版社,1991.西南大学硕士学位论文导论人们的阅读能力要求,以不再仅仅是一般的语文阅读能力,而是包括数学阅读能力在内的综合阅读能力。

3.数学自身的语言特征对数学阅读的要求数学史学家克莱因曾指出:“数学另外一个重要的特征是它的符号语言,好比音乐利用音符来代表与传播声音一样,数学也利用符号表示数量关系和空间形式,与日常讲话用的语言不同,日常语言是习俗的产物,也是社会和政治运动的产物,而数学语言则是有意的、谨慎的而且经常是精心设计的”①。数学语言是数学知识的载体,也是数学思维的工具。学生学习数学的过程,就是数学语言不断内化的过程。从一定意义上讲,数学语言能力的高低决定了数学学习水平的高低,因此,数学语言掌握的多少、好坏,运用的是否自如、熟练,对数学学习都有着重要意义。然而语言的学习是以阅读为基础的,所以数学的学习更应该以阅读为本。但是数学阅读在实际数学教学中并未受到应有的重视。学生对教师布置的阅读作业却是蜻蜓点水、草草而过,既没有领悟阅读内容的实质,也读不出自己的见解和问题。他们认为读书就等于浪费时间,不如多做几道题目练习。然而在真正解决问题的时候,又常常表现出对题目中所给的符号意义不理解,读不懂题目;对图形或是图表中的隐含的信息不能正确识别、挖掘;对数学语言所包含的三种语言之间不能自如的进行转换;不能组织恰当的数学语言来表达、描述自己的思维过程等困难。综上所述,关注数学阅读教学中存在的问题,分析其原因,提出改进和完善的具体措施无论是对良好的数学语言系统的建立还是对数学阅读能力的提高都具有十分重要的意义。

篇7

(一)调查对象

本校中学部十名数学教师及本年级六个班的220名同学,其中119名男生,101名女生.

(二)调查数据分析

教师问卷调查数据分析:

1.你了解数学史吗?非常了解10%,基本了解80%,稍微了解10%.2.你在平常的教学中渗透数学史吗?经常渗透20%,偶尔渗透80%,从不渗透0%.3.你觉得数学史融入课堂教学有必要吗?非常有必要20%,必要70%,没必要10%.4.你认为将数学史融入数学课堂教学这项工作实施最困难的原因是什么?考试不考,课程标准没有明确提出40%,日常教学任务重,教学时间紧张50%,初中生年龄太小,渗透数学史没必要10%,其它0%.学生问卷调查数据分析:1.你了解数学史吗?非常了解0%,基本了解0%,稍微了解63.29%,不了解36.71%.

2.你的老师在平常的教学中渗透数学史吗?天天渗透0%,经常渗透15.94%,偶尔渗透55.90%,从不渗透28.16%.3.你觉得老师将数学史融入课堂教学有必要吗?非常有必要27.27%,有必要60.45%,随便10%,没必要2.28%.4.你认为将数学史融入平常的课堂教学,起到的作用中最重要的是什么?更加激发自己学习数学的兴趣35.27%,加深了对数学概念的理解,更能从本质上了解数学15.60%,拓宽视野,全方位的认知和理解数学20.65%,提高数学文化修养,形成良好的数学素养23.44%,其它5.04%.

(三)由数据总结出的结论

大多数教师,意识到了数学史的有用之处,但是碍于现在一线教师的教学升学压力,无法将数学史在日常的课堂教学中很好地渗透.而学生对数学史引入课堂持积极、欢迎的态度.他们认为这样一来能够增强数学教学的有趣性,改变以往数学教学的呆板、枯燥的状态;二来有助于自己全面了解数学,提高自己的数学文化修养,来增强自己的数学素养.由此可见,我们多数的数学教师,只是把自己定义为一名数学知识的传授者,而没有把自己定位成数学文化的传播者.我们忽略了教育本身的实质,也误解了数学这门课程设置的意义与目的.教育的实质是通过发展人,来发展社会.而数学课程的设置从宏观上来讲也是为了发展人,从微观上讲是为了培养人的思维,发展人的技能与能力.数学史恰好就是一部数学思想方法发展史,它记录了人类在数学方面思维进程的记录,学习数学史,实质就是继承前人优秀的数学思想.美国数学史家M•克莱因说过,“数学是一种理性的精神,正是由于这种精神,激发、促进、鼓舞并驱使着人类思维得以运用到最完善的程度”.

二、实施过程的三个注意点

1.适合的才是最好的

数学史的引用最忌生搬硬套,脱离实际教学.我们应该学会见缝插针,要将数学史的知识与自己所传授的知识有机结合起来,这样才能起到辅助教学的目的.

2.切勿喧宾夺主,本末倒置数学史的引用,是为了辅助课堂教学,是加餐而非正餐.每节课我们都有教学目标,教学任务.我们不能因为为了渗透数学史,而耽误日常的课堂教学.我们应该把数学史的渗透当成常态化的任务在课堂教学中实施,不急于一次,也不急于一时.

3.多环节渗透很多数学老师误以为,渗透数学史,就是在课堂引入的环节,介绍相关的数学家及故事,如同语文中的作者及写作背景一样,亦或者在涉及到有关解法时,介绍前人的一种思想.数学史应该是通过适当的手段,应用于我们教学中的多个环节.

三、对数学史融入数学课堂教学的展望与设想

将数学史融入初中的课堂教学,这是以后数学教学发展的趋势,也是实施素质教育的体现.数学教育的目的是通过培养使学生养成一定的数学素养,来起到发展人,乃至发展社会的目的.如何将数学史较好的融入我们的课堂教学,我相信这是我们从事数学教学人的责任与义务.在此,我有一些设想与建议.

(1)在以后的教学中,每天给学生欣赏一条关于数学的名人名言,可以是关于数学概念、数学本质、数学方法、数学思想等等的.

(2)每周开辟一节课,讲学生感兴趣的又可以启迪思维的数学史内容,以趣味性、启发性的故事,去感染学生,真实地让学生感受到数学有趣、数学有用.

(3)开展数学文化艺术节,通过学生阅读数学史书籍,或举办数学故事演讲比赛、数学文化知识竞赛等活动,让学生接触到更多的数学文化知识.

篇8

关键词:融合;数学文化;创新人才培养;探究式教学法

著名数学家米山国藏曾指出:“数学的精神、思想、方法是创造数学基础、发现新的东西,使数学得以不断向前发展的根源。”作为一名数学教育学家,他深深体会到,学生们在校所学的数学理论,若毕业后进入工作岗位没有机会直接使用,可能不到一两年,就淡忘了。“然而,不管他从事什么业务工作,唯有深深铭刻在头脑中的数学精神、数学思维方法、研究方法、推理方法和着眼点等(若培养了这方面素质的话),却随时随地发生作用,使他们受益终生。”

一、当前大学数学教学中存在的问题

大学数学教育的目标不仅在于为学生传授一种数学基础知识,更重要的在于引导学生掌握一种科学的语言,全面实施素质教育,倡导探究式教学法,探索科学基础、实践能力和数学素养融合发展的创新人才培养模式。

当前大学数学教学中存在的问题:第一,在教学内容方面,往往是论证推理多,思想方法少,其结果,割裂了数学与经济等其他学科的相辅相成以及相互为用的关联。第二,在教学方法方面,过分偏重于逻辑演绎的训练。第三,在教育理念方面,忽视了数学课程内容的基础支撑作用与其设置的科学意义与价值,进而也就忽视了对学生科学探索精神的引导与鼓励[1]。第四,在课程成绩评价方面,基本上采用的都是闭卷笔试,更多的学生把解题训练作为学好数学,获取高分的途径。

二、融数学文化于创新人才培养

1. 必要性

(1)为什么说数学是文化。李大潜院士撰文指出:“在精神及意识形态层面上,够得上称为文化,特别是够得上称为先进文化的,应该在下面的两个方面均有所体现:一是在深化人类对世界的认识或推动人类对世界的改造方面,在推动人类物质文明和精神文明的发展中,起过或(和)起着积极的作用,甚至具有某种里程碑意义的;二是在这一历史进程中,通过长期的积累和沉淀,自觉不自觉地转化为人类的素养与教养,使人们在精神与品格上得到升华的。”[2] 数学在人类文明的进程中一直是一种先进的文化。这是因为,首先,人类历史上每一个重大事件的背后都有数学的身影:哥白尼的日心说,牛顿的万有引力定律,爱因斯坦的相对论,孟德尔的遗传学,巴贝奇的计算机,马尔萨斯的人口论,达尔文的进化论,达・芬奇的绘画等都蕴含着数学思想与方法[3]。A.N.Rao指出:“一个国家的科学进步可以用它消耗的数学来度量。”其次,数学是一种科学的语言。它科学地描述了物质世界,正如数学家伽利略说:“大自然这本书是用数学语言写成的……天地、日月、星辰都是按照数学公式运行的。”第三,数学引领着、推动着人类文明的发展历史,深刻地变革着物质世界。可以这样说,没有任何一门科学能像数学科学这样泽被后人,全人类都在尽情地分享数学文化的恩惠。第四,数学科学表现了一种前所未有的探索和创新精神,它把理性思维的功能发挥得淋漓尽致,它提供给人们的不仅仅是一种思维模式,还是一种有力的探索物质世界的工具和武器[4]。

(2)数学文化的含义。“数学文化”的内涵是指数学思想、数学方法、数学精神以及它们的形成和发展;广泛些说,还包含数学发展史、数学家、数学美、数学与各种文化的交融,等等[5]。

史宁中教授在《数学思想概论》中指出:“数学思想是指数学发展所依赖的、所依靠的思想,其本质上包含有三个:抽象、推理、模型。其中抽象是最核心的,通过抽象,在现实世界中得到数学的概念与运算法则,通过推理得到数学的发展,然后通过模型建立数学与外部世界的联系”。因此,领会了数学思想,也就领悟了数学的精髓。数学方法是数学思想的一种具体体现。数学精神是指在数学发展的历史中孕育形成的,数学科学本身所具有的人文社会价值的本质特征,以及一代代数学家所集中体现的一种坚忍不拔和孜孜以求的精神[6]。正是这种精神,才能使数学思想与数学方法完整彻底地贯彻于研究的全过程,而最终取得成就。

(3)融数学文化于创新人才培养模式的必要性。数学文化传承数学思想、倡导数学方法、推崇数学精神,彰显的是文化与理性的交融。我们将在文化这一更加广阔的背景下探讨数学的历史沿革与发展、数学思想、数学方法、数学精神以及数学的实践应用与价值。让数学文化架起一座沟通的桥梁,从历史的、文化的高度纵观数学理论的完整体系与其和谐。

2. 实践举措

(1)融“数学发展史”于数学教学中。数学发展史始终凝聚着理性探索与现实需要两种力量,通过它,学生既能体会到社会进步对数学发展的推动作用,又能认识到数学发展对社会文明的促进作用。它不仅介绍如何分析问题、阐述怎样提出问题,而且诠释怎样解决问题,从中学生还能感受到数学家的情感、操守、品德和人生观[7]。数学可以给我们知识,但数学发展史可以给我们智慧。

(2)融“数学思想与数学方法”于数学教学中。首先,要学好数学课程,毋庸置疑应掌握它所包含的数学思想。既要理解相关概念和性质,又必须把一系列的定义和定理科学地融合在一起,从整体上把握知识体系,融会贯通地领悟贯穿于课程中的数学思想。其次,数学思想是通过数学方法来实现的,每门课程所蕴含的数学方法提供了构筑相应理论框架的主要工具,从猜想的形成、分析的展开,到计算、推理的实施、提炼、拓广的升华,数学方法在解决问题的过程中处处体现着自身的价值。因此,要学好数学,就必须领会思想、掌握方法[8]。

透过数学文化,学生既可以把多年来学习的数学理论上升到思想和方法的层面上,又可以从文化和理性的角度反观数学发展的脉络。

(3)融“数学理论与方法”于金融应用教学中。数学在经济领域的作用正由辅向主导性转变[9]。学生们迫切需要了解诸如:金融研究的核心问题,数学方法在金融中的应用,金融专业应该掌握的数学理论方法,等等。

(4)融“数学建模”于数学教学中。世间的事物一旦可以用数学模型去表示,那就给我们提供了解决问题的途径与可能。正是数学模型,奠定了现代科学成功的基石。引导与培养学生树立建模思想,就是要让他们学会扬弃具体事物中的一切与研究目标无本质联系的其他各种属性,而把研究对象间的关系变成制约在一种纯粹状态下的数量关系与结构[10]。

(5)融“数学实验”于数学教学中。数学实验就是利用计算机软件系统作为实验平台,以数学理论为实验依据,以数学模型为实验对象,以验证性实验、设计性实验、综合性实验为主要实验方法,辅助数学教学为实验目的的一种上机实践活动。通过数学实验,学生可以将所学的数学理论、数学模型和数学软件三者有机地结合在一起。

(6)融“探究式教学法”于数学教学中。所谓探究式教学法就是教师依据教学内容设置思维情境,以科学研究和实践创新为主导,引导学生以探究为基础的一种教学模式。从把学生作为知识接受者转变为引导学生成为主动探究者,这是教学模式的变革,也是教育理念的转变。寓教学内容于思维情境之中,就是使抽象的数学理论更为直观、生动与鲜活,激活学生的兴趣。寓教于研,就是使学生在润物细无声之思维情境中开发创新意识与创新思维。

(7)开发课外教学基地。为学生提供在合作性环境中进行探究式学习的机会。教师可依据课程进度,围绕着能开阔学生视野、引发兴趣设计研讨主题、布置案例、向学生推荐与课程相关的学术期刊论文以及一些著作中的相关章节,旨在引导学生依据自己的兴趣进行研讨、阅读与探究,逐步树立科学研究意识,逐步形成科学研究能力,以使课堂上所学的理论得以提炼、拓广与升华,使探究式教学法在课外得以延续与伸展。

(8)改革课程成绩教学评价机制。好的评价模式不仅引领教学改革的方向,把握教学改革的脉搏,而且也可以促进与深化教学改革的跟进与发展。学生成绩可由下面各项成绩综合评定:出勤5%+(作业+讨论题)15%+数学实验5%+读书报告(课程论文)5%+(随堂测验+期中测试)10%+期末测试60%。

三、在大学数学教学中探索创新人才培养模式的思考

(1)关于创新人才培养模式的定位。首先,学科交叉是当今科技领域发展的主要趋势,真正有良好数学基础的经济人才应是受社会相关领域欢迎与认可的。因此,更应强调数学学科与经济等学科的深度融合,即将数学的通识基础与专业理论协同并进与发展。其次,以探究为基础,寓教于研,将数学的理性思维与经济模型思维相结合才是未来经济专业发展的关键。

(2)关于创新人才培养模式的构建。实施导师制、小班化、个性化和国际化。第一,导师制就是鼓励教师参与到学生的学业与自身成长的全过程。第二,小班化是提高教育质量和注重学生个性化发展的基本保证,也才能着实将探究式教学方法改革落地。第三,个性化是创新人才培养模式的目的,导师制、小班化和国际化是途径。学校要有特色,学生更要有特长,特色支撑特长,创新就是与众不同,特长是特色与创新有机结合的标志。创新人才=创新潜力+数学思维+专业特长。第四,国际化就是要使创新人才培养模式与国际接轨,当然这不仅局限于学生间的异地交流,还应强调教育平台的对接。目前,网络公开课的迅速崛起与发展,是近年国际大学数学教育发展的显著特征,借助它,可以实现教育平等、知识共享、共同参与学习、终身教育等新的教育理念。可以考虑将国际数学Moocs(Massively Open Online Courses)平台建成中国Moocs平台,打开对外开放窗口,真正实现数学教育国际化,营造更有利于国际间协同创新的文化环境[11]。

(3)关于创新人才培养模式的课程体系设计。首先,顶层设计是方向。瞄准本学科领域10年左右可能形成的前沿热门重大课题,以10年目标为基础,战略谋划培养方案,确定研究方向,科学配置课程体系,待学生博士毕业正好步入学科前沿研究领域,成为本专业的创新人才或领军者。其次,少而精是原则。学习数学一定要领会思想、掌握方法,学生要有独立思考的空间与时间,拥有个性化学习与汲取思想是孕育学生特长的必要环节。最后,通识性是基础。奠定数学基础,提升数学素养,培养学生具有大科学思想[11],用数学基础引领专业发展,通过专业需求反过来带动数学学习与跟进。

(4)关于融数学文化于创新人才培养模式。第一,在数学教学中探索创新人才培养模式,就必须改变以往教学中忽视创新能力和素质培养的状况,从变革只注重少数几门经典数学课程的纵向灌输的传统教学壁垒入手,构建引导学生从横向视角去领略、品位和欣赏数学思想、数学方法与数学精神的新模式,使纵横两种教学模式共同搭建起创新人才培养模式的平台,以使数学文化沁入到教学的每一环节,使数学素养的培养落到实处。第二,无论是弘扬数学文化,还是提升数学素养,都应该是以传授数学理论为载体,在教学实践中实现的,而不要把它视为课程之外的东西加以添加,因此更应强调探究式教学法设计的作用与意义。第三,数学文化的传播不能仅仅停留在强调趣味性与历史故事方面,而应以传承数学思想与数学方法、提升学生数学素养为核心,注重知识性、思想性与应用性的有机结合,探索建立文

化传承创新的新模式,形成一个数学文化“场”,以更好地彰显它的辐射作用与潜在能量。第四,目前,全国大学生数学建模竞赛以及美国大学生数学建模竞赛已成为高校一道亮丽的风景,各专业学生共处同一平台,将所学的数学理论,酣畅淋漓地付诸于实践,彻底地体验了如何用所学的数学理论解决实际问题的思维过程,这种体验对学生来说尤为宝贵,从中学生能深切地感受到数学思想、数学方法与数学精神之于经济专业发展的基础作用与深远影响,佐证了数学文化融入创新人才培养模式的价值。因此,学校与教师都应重视这类赛事,引导与鼓励学生积极参与,提高奖励幅度,以赛事来推动数学教学与学科发展。

我们即将步入大数据时代,处理大数据需要科学理论,科学实验,科学计算,因此大数据时代也是数学时代。大数据时代为探索创新人才培养模式提供了教学实验平台,这对每一位数学教师,既是机遇又是挑战,如何应对?任重而道远,改革创新理念迫在眉睫。探索创新人才培养模式应从大学数学教学抓起,它是学生在本科阶段最先接触的核心基础课程,只有夯实数学基础,才能谈得上良好的专业发展,因此融数学文化于创新人才培养模式是重中之重,也是重中之首。

参考文献:

[1][9] 张顺燕. 数学的美与理(第二版)[M]. 北京:北京大学出版社,2012:6-7,31-33.

[2][3] 顾沛. 数学文化课程建设的探索与实践[M]. 北京:高等教育出版社,2009:1-12,41-49.

[4] 方延明. 数学文化(第二版)[M]. 北京:清华大学出版社,2009:序言.

[5] 顾沛. 数学文化[M]. 北京:高等教育出版社,2008:1-7.

[6] 顾沛. 数学文化课程建设的探索与实践[M]. 北京:高等教育出版社,2009:50-56.

[7] 约翰・塔巴克. 概率论与数理统计[M]. 北京:商务印书馆,2008:3-5.

[8] 李贤平等. 概率论与数理统计[M]. 上海:复旦大学出版社,2003:序言.

推荐期刊
  • 数学研究
    刊号:35-1177/O1
    级别:省级期刊
  • 数学
    刊号:42-1163/O1
    级别:北大期刊
  • 数学进展
    刊号:11-2312/O1
    级别:北大期刊
  • 数学季刊
    刊号:41-1102/O1
    级别:省级期刊