欢迎访问爱发表,线上期刊服务咨询

工程热物理论文8篇

时间:2023-03-20 16:16:36

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇工程热物理论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

工程热物理论文

篇1

摘要:工程物理冰箱制冷剂理论循环分析CF3ICF3I/HC290

1引言

冰箱制冷剂CFC12的现有替代物主要有HFC134a、HC600a和HFC152a/HCFC22,它们分别在加工工艺、可燃性、环保和热工性能方面存在缺陷[1,2,寻求新型环保节能的冰箱工质仍是人们探究的方向。

三氟碘甲烷(CF3I)是作为哈龙替代物而开发的新型灭火剂,其臭氧层破坏势(ODP)为0,20年的全球变暖势(GWP)低于5,不燃,油溶性和材料相容性很好[3,饱和蒸汽压曲线和CFC12相近,具备了作为冰箱制冷剂的前提条件(至于毒性目前还没有定论[3,4)。有关CF3I的热物性,只有文献[3进行了较为系统的探究,目前还缺乏适用于汽液两相区的状态方程;CF3I在冰箱工况下的循环性能,还没有被系统地分析。根据文献[3的PVT实验数据,确定同时适用于CF3I汽液两相的PT方程;并在此基础上,对CF3I在冰箱工况下的循环性能进行系统地理论分析,旨在考察其作为冰箱制冷剂的可能性。

2理论循环分析的工具

2.1PT状态方程两参数F、ζc的求解

式中,R为工质的通用气体常数,Tr=T/Tc。确定PT状态方程需要具体物质的四个参数摘要:临界压力Pc、临界温度Tc、虚拟压缩因子ζc、斜率F。对于CF3I,文献[3给出其Pc=3.953MPa,Tc=396.44K[3。ζc、F的求解方法如下摘要:(1)选取n个饱和液相数据点(T、P、ρL)i(i=1,…,n;(2)假设一个ζc初值;(3)由式(6)、(7)、(8)求出Ωa、Ωb、Ωc,代入式(4)、(5)求得b、c;

(4)由汽液平衡条件fL=fV,输入某数据点i的(T、P)i,由式(1)、(2)求出αi;(5)由n个数据点的(Ti,αi)用最小二乘法拟合式(3),求出F;(6)由ζc和已求出的Ωa,Ωb,Ωc,F,根据方程(1)~(2)和汽液平衡条件计算各点的和的相对误差,以及个数据点的平均相对误差;

(7)以一定的步长改变ζc,重复步骤(3)-(6)。选取最小EYL所对应的ζc、F作为PT方程的参数。

文献[3给出了CF3I在301K-Tc范围内的25个饱和液相密度点,其中3个数据点是为了确定临界点而测的;把这3个数据点当作一个临界点对待,选取其余22个数据点按照上面的步骤求解得到CF3I的F=0.6514、ζc=0.3105。

2.2PT状态方程精度的验证

为了检验如上确定的适用于CF3I的PT方程的计算精度,以该方程对CF3I的饱和液密度、饱和蒸汽压、气相区PVT性质进行了计算,并和文献[3的实验数据进行了对比。对比实验数据为T%26lt;0.9Tc(即T%26lt;356.80K)范围内的13个饱和液相点、22个饱和蒸汽压点和T%26lt;Tc内77组气相区数据。结果表明,饱和液密度、饱和蒸汽压、气相区密度的最大相对误差分别为2.94%、0.42%、5.87%,平均相对误差分别为1.54%、0.25%、2.17%。相对误差、平均相对误差计算式分别为

(9)

(10)

式中,X-所要比较的物理量,cal-PT方程的计算值,exp-实验值,n-数据点的个数。

冰箱的名义工况为蒸发温度tevap=-23.3℃,冷凝温度tcon=54.4℃,吸气温度、过冷温度32.2℃[6,处于上述温度区间。可见,确定的适用于CF3I的PT方程,能够用于对CF3I的冰箱循环性能分析计算,而且精度良好。

3CF3I蒸汽压曲线的分析

从热力学角度看,替代制冷剂最好具有和原制冷剂相似的蒸汽压曲线[7。图1为几种工质的蒸汽压对比,其中CF3I的蒸汽压方程为[3

(11)

式中,

A1=-7.204825,A2=1.393833,A3=-1.568372,A4=-5.776895,适用范围243K~Tc;其它制冷剂的蒸汽压数据来自ASHARE[8。

由图1可见,在冰箱名义工况的温度区间内,HFC152a/HCFC22、HFC134a的蒸汽压曲线和CFC12吻合得很好;HC290的蒸汽压高于CFC12,HC600a的蒸汽压则比CFC12低许多。CF3I的蒸汽压介于HC600a和CFC12之间,在冰箱名义工况下和CFC12的最大差距为20%左右。由蒸汽压看,CF3I比HC600a更适合作为CFC12的灌注式替代物;按照优势互补原则选择HC290和CF3I组成混合物,灌注式替代CFC12的效果可能会更好。

4CF3I作为冰箱制冷剂的循环性能分析

4.1冰箱名义工况

采用带回热的冰箱制冷循环模型,即用回热器来实现工质的过冷和过热,并设工质经过回热器换热后节流前的温度和压缩机的吸气温度相等,这一温度称为回热温度。

计算CF3I的循环性能所需的理想气体比热式[3为摘要:

(8)

式中T的单位为K,R为CF3I的气体常数,单位为J/(K·kg)。计算焓、熵的参考态为ASHRAE规定的-40℃的饱和液态,参考态上h=0kJ/kg,s=0kJ/(kg·K)。

在冰箱名义工况下,设压缩机的总效率为0.70,计算了几种工质的循环性能。混合工质的蒸发温度取为蒸发器进口和露点温度的平均值,冷凝温度取其冷凝压力下的泡露点平均值。计算结果见表1。表中MIX1、MIX2分别表示质量百分比85/15、75/25的HFC152a/HCFC22。

观察表1中各种工质的性能参数,在压力水平方面,除了HC600a、HC290外,现有的几种冰箱制冷剂的蒸发压力Pevap、冷凝压力Pcond和CFC12都很接近。CF3I的压力水平和CFC12有一定偏差,其Pevap略低于大气压,蒸发器为微负压,不利于系统运行。CF3I的压比和CFC12的最接近。压缩机排气温度方面,HC600a和HC290的tdisch较低。CF3I的tdisch较高,不利于压缩机的运行;但和MIX1、MIX2十分接近,表明目前的冰箱压缩机能够承受这样的温度。CF3I的单位容积制冷量qv比CFC12小20%左右,也比HFC134a、MIX1和MIX2小,HC290比CFC12高40%左右。CF3I的COP是最高的,比CFC12高3.4%,这是CF3I的优势,而HC290是最低的。通过以上的比较可以看出摘要:(1)CF3I的循环性能指标和CFC12相近,可以在对原有制冷系统稍作改动的基础上,作为CFC12的灌注式替代物;(2)HC290和CF3I在循环性能指标上具有互补性,若将两者组成混合物,在性能上可能更接近CFC12。

4.2变工况

变工况循环性能分析,一般包括COP、qv、tdisch、随冷凝温度、蒸发温度、回热温度的变化规律。相比之下,各性能指标随回热温度的变化规律比随蒸发温度、冷凝温度的变化规律更重要一些,这是因为冰箱的回热器一般在环境中[1,回热温度的变化幅度、频率要比蒸发温度、冷凝温度要大、要快。分析几种制冷剂循环性能指标随回热温度的变化规律,分析方法是固定蒸发温度、冷凝温度,变化回热温度,看性能指标的变化趋向。

结果如图2-图5所示。回热温度由0℃变化到50℃,几种工质的COP都降低,其中CF3I降低得最慢。在qv方面,HC290随回热温度的变化显著,其他工质的变化规律相似。随着回热温度的升高,CF3I的tdisch增加速度比其它工质快,这是不利于冰箱运行的。由于在计算中固定了蒸发温度、冷凝温度,所以对于纯质来说保持不变,而对于混合工质来说,有稍微地上升。由图还可以发现,CF3I和HC290的循环性能指标分布在CFC12的两侧。

CF3I各项性能指标随回热温度的变化所表现的规律和CFC12基本类似,数值幅度上的偏差也不太大。COP优于CFC12,tdisch较CFC12为高。总起来说,CF3I存在作为CFC12灌注式替代物的潜力。

5CF3I/HC290混合物作为冰箱制冷剂的循环性能分析

5.1冰箱名义工况

由以上分析可知,CF3I和HC290的循环性能具有互补性,下面具体分析不同配比下HC290/CF3I混合物的循环性能。

计算工况、压缩机总效率的选取同上。表2列出了循环性能计算结果。

由表1已经知道CF3I的Pevap、Pcond、q0、qv都比HC290的小,所以随着HC290在混合物中所占比例的增加,HC290/CF3I混合物的Pevap、Pcond、q0、qv都应该呈现增大的趋向,而∑、tdisch、COP应该减小,这种规律在表2中得到了很好的体现。

对比表2和表1,可以看到CF3I/HC290混合物在65/35、60/40、55/45、50/50四种摩尔百分配比下各个性能指标和CFC12吻合得很好。

5.2变工况

对上面所给4种配比下的CF3I/HC290混合物进行了循环性能参数随回热温度变化规律的计算。结果表明,混合物的循环性能和CFC12十分接近,从理论循环分析的角度看,是CFC12理想的灌注式替代物。

图2-图5中列出了摩尔百分比为65/35(质量百分比为89.2/10.8)的CF3I/HC290的计算结果,其它3种配比下CF3I/HC290混合物的性能也和之相近。

5.3可燃性分析

以上4种配比的CF3I/HC290混合物中,HC290的摩尔比例最大为50%,其相应的质量比例最大为18.4%。一般家用冰箱的制冷剂的充灌量为0.1kg左右[6,9,以本文提出的4种CF3I/HC290混合物作为冰箱制冷剂,HC290的最大充灌量仅为0.0184kg。文献[10指出,在密封性好的制冷系统中,只要碳氢化合物的充灌量小于0.15kg,那么系统就是平安的。因此,CF3I的摩尔组成在50%~65%范围的CF3I/HC290混合工质在应用中的平安性是可以得到保证的。

6结论

(1)求得了适用于CF3I的PT方程,此状态方程对于CF3I的热力学性质和循环性能计算具有较高的精度。

(2)通过对CF3I的蒸汽压曲线、冰箱名义工况、变工况的计算分析,发现CF3I的循环性能和CFC12相近。

(3)按照优势互补的原则,筛选提出了CF3I的摩尔组成在50%~65%范围的CF3I/HC290混合工质,其循环性能和CFC12十分接近,可作为CFC12的灌注式替代物。

参考文献

1何茂刚.三氟甲醚作为冰箱制冷剂的理论分析.李惠珍,李铁辰等.西安交通大学学报,2003,37(1)摘要:10~14

2梁荣光.环保制冷剂CN-01的应用.曾恺,简弃非.制冷学报,2003,24(1)摘要:57~60

3段远源.三氟碘甲烷和二氟甲烷的热物理性质探究摘要:[博士学位论文.北京摘要:清华大学,1998

4DoddD.E.etc.FundamentalandAppliedToxicology,1997,35摘要:64

5NavinC.PatelandAmynS.Teja.Anewcubicequationofstateforfluidsandfluidmixtures.ChemicalEngineeringScience,1982,37(3)摘要:463~473

6王建栓.碳氢化合物在家用小型制冷装置中的替代探究摘要:[硕士学位论文.天津摘要:天津大学,2000

7刘志刚.CFCS替代工质筛选的热力学原则.傅秦生,焦平坤等.全国高等学校工程热物理第四届学术会议论文集,杭州摘要:浙江大学出版社,1992,73~76.

81993ASHRAEHANDBOOKFUNDAMENTALS,SIEdition,1993

篇2

摘要:通过对环保工质三氟碘甲烷(CF3I)的饱和蒸汽压曲线、冰箱名义工况和变工况下循环性能等三方面的理论分析,发现CF3I和CF3I的摩尔组成在50%-65%范围的CF3I/HC290混合工质,理论循环性能与CFC12接近,具有作为冰箱中CFC12灌注式替代物的潜力。

关键词:工程热物理 冰箱制冷剂 理论循环分析 CF3I CF3I/HC290

1 引言

冰箱制冷剂CFC12的现有替代物主要有HFC134a、HC600a和HFC152a/HCFC22,它们分别在加工工艺、可燃性、环保和热工性能方面存在缺陷[1,2],寻求新型环保节能的冰箱工质仍是人们研究的方向。

三氟碘甲烷(CF3I)是作为哈龙替代物而开发的新型灭火剂,其臭氧层破坏势(ODP)为0,20年的全球变暖势(GWP)低于5,不燃,油溶性和材料相容性很好[3],饱和蒸汽压曲线与CFC12相近,具备了作为冰箱制冷剂的前提条件(至于毒性目前还没有定论[3,4])。关于CF3I的热物性,只有文献[3]进行了较为系统的研究,目前还缺乏适用于汽液两相区的状态方程;CF3I在冰箱工况下的循环性能,还没有被系统地分析。根据文献[3]的PVT实验数据,确定同时适用于CF3I汽液两相的PT方程;并在此基础上,对CF3I在冰箱工况下的循环性能进行系统地理论分析,旨在考察其作为冰箱制冷剂的可能性。

2 理论循环分析的工具

2.1 PT状态方程两参数F、ζc的求解

PT状态方程[5]的具体形式为:

而是方程(8) 的最小正根。

式中,R为工质的通用气体常数,Tr=T/Tc。确定PT状态方程需要具体物质的四个参数:临界压力Pc、临界温度Tc、虚拟压缩因子ζc、斜率F。对于CF3I,文献[3]给出其Pc=3.953MPa,Tc=396.44K[3]。ζc、F的求解方法如下:(1)选取n个饱和液相数据点(T、P、ρL)i (i=1,…,n);(2)假设一个ζc初值;(3)由式(6)、(7)、(8)求出Ωa、Ωb、Ωc,代入式(4)、(5)求得b、c;

式中,X-所要比较的物理量,cal-PT方程的计算值,exp-实验值,n-数据点的个数。

冰箱的名义工况为蒸发温度tevap=-23.3℃,冷凝温度tcon=54.4℃,吸气温度、过冷温度32.2℃[6],处于上述温度区间。可见,确定的适用于CF3I的PT方程,能够用于对CF3I的冰箱循环性能分析计算,而且精度良好。

3 CF3I蒸汽压曲线的分析

从热力学角度看,替代制冷剂最好具有与原制冷剂相似的蒸汽压曲线[7]。图1为几种工质的蒸汽压对比,其中CF3I的蒸汽压方程为[3]

式中,

A1=-7.204825,A2=1.393833,A3=-1.568372,A4=-5.776895,适用范围243K~Tc;其它制冷剂的蒸汽压数据来自ASHARE[8]。

由图1可见,在冰箱名义工况的温度区间内,HFC152a/HCFC22、HFC134a的蒸汽压曲线与CFC12吻合得很好;HC290的蒸汽压高于CFC12,HC600a的蒸汽压则比CFC12低许多。CF3I的蒸汽压介于HC600a与CFC12之间,在冰箱名义工况下与CFC12的最大差距为20%左右。由蒸汽压看,CF3I比HC600a更适合作为CFC12的灌注式替代物;按照优势互补原则选择HC290与CF3I组成混合物,灌注式替代CFC12的效果可能会更好。

4 CF3I作为冰箱制冷剂的循环性能分析

4.1 冰箱名义工况

采用带回热的冰箱制冷循环模型,即用回热器来实现工质的过冷和过热,并设工质经过回热器换热后节流前的温度与压缩机的吸气温度相等,这一温度称为回热温度。

计算CF3I的循环性能所需的理想气体比热式[3]为:

式中T的单位为K,R为CF3I的气体常数,单位为J/(K·kg)。计算焓、熵的参考态为ASHRAE规定的-40℃的饱和液态,参考态上h=0kJ/kg,s=0kJ/(kg·K)。

在冰箱名义工况下,设压缩机的总效率为0. 70,计算了几种工质的循环性能。混合工质的蒸发温度取为蒸发器进口和露点温度的平均值,冷凝温度取其冷凝压力下的泡露点平均值。计算结果见表1。表中MIX1、MIX2分别表示质量百分比85/15、75/25的HFC152a/HCFC22。

观察表1中各种工质的性能参数,在压力水平方面,除了HC600a、HC290外,现有的几种冰箱制冷剂的蒸发压力Pevap、冷凝压力Pcond与CFC12都很接近。CF3I的压力水平与CFC12有一定偏差,其Pevap略低于大气压,蒸发器为微负压,不利于系统运行。CF3I的压比与CFC12的最接近。压缩机排气温度方面,HC600a和HC290的tdisch较低。CF3I的tdisch较高,不利于压缩机的运行;但与MIX1、MIX2十分接近,表明目前的冰箱压缩机能够承受这样的温度。CF3I的单位容积制冷量qv比CFC12小20%左右,也比HFC134a、MIX1和MIX2小,HC290比CFC12高40%左右。CF3I的COP是最高的,比CFC12高3.4%,这是CF3I的优势,而HC290是最低的。通过以上的比较可以看出:(1)CF3I的循环性能指标与CFC12相近,可以在对原有制冷系统稍作改动的基础上,作为CFC12的灌注式替代物;(2)HC290与CF3I在循环性能指标上具有互补性,若将两者组成混合物,在性能上可能更接近CFC12。转贴于

4.2 变工况

变工况循环性能分析,一般包括COP、qv、tdisch、随冷凝温度、蒸发温度、回热温度的变化规律。相比之下,各性能指标随回热温度的变化规律比随蒸发温度、冷凝温度的变化规律更重要一些,这是因为冰箱的回热器一般裸露在环境中[1],回热温度的变化幅度、频率要比蒸发温度、冷凝温度要大、要快。分析几种制冷剂循环性能指标随回热温度的变化规律,分析方法是固定蒸发温度、冷凝温度,变化回热温度,看性能指标的变化趋势。

结果如图2-图5所示。回热温度由0℃变化到50℃,几种工质的COP都降低,其中CF3I降低得最慢。在qv方面,HC290随回热温度的变化显著,其他工质的变化规律相似。随着回热温度的升高,CF3I的tdisch增加速度比其它工质快,这是不利于冰箱运行的。由于在计算中固定了蒸发温度、冷凝温度,所以对于纯质来说保持不变,而对于混合工质来说,有轻微地上升。由图还可以发现,CF3I与HC290的循环性能指标分布在CFC12的两侧。

CF3I各项性能指标随回热温度的变化所表现的规律与CFC12基本类似,数值幅度上的偏差也不太大。COP优于CFC12,tdisch较CFC12为高。总起来说,CF3I存在作为CFC12灌注式替代物的潜力。

5 CF3I/HC290混合物作为冰箱制冷剂的循环性能分析

5.1 冰箱名义工况

由以上分析可知,CF3I与HC290的循环性能具有互补性,下面具体分析不同配比下HC290/CF3I混合物的循环性能。

计算工况、压缩机总效率的选取同上。表2列出了循环性能计算结果。

由表1已经知道CF3I的Pevap、Pcond、q0、qv都比HC290的小,所以随着HC290在混合物中所占比例的增加,HC290/CF3I混合物的Pevap、Pcond、q0、qv都应该呈现增大的趋势,而∑、tdisch、COP应该减小,这种规律在表2中得到了很好的体现。

对比表2和表1,可以看到CF3I/HC290混合物在65/35、60/40、55/45、50/50四种摩尔百分配比下各个性能指标与CFC12吻合得很好。

5.2变工况

对上面所给4种配比下的CF3I/HC290混合物进行了循环性能参数随回热温度变化规律的计算。结果表明,混合物的循环性能与CFC12十分接近,从理论循环分析的角度看,是CFC12理想的灌注式替代物。

图2-图5中列出了摩尔百分比为65/35(质量百分比为89.2/10.8)的CF3I/HC290的计算结果,其它3种配比下CF3I/HC290混合物的性能也与之相近。

5.3 可燃性分析

以上4种配比的CF3I/HC290混合物中,HC290的摩尔比例最大为50%,其相应的质量比例最大为18.4%。一般家用冰箱的制冷剂的充灌量为0.1kg左右[6,9],以本文提出的4种CF3I/HC290混合物作为冰箱制冷剂,HC290的最大充灌量仅为0.0184kg。文献[10]指出,在密封性好的制冷系统中,只要碳氢化合物的充灌量小于0.15kg,那么系统就是安全的。因此,CF3I的摩尔组成在50%~65%范围的CF3I/HC290混合工质在应用中的安全性是可以得到保证的。

6 结论

(1)求得了适用于CF3I的PT方程,此状态方程对于CF3I的热力学性质和循环性能计算具有较高的精度。

(2)通过对CF3I的蒸汽压曲线、冰箱名义工况、变工况的计算分析,发现CF3I的循环性能与CFC12相近。

(3)按照优势互补的原则,筛选提出了CF3I的摩尔组成在50%~65%范围的CF3I/HC290混合工质,其循环性能与CFC12十分接近,可作为CFC12的灌注式替代物。

参考文献

1 何茂刚.三氟甲醚作为冰箱制冷剂的理论分析.李惠珍,李铁辰等.西安交通大学学报,2003,37(1):10~14

2 梁荣光.环保制冷剂CN-01的应用.曾恺,简弃非.制冷学报,2003,24(1):57~60

3 段远源.三氟碘甲烷和二氟甲烷的热物理性质研究:[博士学位论文].北京:清华大学,1998

4 DoddD.E.etc.FundamentalandAppliedToxicology,1997,35:64

5 NavinC.PatelandAmynS.Teja.Anewcubicequationofstateforfluidsandfluidmixtures.ChemicalEngineeringSci ence,1982,37(3):463~473

6 王建栓.碳氢化合物在家用小型制冷装置中的替代研究:[硕士学位论文].天津:天津大学,2000

7 刘志刚.CFCS替代工质筛选的热力学原则.傅秦生,焦平坤等.全国高等学校工程热物理第四届学术会议论文集,杭州:浙江大学出版社,1992,73~76.

8 1993ASHRAEHANDBOOKFUNDAMENTALS,SIEdition,1993

篇3

关键词:留学;日本;动力工程及工程热物理;机械理工学;培养方案

中图分类号:G643 文献标识码:A 文章编号:1007-0079(2014)29-0008-02

从1872年中国近代走出第一名留学生容闳以来,我国的出国留学事业已经走过多个历史阶段。进入21世纪后,我国自费出国留学人数激增,兴起留学的热潮。因地理位置的相近与文化的相似,赴日留学逐渐成为很多学生的选择。另外,日本为全面加入到全球化人才争夺战而积极地调整留学政策,在2008年提出接收“留学生30”,更使日本成为中国留学生的首选国之一。[1]

在日本,研究生院被称为大学院,硕士研究生则称作大学院生。大学院生毕业将被授予修士学位,等同于我国硕士学位。特别要说明的是,研究生或特别研究生在日本是期望在大学研究机构中针对相关专业领域继续深造的入学者,学习期满后将不被授予学位。京都大学(Kyoto University)是日本一所国立研究型综合大学,在日本国内大学综合排名中排位第二,仅次于东京大学。其大学院18个研究科中的工学研究科包含社会基础工学、建筑学、机械理工学、航空宇宙工学等17个专业。其中机械理工学专业下又分有机械系统创成学、流体理工学、物性工学、机械力学等8个研究室。物性工学研究室中的热物理工学方向、机械系统创成学研究室的机械系统创成学方向以及流体理工学研究室的分子流体力学方向等多个研究方向与北京工业大学动力工程及工程热物理专业的研究方向相似,故本文以北京工业大学动力工程及工程热物理专业与京都大学机械理工学专业为例,分析对比各自在硕士研究生阶段的培养方案,希望对将来有留学日本意向的学生起到参考作用。

一、中日两国硕士研究生培养方案的比较

1.培养目标

北京工业大学的硕士研究生阶段分别设置有学术学位硕士研究生(简称学硕)和专业学位硕士研究生(简称专硕)。它们虽处于同一层次,但在培养规格上各有侧重点。专业学位硕士研究生的专业名称虽为动力工程专业,但其研究方向与动力工程及工程热物理专业相同,故本文视其为同一专业的另一种培养方案。

从培养目标上来看,学术学位硕士研究生的动力工程及工程热物理专业侧重培养满足科研、教学、设计、工程设计等各方面需求的高层次应用型人才,要求兼有扎实的专业知识和合格的实践与创新能力。在培养目标中不仅对学科领域的学习成果做出要求,在道德素质与文化素质上也有着较高的期望。专业学位硕士的培养目标成为专业领域高层次应用型的专门人才,要求基础扎实、实践能力强且具有一定的创新能力。

京都大学的机械理工学专业的培养目标是培养拥有克服有挑战性研究课题能力,具有领导能力的技术人才和研究人才。在京都大学该专业教育目标别提到了期望学生能够利用所学知识努力回馈社会。

对比两所大学的培养目标,可看出北京工业大学的学术学位硕士研究生偏重科研,专业学位硕士研究生偏重工程实践,而京都大学在科研与工程实践间并没有明确的偏重。国内高校近年学术道德问题频出,研究生教育不仅要达到学术的标准,更要注重个人的学术道德与学术规范。所以将德才兼备写入培养目标有着深远的意义。[2]将回馈社会写入培养目标对日本本国来说是为了维持产业活力以解决少子化带来的人才匮乏,对于留学生则是为了提高日本的国际威望,为日本在国际人才争夺中取得优势。[1]

2.学制与课程设置

现在日本的大学课程设置制度是根据1991年7月正式实施的新《大学设置基准》制定而成的。其中提到,在符合国家最基本课程设置要求下,各个大学可以基于学校特点制定其办学方针与教学思想,并且可自主进行课程设置。[3]所以京都大学的课程设置在个别课程上和其他日本大学会有不同,但在实现相应学位的教育目的上是相同的。

北京工业大学此专业学术学位硕士课程分为学位课、选修课与学术活动,研究生需要修满至少26学分。专业学位硕士课程分为基础知识、专业知识、工程知识、综合素养、实践训练共5个模块,研究生需要修满至少32学分。在课程设置上学硕与专硕大致相同,区别在于专硕课程中增加了科技文献检索、六西格玛管理、工程伦理案例分析等工程综合素养课程与总计1年的校内外实践训练环节。从图1中可看专硕在各模块中所分配必修学分较平均,使其在理论知识与工程实践两方面得到平衡。京都大学机械理工学修士课程包含基础科目、发展科目与实习科目,大学院生至少需要修满30学分。

表1 京都大学机械理工学专业与北京工业大学动力工程及工程热物理专业的课程设置

从图1中可以看出,京都大学的必修学分配比相对北京工业大学的学硕更平均。如上文诉述京都大学机械理工学专业涵盖的研究方向众多,所以基础科目需要兼顾各研究方向。学生需根据各研究室研究题目在发展科目中学习相应内容。其次,如表1所示日本高校和国内的专硕课程同样重视实践训练环节。在图1中也可以看到京都大学的实践环节必修学分占到总学分的近三分之一。北京工业大学动力工程及工程热物理专业的研究方向集中,在课程中设置了更多针对本专业研究方向的课程。国内的学硕课程虽然也有实践训练课程的设置,但更注重科研方面。另外,受到国情的影响,国内必修课程中均含有思想政治、哲学和英语课程。京都大学工学研究科为深化专业教育与拓宽工程技术相关知识的学习,面向全体学生设有选修的共通科目,如表2所示,其中大多为英语课程。面向留学生还开设有辅导日本语的专项课程。

表2 工学研究科共通科目

北京工业大学动力工程及工程热物理专业的硕士研究生学制均为3年,学习年限2.5-3年。京都大学机械理工学专业的学习年限为2年,在研究和学习中有出色进展者可以缩短修业时间。日本大学大学院中普遍采用2年学制,与国内相比缩短了学习年限,但必修学分却与国内大致相同。虽然中日两国1学分对应学时数略有差异,但也不难得出日本大学院课程与国内相比并不轻松的结论。

3.招生要求

日本申请修士课程与国内一样需要相应的学历证明,并且报考大学院留学需要提交自己的研究计划,明确自己希望研究的课题。可以参考相关的学术论文来确定自己的研究课题。在确定了自己的研究课题之后,需要撰写研究计划书。在申请之前,需要与目标导师取得联系,进行沟通,在获得内诺之后申请入学。

成为大学院生与国内一样要经过大学院生录取考试。以京都大学机械理工学为例,设有笔试和面试。笔试有数学、机械力学和专业科目三门考试。另外,英语也作为考核的科目之一,非英语母语的考生需要提供TOEFL或TOEIC成绩,成绩优秀者可抵作英语笔试成绩。

二、结论与讨论

综上所述,国内大学大多设有学术学位硕士研究生和专业学位硕士研究生,而日本大学中只有大学院生。从培养目标来看,中日大学均以培养具备各方面能力的高层次应用型人才为目的,但从京都大学的培养目标中可以看出,相比国内日本大学更注重所培养人才对社会、对环境的意义和对国际化人才的培养。在课程设置方面,相比国内日本大学一方面在同一专业下涵盖更多的研究方向,另一方面日本大学在课程设置上具有一定的自主性,所以学生在选课时具有更多的选择余地。日本在招生方式上更加灵活,有意留学日本的同学在取得必要资质的同时,也要与研究室导师取得联系,进行良好的沟通。

参考文献:

[1]王磊.日本“留学生30”的背景、问题与展望[J].淮北师范大学学报:哲学社会科学版,2012,33(2):128.

篇4

关键词:门窗玻璃;热物性参数;实验室测试;稳态法;非稳态热带法

门窗是影响建筑节能水平的重要组成部分之一,也是建筑围护结构节能、保温或隔热中的关键环节,其传热性能对于改善建筑室内环境,控制能耗至关重要,从而对其传热性能检测一直是研究热点之一。总体上门窗玻璃传热性能检测分节能现场检测和实验室测试两种。其中实验室检测作为玻璃质量监督监测的主要手段,我国1997年就制定了JC/T675-1997《玻璃导热系数试验方法》国家标准[1]。目前玻璃传热性能实验室测试主要有稳态法和非稳态法。如金太权基于单向稳态热流法测石英玻璃导热系数[2],并建立了实验测试系统;刘海增以红外灯为加热热源,基于傅立叶导热定律和牛顿冷却定律,测玻璃钢板导热系数[3];周菁华则基于稳态法原理对节能玻璃导热系数的测试方法进行了研究[4]。近年来,随着各种新型玻璃的出现,比热容逐渐成为玻璃的重要性能指标之一,针对此非稳态平面热源法在玻璃热物性测试中得到了应用,其优点是测试时间短,对实验环境要求不高。本文对已有玻璃热物性实验室测试方法进行分析,并提出了改进思路。

1. 稳态法测试原理

稳态法分稳态护板法和稳态圆筒法等,针对玻璃的物理特征及应用特点此处特指稳态护板法(如图1所示)。稳态法原理上基于傅立叶定律,仅能获取材料导热系数。

图1 防护热板法原理图

由图1所示,主热板放置于两块被测试样中间,为了尽量保证主热板热流垂直穿过试样,其两侧分别设置一块与主热板保持相同温度的护热板,通常为了保证效果,护热板内往往设置与主热板加热丝相同功率的热丝。冷板是为了使试样端面维持均匀恒定的温度,可通过恒温水浴实现。理想情况下,主热板热量均匀恒定的向两侧试样流出,则被测试样的导热系数可用下式获得:

d = (1)

式中:Q为主加热板释放的热量,J;A为主加热板加热面积,m2;T1=T2-T1,和T2= T3-T4分别是主加热板与上冷板与下冷板间的温差。

由测试原理可以看出,稳态法测试时间较长,且对实验环境有较高要求,但其原理简单,JC/T675-1997《玻璃导热系数试验方法》国家标准即基于稳态法测试原理。

2. 非稳态法测试原理

针对稳态法测试时间长,对实验环境要求高的缺点,近年来非稳态法在材料热物性测试中得到了广泛应用看,其中适用于玻璃热物性测试的有非稳态平面热源法、非稳态热带法、非稳态热线法等。

2.1 非稳态平面热源法

与传统的稳态法原理上只能测玻璃导热系数相比,可实现导热系数、热扩散率的同时测定,其原理结构如图2所示。

图2 物理模型

设平面热源热流只在竖直方向(x方向)上传递,且其热流强度Q恒定,则试样内的温度变化分别可归结为如下定解问题[5]:

(2)

式中:j为试样密度,Cp为定压比热容,d为导热系数,而热扩散率Z=d/(jCp)。

在上述定解问题的基础上衍生了快速测量法(恒流法)和脉冲法,其中快速测量法适用于导热系数较大的材料热物性测量,而脉冲法适用于导热性能差的绝热保温材料等[5]。根据门窗玻璃的热物性参数参考范围,应适用于脉冲法。对式(2)作拉氏变换进行求解,可得:x=0处,如有强度为q的热源从零时刻开始加热,加热时间t后,试样任意位置x处的温升为:

= B(y) (3)

2.2 非稳态热线法

设在固体介质中放置一根细长线状热源,其热能仅能在热线径向传递,将构成一个无限长圆柱导热模型。当热线以恒定热流持续加热时,如已知热线上通过的电流 及其电阻 ,其单位长度发热量 ,W/m。

在加热功率恒定的情况下,热线上的温升 值随时间 的变化曲线呈近似线性[6],直线的斜率为k=q/(4id) ,据此可以得到被测试样的导热系数 d

式(4)即交叉热线法测导热系数的理论公式。

利用热线上的温升数据结合交叉热线法测得松散煤体导热系数 ,同时测得距热线r距离处的温升得到

式中

B(y)=-2y dy1 (4)

y2= (5)

加热片发热强度可用下式计算:

q=(I2R-m0Cp0) (6)

从热源加热开始计时,至t1时刻断电停止,热量仍继续向冷面传播,同时热面温度下降,至时刻t2,导热系数 可用下式计算:

= (7)

式(10)中包含有无穷级数,参照文献[1]提供的煤样热物性数据,经实验,该级数取前5项即可满足精度要求,即有

(y) = ( (r, _-2 )/q =- -lnp- (11)

式(11)为超越方程,传统方法是无法求解的,只能通过如对分法等近似数值解法编程求解,从而对于某一特定时刻 可求得对应的热扩散率a 值,对应若干个时刻将计算得一组 a值,取加权平均作为最终热扩散率的测试值。这里需要注意的是,为了防止煤样受到热震损伤,实验过程中试样各处的温升最好不要超过10℃/min。

求得热扩散a 后,试样的比热容Cp根据下式算得:

Cp= /( a) (12)

2.3 非稳态热带法

热带法原理与热线法类似,区别在于热带法用窄薄的金属带(热带)代替热线。测试时待测材料中夹持薄金属带,从某时刻起金属带被以定功率加热,同时记录热带的温度响应,并绘制曲线,根据被测材料热物理参数与温度变化间关系的理论公式,可测得其导热系数和热扩散率。热带的温度变化可以通过测量热带电阻的变化来获得,也可以通过在热带表面上焊接热电偶来直接测量。

最常用的热带材质是纯铂,其它已知电阻温度系数的性能稳定的金属也可以,热带典型的长度为100mm-200mm,宽度为3mm-5mm,厚度为10um或更小。

热带法温度响应的理论公式或模型如下

T(t)={ erf( -1)-[1-exp(- -2)]-Ei(- -2)} (13)

式中: = , wh--热带宽度;erf(z)--误差函数;q--热带每单位长度的加热热流。

当加热一定时间,即 >>wh 时,可得简化公式

T(t)= [lnt+ln ] (14)

对于热电阻式的热带法,温度响应是通过测量热带上的电压变化来获得

U(t)= [lnt+ln ] (15)

如果画出温升 T(t)或电压U(t) 随对数时间的变化曲线,曲线呈线性变化趋势,直线的斜率为m= ,截距为n=mln ,根此可以得到被测试样的热导率 和热扩散率

= a=exp() (16)

由式可见,热扩散率的测量精度比热线法要好,因为wh 的数值(1mm-10mm)比热线的半径大的多,可保证热扩散率值达到满意的精度。

3. 存在的问题

综前所述,门窗玻璃作为典型固体材料,适用的测试方法较多,稳态法及非稳态法均在玻璃热物性测试中得到了应用。目前针对玻璃热物性测试的主要有稳态法和非稳态平面热源法,实际使用过程中均存在一定的优缺点。

3.1 稳态法

稳态法具有原理简单、易于实现等优点,在固体材料热物性测试得到了广泛应用,玻璃导热系数测试国家标准就是基于此撰写的。但稳态法测试时间长且对实验环境要求较高,例如要求保证试件侧向绝热条件,否则将直接影响测试精度。如图3所示为试件侧向绝热与不绝热条件下的温度场变化情况。由图可以看出,侧向绝热条件对玻璃内的温度变化影响是明星的,如图(a)和(b)所示,分别为侧向不绝热和绝热情况下,底部用50w/m的平面热源加热时玻璃内的稳态温度场分布,可以看出区别明显。侧向不绝热时,玻璃侧向存在热传递过程,温度场受侧向热流影响明显。而侧向绝热时,面热源加热热流只在垂直方向传递,温度场均匀。由此可见,基于稳态法原理测玻璃导热系数时,侧向绝热条件直接影响测试精度。

(a) 侧向不绝热时玻璃内的温度场分布

(b) 侧向绝热时玻璃内的温度场分布

图3 侧向绝热条件对玻璃内温度场分布影响情况

除了对实验条件要求较高外,原理上稳态法也仅能测玻璃导热系数,可测参数单一,从而一定程度上限值了其推广。

3.2 非稳态平面热源法

针对稳态法存在的问题,近年来非稳态平面热源法在玻璃热物性测试中得到应用,如图4所示为某公司基于脉冲法和恒流法原理设计生产的热物性测试仪,适用于玻璃等固体材料,测试时间短且效率高。

图4 非稳态平面热源法热物性测试系统

平面热源法原理公式假设设面热源与被测试样间接触良好,也即不存在接触热阻,而实际上热源与被测试样间是存在接触热阻的,且对面热源及试件内的温度场变化影响明显。如图5所示为面热源加热条件下,考虑接触热阻与不考虑接触热阻时,面热源与试件内(导热系数 为0.7695)的温度变化情况。面热源加热功率50w/m,参照有关资料接触热阻设定为0.01k*m2/W,初始温度293K。

(a) 考虑接触热阻影响玻璃及热源温度场

(b) 不考虑接触热阻影响玻璃及热源温度场

图5 侧向绝热条件对玻璃内温度场分布影响情况

如图6所示为面热源温升对比曲线图。

图6 面热源温升对比曲线图

由图5可以看出,接触热阻对面热源温升及玻璃内温度场影响明显,同样加热条件下,热源温升相差近10℃,从而对热物性参数测试精度的影响是不可忽视的。

4. 发展趋势

随着计算机技术的不断发展,物理参数自动测试、处理进而得到被测材料的热物性参数已成为现实,材料热物性测试精度更多取决于原理模型、实验条件、基本参数测试精度。针对门窗玻璃热物性测试需求,稳态法在原理上仅能获取导热系数,已无法适应现代门窗玻璃质量监督检验要求,能够同时测玻璃导热系数、热扩散率的非稳态法将成为发展趋势。而随着建筑节能技术的发展,对门窗玻璃的热物性测试精度必然提出更高的要求。完善原理模型、提高参数测试精度和寻求新的测试技术将是进一步提高玻璃热物性参数测算精度的可行手段:

1)研究试件与加热热源间的接触热阻问题。如前所述,试件与热源间客观存在接触热阻,无论是热线法、平面热源法,接触热阻的存在均会对热物性参数测试精度带来影响。对试件与热源间的接触热阻问题进行研究,并在测试原理模型中有效表征是提高热物性参数测试精度的有效途径。

2)寻求更适合的测试方法。如前所述,目前应用于玻璃热物性测试的稳态法与非稳态平面热源法,受原理模型及热源温度均匀度影响,测试精度不高。热线法由于受加热丝直径影响较大,同时测温热电偶布置不便,应用受到一定限制,解决极细热丝与测温传感器连接问题,将可能应用于玻璃热物性测试。近年来,热带法在材料热物性测试中得到广泛应用。热带法使用范围广泛,不仅可测液体、松散材料、多孔介质及非金属固体材料,还可用于金属热物性测试。且与线状(圆柱状)热源相比,薄带状热源更易与被测材料保持良好的接触状态。而与平面热源法相比,热带夹持在被测试件中间,受侧向热流的影响较小,实验条件较易控制。故热带法更适于测固体材料导热系数,同时热扩散率的测量结果也较为准确。设计适用于玻璃热物性测试的热带法装置,将是可行的研究方向之一。

致谢:本文受安徽省教育厅自然科学基金项目(KJ2012B064)与安徽省质量监督局科技计划项目资助。

参考文献:

[1] 周菁华,刘芸,陈俊逸,等.节能玻璃的热学特性测量[J].重庆大学学报, 2009,32,:1-5.

[2] 国家建筑材料工业局.JC/T玻璃导热系数试验方法[M].北京:中国标准出社,1997.

[3] 金太权. 测定石英玻璃的导热系数[J]. 吉林工学院学报, 1991, 12(1): 39-42

[4] 刘海增, 王龙贵. 玻璃钢板导热系数的测定[J]. 实验技术与管理, 2000, 17(5): 124-126

[5] 陈昭栋. 平面热源法瞬态测量材料热物性的研究[J]. 电子科技大学学报, 2004, 33(5): 551-555

篇5

执著创新

现任天津大学教授、博士生导师及内燃机燃烧学国家重点实验室副主任的姚春德有着丰富的研究经历和实践经验。他于1993—1994年赴德国亚琛工业大学师拜国际著名的内燃机专家皮辛格教授进修学习柴油机高效、低污染燃烧技术,并于1995年赴美国威斯康星州先进发动机技术发展公司工作一年。

多年来,姚春德一直从事内燃机燃烧基础理论和内燃机新燃料方面的研究,研究领域覆盖发动机设计、排放控制、节油添加剂、燃烧化学反应动力学、多元燃料燃烧理论和技术等诸多内容。

近年,姚春德针对柴油紧缺而开展的柴油机应用替代燃料的研究,已取得突破性进展。众所周知,我国的石油需求量大,但资源却不丰富,每年内燃机需要消耗大量石油燃料,为此我国的进口石油量逐年递增,这给经济发展带来了极大压力。为了能缓解石油紧张的局面,寻找合适的内燃机替代燃料,已成为业界一个急需解决的难题。经过反复比较分析,姚春德选择了甲醇作为重要突破口。之所以选择甲醇,按姚春德自己的解释是:一方面甲醇的生产技术成熟,产能高,此外,甲醇的生产资源广泛,煤炭、天然气、生物质、焦炉气都可以用于生产,而我国也是煤炭资源丰富的国家。可以说,选择甲醇就为内燃机燃料,将为我国经济的可持续发展打下良好的基础。

然而,甲醇的特性决定了其一般不能用于柴油机,如何用到柴油机上目前尚是一个科学难题。为此,姚春德经过十余年的艰苦努力,终于在柴油机应用甲醇燃料的技术方面取得了突破。他提出了柴油/甲醇二元燃烧理论,发明了柴油/甲醇组合燃烧的方法,实现了在柴油车中可用甲醇替代30%的柴油,燃料效率提高10%以上的目标,最终使甲醇成功应用于柴油机上。目前,该方法已通过在发动机台架和整车道路方面的试验,并被工信部指定为柴油机应用甲醇燃料的唯一方式。

硕果累累

现今,在低碳、节能的大背景下,我们完全有理由相信,甲醇/柴油组合燃烧方法的推广应用,不仅可以大幅度提高燃料的经济性,提升发动机的排放品质,同时对增加国家石油能源安全,改变依赖石油大量进口的被动局面和减少二氧化碳排放都将起到重要的作用。

正是在这种社会价值的追求中,姚春德实现了自己的人生价值。除了本职工作外,他还兼任中国工程热物理学会常务理事,中国汽车工程学会理事和特聘专家,中国内燃机学会中小功率柴油机分会副主任,《工程热物理学报》编委,《燃烧科学与技术》、《汽车安全与节能学报》、《小型内燃机与摩托车》等刊物编委,《Applied Thermo Energy》、《Energy and Fuel》等国际刊物的论文评审专家。

篇6

【关键词】全日制 石油与天然气工程专业 专业学位研究生 联合培养

联合培养是近年来教育部大力倡导的研究生培养模式,是一种以提升研究生综合素质和创新能力为重点的一种新的研究生教育制度和培养模式[1]。为了实施和完善东北石油大学全日制专业学位硕士研究生培养模式的转变,结合自身学科的专业特点与学科优势,为稳定和提高硕士研究生的培养质量,使毕业生基本掌握本学科坚实宽广的基础理论和系统深入的专业知识,具有从事科学研究工作的能力,使之成为石油与天然气工程专业具有工程实践能力、知识转移能力、技术整合能力、市场推广能力的科技创尖人才,东北石油大学石油工程学院努力探索出跨学院、跨企业的“两跨”深度合作全日制专业学位硕士研究生培养模式。

1 构建全日制石油与天然气工程专业学位研究生培养模式

1.1 跨学院联合培养

为了加强石油与天然气工程专业学位研究生综合素质和实践能力、创新能力的培养,全面提高培养质量,东北石油大学石油工程学院、土木建筑工程学院、机械科学与工程学院三个学院开展了跨学院联合培养全日制石油与天然气工程专业学位研究生培养模式的改革与实践。通过调研各学院各专业的研究方向,以把握石油与天然气工程学科内涵为核心,以油气田开发工程、油气井工程、油气储运工程等方向为宗旨,寻找其与工程热物理、机械工程学科等的知识交叉点和问题突破口,凝练突出学科特色、体现学科水平,保障跨学院联合培养全日制石油与天然气工程专业学位研究生的顺利开展。

1.2 跨企业联合培养

跨企业联合培养是学校通过参与企业的合作,避免自身的科研工作成为无源之水、无本之木,促进科研成果的转化,不但提高了研究生的专业知识水平和科研能力,而且提高了企业的竞争力,为企业储备优秀人才提供便利,实现企业、学校、学生各方“多赢”的一种人才培养模式。东北石油大学工程学院与大庆油田、吉林油田科研院所及生产单位结合,建立了跨企业联合培养模式,即由校内具有工程实践经验的导师与经企业单位推荐的业务水平高,责任心强,具有高级技术职称的人员联合指导研究生,来自企业的导师由学校按程序办理聘任手续。

1.3确定联合培养的导师队伍

由石油工程学院牵头,协同相关院系相关企业组成跨学院跨企业联合培养石油与天然气工程全日制专业学位硕士研究生的管理小组,研究制定研究生指导教师筛选原则与标准,建成在石油与天然气工程领域具有较好科研基础和科研成果的导师队伍。定期聘请现场有科研、生产经验的研究人员为专业学位研究生开设课程与讲座,增强学生的专业实践教育环节。

1.4 确定联合培养选择标准

参加联合培养的全日制石油与天然气工程专业学位研究生要有自愿联合培养意向且与招生专业单位研究方向有契合点;本科主修专业课程要与招生专业单位课程具有学科交叉点;参加联合培养的硕士研究生要以不断地提高自身的全面素质和不断加强创新能力的培养为目的;参加联合培养的硕士研究生要有很强的动手能力、团体协作能力等,着重提高他们的工程实践知识和工程应用能力,使他们一出校门,就能很快够融入石油生产中去。

1.5 制定联合培养的培养方案

全日制石油与天然气工程专业学位研究生的课程设置应明确目标,定位准确,在课程设置方面应加大实践性教学,面向企业现场,将技术得以应用产生的起因和技术革新发展过程展示给学生,并引导学生的发散思维,激发学生自主学习和探究的动机,增强学生自身参与知识建构的积极性和自觉性[2]。东北石油大学石油工程学院每年都应根据石油企业的实际制定招生、培养的详细规划,按照石油企业的需要调整专业学位研究生课程。培养方案应由学位评定分委员会(学科)讨论通过,报送研究生院备案后实施。

2 全日制石油与天然气工程专业学位研究生培养模式的保障措施

2.1 加强实习基地建设

校内外实验室、实训、实习基地建设是应用型人才培养的重要保证。要根据各专业的实践教学体系,加大实验室、实训基地的投入,开拓校外实习基地[3],以培养学生的实践动手能力和适用能力。东北石油大学石油工程学院发挥地域优势,积极开拓校外实践基地,以为企业培养专业学位研究生为契机,密切与企业领导沟通,2004年以来先后建立14个校外实践基地。同时,石油工程学院利用学科资源优势,与校内其他专业合作,共同开发建立校内实践基地,实现教学资源利用率的最大化,增强学生的创新性实践能力,改善教学效果,提高教学质量。

2.2 加强论文评估考核体系建设

全日制石油与天然气工程专业学位研究生的学位论文必须由攻读专业学位研究生本人独立完成,具有一定的技术难度、先进性及与工学硕士学位论文相当的工作量,能够体现论文作者运用科学理论、方法和技术手段解决工程实际问题的能力和具有独立承担专业技术或专业管理工作的能力。论文选题要突出石油与天然气工程专业的实践性和应用性,研究结果要解决实际问题,能够在实践中得到应用。共同审核学位论文工作的技术难度和工作量;审核其解决工程实际问题的新思想 、新方法和新进展;审核其新工艺、新技术和新设计的先进性和实用性;审核其创造的经济效益和社会效益,来保证联合培养全日制专业学位研究生的论文质量。

3 全日制专业学位研究生培养模式存在的潜在问题

我国的研究生教育历史较短,作为起步更晚的全日制专业学位硕士培养管理就更显滞后。生源复杂,个体差异性大,势必给研究生的日常管理工作带来较大的难度。学校教育管理的信息化不足,学生们得不到及时有效的信息且无法与管理者进行流畅的沟通,管理体系和设施不够完善,权责不清,这就要求强化管理队伍。其次课程体系还不完善,不适应联合培养研究生的要求,课程设计上缺乏一套适应联合培养研究制度的课程体系,教材内容上缺乏企业实践经验的原因。再次,研究生培养质量评价体系不完善,其培养质则更应体现在解决实际问题的能力以及为企业创造新技术、新产品的能力上。

4 采取的解决方法

(1)以主干专业为主导

以石油与天然气工程专业为主导,确立主干专业在联合培养中的主导作用;以工程热物理与机械工程等相关专业为支撑,寻找相关学科的知识交叉点和问题突破;保障跨学院联合培养的顺利进行。

(2)以项目为纽带进行研究生联合培养

具体地说,就是指在研究生培养的培养目标、课程教学、科学研究、社会实践、专业实习、论文开题、论文撰写、论文答辩等各方面,围绕人才培养和教育而进行的具有生产、学习、科研三项功能的教育合作。保障跨企业联合培养的顺利进行。

(3)以研究生为中心

以培养研究生的实践应用能力和创新能力、提高研究生培养质量为核心,树立研究生在联合培养中的主体地位。以东北石油大学的国家级重点实验室、国家工程技术研究室、国家工程教育中心以及省部级研究基地、校企共建工程技术研发中心等为主要平台,充分利用企业的地缘优势,整合相关学科科研经费、实验设备、软件设施、图书资料及其他物质条件,形成跨学院跨企业联合培养的有效资源。

(4)以市场为导向

充分发挥市场机制的作用,形成竞争性的市场机制,最终实现研究生培养对接市场需求,跨学院跨企业联合培养的制度化及企业对联合培养的内需化。

【参考文献】

[1]李勇,陈艳慧,李博,等.全日制专业学位硕士研究生校企联合培养模式研究[J].高教研究,2013(9):238.

篇7

关键词:逆流换热器热力学优化温差场均匀性因子火用效率熵产

1.引言

换热器作为一种各工业领域广泛使用的设备,它的研究倍受重视。目前关于换热器的研究大致有两个方向,一是研究换热器传热强化,主要目的是提高换热器流体和固壁间的对流换热系数,进而提高换热器的效能。二是从可用能的角度研究换热器的热力学优化,包括换热器的熵产分析、火用效率分析等,从使换热过程不可逆性最小的角度来优化换热器。其中过增元提出的换热器温差场均匀性原则,一方面可以指导新的提高换热器效能的方法,另一方面也可以对换热器热力学优化做分析。本文是从温差场均匀性原则出发,将其应用于逆流换热器的优化过程,并对各种优化方法进行分析比较。

2.换热器温差场均匀性原则

过增元在1992年《热流体学》[1]一书中定义了温差场不均匀因子,应用于顺流、逆流和叉流换热器,发现在相同的传热单元数NTU、热容量比W和流体进口温度的条件下,逆流换热器温差场最均匀,效能也最高,熵产也最小。进而在1996[2]年定义温差场均匀性因子,提出了换热器热性能的温差场均匀性原则:在NTU和W一定时,换热器的温差场越均匀,其效能越高。并采用数值方法对13种换热器的温差场和效能进行了分析,验证此原则的正确性。通过熵产分析指出此原则是以热力学第二定律为理论依据的。同时针对叉流换热器,提出了分配换热面积来改善换热器性能的新方法。过先生又在2002[3]年给出了简单顺流、逆流、叉流换热器温差场均匀性因子的解析表达式,同时通过实验的方法对此原则进行了验证,针对多流程叉流换热器,举例说明用改变管路连接的方法来改变温差场均匀因子,进而改变换热器的效能。在2003[4]年提出基于温差场均匀的场协同原则,同时将此原则应用于多股流换热器中,提出换热器传热性能的高低取决于冷热流体温度场的协同程度,而不是流动方式。

从上述温差场均匀性原则的提出、验证和发展历程来看,这一理论已经比较成熟,也是从传热物理机制方面优化换热器的新探索,可以利用它比较实际换热器的换热性能。很多换热器大都是复合型流动方式的换热器,基本上没有解析表达式;尤其对于叉流换热器,应用此原则,可以在NTU和W给定时,改变传热面积的分布或是管路连接方式,来改变换热器的效能。温差场均匀性原则前提条件是NTU和W值恒定。对于换热方式(逆流)已定的换热器,在W和NTU变化时,应该如何应用此原则是本文讨论的主要内容。

3.温差场均匀性原则在逆流换热器热力学优化中的应用

过先生[3]将温差场均匀性原则用于指导叉流换热器的优化,并对优化效果进行了分析验证。温差场均匀性原则,是从研究对流换热的物理机制出发[5],用于指导各种形式换热器的优化。本文目的就是应用这一原则来指导逆流换热器优化方法的选择。

3.1逆流换热器已有热力学优化方法比较分析

以目标函数区分的优化方法大概有两类:一是传热过程熵产分析,二是定义火用效率分析。

关于熵产,徐志明、杨善让[6]等人定义熵产生数Ns:单位换热量的熵产。以Ns最小为目标,通过泛函求极值求得换热器温度和热流的最优分布,得到结论:使W略大于1实现最优参数分布。他们从温度分布的角度来优化换热器,提供了一种从换热内部的细节研究问题的思路。能大曦[7]等人在分析换热器的熵产时得到了类似的结论:在W为1时,换热器的Ns最小。同时指出徐志明等人研究得到的W略大于1的结论,是因为他们定义的NTU与常规的定义不同。综合分析前二者可以得到:当NTU一定W变化时,使W为1,换热器性能最佳。对于逆流换热器,W为1就意味着温差场均匀,符合温差场均匀的原则。当W不变NTU变化时,对于Ns的变化,能大曦[7]等人的研究得到:对于逆流换热器,W不变,随着NTU的变化,Ns单调减小。

关于火用效率分析,徐志明、杨善让[8]等人,给出考虑阻力的火用效率取极大值的方法。通过定义火用效率:

分析火用效率随NTU和W的变化,下图是他们分析的结果。从上述结果看出:对于逆流换热器,W不变,NTU较大时,随着NTU的变化,η会越来越低,NTU不变,W变化时,η在W近似为1时取得最大。

比较熵产和火用效率两种方法的结论可以得到,NTU不变,W变化时,二者结论基本一致。而对于W不变,NTU变化的情况,随着W增大,Ns单调减小,而也降低了。两种方法出现了矛盾。下面通过温差场均匀性原则对两种方法比较选择。

3.2逆流换热器熵产和温差场均匀性分析

3.2.1逆流换热器W变化时,看换热器的效能、Ns、温差不均匀因子变化规律。

分析中采用文献中已有的表达式:

(a)换热器的效能[8]:

(b)换热器的熵产[7]:

(c)熵产生数[7]:

其中:。

的解析表达式见文献[7],换热器的表达式见[3],图1给出W从0.1变到0.9时,、以及变化结果。其中

由图中得到:随着热容量比接近于1,换热器温差场均匀性因子增加了,熵产减小了。同时结合徐志明[8]等人分析火用效率的结论,综合得到:在NTU不变,W越接近于1,换热器温差场均匀性因子越大,熵产生数越小,火用效率越高。即熵产分析和火用分析均符合温差场均匀性原则。另外从图中看出效能随着温差场的均匀而降低了,用效能来评价换热器性能和热力学分析结论出现了矛盾。当NTU一定,如果要求不同的W得到相同的换热量的话,那么W小的流体,热侧流体的流量很大,保证如此高的流量也要有代价,同时由于流量大,通过换热器时阻力损失也大,与之相对应的火用损失也大,火用效率[7]降低了。因此同时得到单纯用效能来评价换热器是不可靠的结论。

3.2.2W一定,NTU变化时,温差场均匀性因子、熵产生数以及效能的变化。为便于和火用效率[7]分析的结果作对比,取热容量比:

得到结果如下:

图2Ns-NTUφ-NTU和ε-NTU曲线

由上图可见,当W不变时,随着NTU的增加,Ns变小了,效能增加了,但温差场变得不均匀了。结合徐志明[8]的结论,火用效率变小。发现此时火用效率判据符合温差场的均匀性原则,而熵产分析却和原则相反了。Bejan[10]曾把逆流换热器传热过程的熵产分为不平衡流动即热容量不匹配的熵产和由于传热面积有限引起的熵产。能大曦[7]等人对两部分熵产比较得到:两部分的熵产随NTU的变化,趋势是相反的。由于换热面积有限引起的熵产随NTU增加而减小,由于不平衡流动的熵产随NTU增加而增大。对于逆流换热器,温差场均匀与否只取决于W是否为1。不难理解只有由热容量不匹配引起的熵产变化趋势能用温差场均匀性原则来解释。换句话说,熵产生数来做判据包含了换热的物理机制之外的部分,在对换热器做优化时,应怎样用它还有待进一步的分析。从这个角度考虑,基于换热的物理机制建议选择火用效率作为换热器热力学优化的判据。

4.结论

(1)针对逆流换热器,比较已有优化方法,发现熵产分析和火用效率分析在W一定,NTU变化时得到的结论出现了矛盾。

(2)应用温差场均匀性原则,对比温差场均匀性程度变化的趋势和熵产生数、火用效率的变化趋势,得到火用效率和温差场均匀程度变化趋势相协调,选用火用效率来做优化更能反映换热的物理机制。因此建议用火用效率来优化换热器。

参考文献

[1]过增元,热流体学,清华大学出版社,1992

[2]过增元、李志信、周森泉、能大曦,中国科学(E辑),1996.2

[3]GuoZeng-Yuan,ZhouSen-Quan,LiZhi-Xin.InternationalJournalofHeatandMassTransfer,2002,45:2119-2127

[4]过增元、魏澎、程新广,科学通报,2003.11

[5]过增元,科学通报.2000.45(19):2118-2122

[6]徐志明、杨善让、陈钟颀,化工学报,Vol.46No.1,1995.2

[7]能大曦、李志信、过增元,工程热物理学报,Vol.No.1,Jan.1997

[8]杨善让、徐志明等,工程热物理学报,Dec.1996

[9]杨世铭、陶文铨等,传热学,高等教育出版社,1998

[10]BejanA.EntropyGenerationthroughHeatandFluidFlow.NewYork:Wiley-Interscience,1982

篇8

关键词:传热学 导热 fluent

中图分类号:G642 文献标识码:A 文章编号:1672-3791(2015)09(a)-0144-02

Abstract:Fluent software was introduced in heat transfer teaching for numerical solution method of heat conduction problem. Numerical solution method was explained combination with Fourier law and heat conduction problem of multi wall.Wall temperature distribution was show by picture,the abstract concept and the theory change into the image picture,to raise students’interest in learning the course.And to make students deeper understanding of what is learned,to achieve the purposes of improving the teaching effect and quality.

Key Words:Heat transfer;Heat conduction;Fluent

传热学就是研究由温差引起的热能传递规律的科学[1],要求学生掌握强化传热、削弱传热以及能计算简单情况下的温度分布。热传导问题数值解法的是学生比较难以掌握的难点,同时也是重点,要求学生能对简单的热传导问题进行数值求解。通过将Fluent软件引入教学过程,是学生讲学习的重点放在热传导问题数值计算的基本原理上,而求解过程由Fluent软件实现,进一步掌握该软件的用法,为做毕业论文打下一定的基础。

1 Fluent软件的特点

对导热问题数值求解的基本思想是:把原来在时间、空间坐标中连续的物理量的场,如导热物体的温度场,用一系列有限个离散点上的值的集合来代替,通过一定的原则建立起这些离散点上变量值之间关系的代数方程,求解所建立起来的代数方程以获得所求物理量的近似值[2]。Fluent软件是一个模拟和分析在复杂集合区域内的流体流动与传热问题的专用CFD软件,同时也能模拟固体的导热问题[3]。Fluent软件由前处理器、求解器和后处理器组成。其中前处理器Gambit用于网格的生成,网格的生成过程即为计算区域离散化的过程。求解器用于求解所建立起来的代数方程。而后处理器用于处理计算的结果,可以把计算得到的数据可视化[4]。

2 教学案例

分析带有保温层的墙壁的传热过程,在教学中以长3m(x方向),高3.2m(y方向),厚0.3m(z方向)的墙作为研究对象,其中保温层厚度为0.05m,如图1所示。在教学过程中分析以下两种情况下炉墙的传热过程:(1)分析有保温层和无保温层时墙壁的温度分布;(2)保温层厚度不变,分析保温层导热系数对炉墙温度分布以及散热量的影响。水泥墙和保温层的物性参数表1所示。

(1)数学模型。

(2)边界条件。

(3)墙壁中的温度分布。

计算得到不同厚度方向(z方向) xy截面的温度分布,从图中可以看出不同截面上的温度相等,根据傅里叶定律可知热量沿着厚度方向传递。从而验证了传热学中大平板模型中(长度、宽度远远大于厚度的平板)热量沿着厚度方向传递。

计算保温层存在时以及没有保温层时墙壁的温度分布,计算结果如图3所示。图3(a)为炉墙厚度方向yz截面的温度分布,从图中可以看出温度在z方向及墙壁厚度方向发生变化,而在y方向炉墙的温度保持不变。对比有保温层和无保温层两种情况的温度分布,在有保温层时,墙壁中的温度发生剧烈的变化,而无保温层时,墙壁中的温度变化比较平缓。可见保温层对墙壁的温度分布影响比较大。

根据墙壁厚度方向的温度变化,得到墙壁温度在厚度方向的变化曲线,如图3(b)所示。由于墙壁内外的边界条件相同,有保温层时和无保温层时内墙壁的温度为296K、外墙壁温度为260K。无保温层时墙壁内的温度几乎成线性变化,而有保温层时,墙壁的温度变化比较平缓,在墙壁和保温层的交界面处z=0.3m,温度发生剧烈变化,在保温层中温度急剧下降,这是由于保温层的热阻非常小而导致的。在厚度0m

(4)保温层导热系数对热流量的影响规律。

在保温层厚度保持不变的情况下,保温层导热系数的大小,直接影响墙壁的散热,因此分析保温层导热系数对墙壁热流量的影响,如图4所示。随着保温层导热系数从0.06 W/(m・K)减小到0.01 W/(m・K),墙壁散热的热流量从180W减少到40W。导热系数越小,保温层的热阻越大,根据传热过程热流量与热阻的关系可知墙壁的热流量越小,从而减少墙壁的散热。

3 结语

在传热学导热问题数值解法的教学过程中,引入Fluent软件,同时结合傅里叶定律、多层平壁导热问题进行讲解。以墙壁的温度分布为例,分析了有保温层时和无保温层时墙壁的温度分布,比较这两种情况下墙壁的热流量大小,有保温层时能显著的减小墙壁的散热。同时分析了保温层导热系数对墙壁热流量的影响规律。将较强理论的教学内容形象化,激发学生的学习兴趣,加深对传热学基础理论的理解。

参考文献

[1] 杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006:1-2.

[2] 陶文铨.数值传热学[M].西安:西安交通大学出版社,2001:28-29.

推荐期刊