时间:2023-03-20 16:13:30
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇地铁安全论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
在国际范围内事实上对管线形变控制标准较少并且相关标准并不统一,一般是根据当前的工程标准进行编改所得到。笔者结合一些实际工程标准对管线形变标准进行了分析,具体如下:(1)柔性管道形变标准:若管线直径为D则其最大竖向位移不得超过0.0005D。(2)煤气管线形变标准:煤气管线的沉降位移、水平位移以及变形位移不得超过1公分,而位移速率不得超过0.2公分/日。(3)供水管道形变标准。供水管道沉降位移、水平位移以及变形位移不得超过3公分,位移速率不得超过0.5公分/日。(4)水管接头位移标准。柔性(承插式)接头水管接头间局部倾斜值小于0.25%,刚性(焊接)接头水管接头间局部倾斜值小于0.6%,刚性(焊接)煤气管接头间局部倾斜值小于0.2%,另外允许管线水平变形为0.6毫米/米,倾斜变形为1至2毫米/米。
2管线安全风险因素分析
管线安全风险因素主要包括了以下几个方面:(1)管线本身影响。对于管线本身而言管线的承受荷载以及形变抵抗能力是维持管线能否正常工作的基本前提,另外管线的腐蚀情况、渗漏情况对管线的安全也会带来一定程度的影响。(2)施工影响。施工管理是影响管线安全风险的主观原因之一,在施工过程中必然会对管线周围的土体平衡状态产生破坏从而使得重力重新分布并造成沉降影响,这就会给管线带来附加压力让其应力出现变化并造成附加形变。(3)土质参数影响。由于管线都是以网络形式存在,即便是在同一个区域内的管线如果土质层参数不同则对管线的影响也会产生一定的差异。在衡量安全风险的过程中主要以内摩擦角、弹性模量以及粘聚力来作为评定标准。(4)相对位置。相对位置主要是指管线与地铁的相对竖直距离以及相对水平距离,而管线变形情况与距离则表现为反比关系。
结合以上风险因素笔者总结出了以下安全风险等级评价:1级,管线沉降极小,煤气管线沉降低于5毫米,供水管线沉降小于10毫米,排水管线沉降值小于20毫米;2级,管线沉降较小,煤气管线沉降在5至8毫米之间,供水管线沉降在10至20毫米之间,排水管线沉降在20至30毫米之间;3级,管线沉降正常,煤气管线沉降在8至10毫米之间,供水管线沉降在20至30毫米之间,排水管线沉降在30至40毫米之间。4级:管线沉降较大,煤气管线沉降在10至20毫米之间,供水管线沉降在30至40毫米之间,排水管线沉降在40至50毫米之间;5级:管线沉降极大,煤气管线沉降超过20毫米,供水管线沉降超过40毫米,排水管线沉降在超过50毫米。
3管线安全风险管理控制措施
当风险等级在1级、2级时管路基本处于安全状态,只需要进行简单的保护即可,对管路沉降进行监控,另外在坑洞内采取一般性保护措施来对管路进行保护。当风险等级达到3级时此时已经较为危险,此时就需要在土体和隧道施工过程中采取针对性的保护,在施工过程中对施工参数进行有效的控制同时加强安全监测并对土体进行加固。当风险等级达到4级时需要进行专业性保护,施工前将影响管线的荷载消除,并对管线采取支撑体来进行加固,可对周边的松散土体进行注浆加固。风险等级为5级时除了上述的专项保护措施以外还需要制定出专项性的紧急预案,对管线荷载进行彻底清除,用注浆加固和钢板隔离加固的方式来强化管线,特别需要对施工参数进行密切观察,加强管线固定。(本文来自于《江西建材》杂志。《江西建材》杂志简介详见。)
4结语
(1)很多城市的地铁工程均为缓解城市中心区交通压力所建,因此城市地铁工程多数均处于人口稠密的居民区或商业区,在施工过程中难免会对周边环境产生影响与制约,甚至施工中的任何微小差错和闪失都会对城市公共环境产生恶劣影响。具体说来,地铁施工对城市所产生的不利影响主要表现在以下几个方面:①地铁施工对公共环境产生一定的影响,包括施工过程中可能会引起的地表下沉,对地下管道线路产生影响,对地铁沿线毗邻建筑物产生影响,及对已建成的地铁线路的影响等。②地铁施工可能会产生的安全问题,如施工引起的塌陷、涌水涌砂、机械事故、火灾等。因此,加强地铁施工过程中的安全质量管理力度,是各项工作的重中之重。
(2)当前,各城市的地铁建设正逐步向大规模、长工期方向发展,安全质量管理难度也相应增加。尤其是在施工过程中,建设单位为尽早实现投入运营,使工期节点大大提前,安全质量管理工作更加复杂。但越是如此,越不可掉以轻心,必须深入贯彻落实安全生产责任制,建立健全相应的安全质量管理体系。
(3)由于地铁建设规模的不断拓展,行业主管部门往往对施工检查力不从心,甚至流于形式,既没有从整体施工设计、技术方案、安全措施等方面进行严谨严密的审查,也没有组织有效的专项安全检查,监管范围未进行明确划分,存在严重的职责不清的现象。因此,必须抓好地铁施工安全质量管理工作,密切与行业主管部门之间的联系,促进施工检查的长效推进。
(4)地铁施工一线作业人员大多为农民工,他们文化程度偏低、缺乏安全与质量意识,直接导致工程事故频发和工程质量下降,加之施工企业的安全质量培训普遍缺乏有效性和针对性,导致一线作业人员安全质量意识差。必须在地铁施工过程中融入安全质量管理工作,推动一线作业人员主动保质量保安全的意识,为建设精品地铁项目夯实基础。
2地铁施工安全质量管理工作的对策
2.1完善组织机构,落实职责管理
在地铁施工过程中,要有序地进行总体施工组织,针对制约工期的关键工程进行有效的控制,坚持基础力量建设,不仅要建立健全的组织机构、加强人员配备,而且要积极落实职责分工,及时开展技术指导及生产工作。为了发挥组织机构及人员效能,必须在内部形成“分工明确、责任清晰”的组织机构。同时,进一步落实职责管理,明确领导班子的职责分工、各部门的职责范围及每名员工的岗位职责,有效推进地铁施工的顺利开展。
2.2加强人员配备,完善管理制度
在深入分析承接地铁项目实际需要的基础上,要重视各类人才的引进,加强人力资源配置,科学选拔具备丰富地铁施工经验、责任心强、年富力强、政治素质过硬的精英入驻参与项目施工。同时,积极加强制度建设,从工作职责、工作程序、日常巡查、工程监督、安全管理等方面建章立制,并在实践中不断加以完善,实现规范化和管理的有序性,关注执行,严格落实,为地铁项目的顺利推进保驾护航。
2.3严控安全隐患,强化安全意识
安全是确保完成地铁工程的前提和基础,是必须常抓不懈的重点工作。在施工过程中,要加强施工管理,严格落实安全责任制,以培训教育等方式强化各类人员的安全意识,促使全体员工逐步将“安全责任重于泰山”的理念内化于心。同时,多措并举严控安全隐患,做好安全防护管理。一方面,制定了完善的安全施工方案,加大安全生产检查及隐患排查力度;另一方面,重视施工现场的标准化建设,严格落实安全生产工作职责,购置基本安全设施,并加强对机械设备的专业性安全检查。
2.4加强学习培训,提升管理水平
要进一步加强项目施工全方位培训力度,激励员工汲取国内外优秀地铁项目建设经验,通过各类有效培训不断增强自身业务技能和素质水平,以积极向上的工作态度和令人钦佩的工作能力投入到工作之中。同时,力争在各项培训的激励下,促进全体人员严格根据技术细则进行施工,严格根据技术规范做好本职工作,为提升地铁工程的质量夯实基础。
3结语
我国是世界上地下工程大国,国家对地下工程的建设也是相当的重视,在上个世纪末,我国已开始陆续开展关于地下工程安全风险的研究活动,一些专家学者也提出了很多地下结构抗风险的设计理念,例如,同济大学地下建筑与工程系教授、博导黄宏伟对地下工程安全风险工作作出了巨大的贡献,2005年中国土木工程学会召开了中国第一次全国范围的地下工程安全风险分析研讨会,推动了地下工程安全风险研究的全面开展。总而言之,自上世纪末至今我国地铁安全风险管理有了实质性的进步,但从近几年地下工程安全事故数据来看,仍存在着许多不足,与西方发达国家相比还存在一定的差距。
2地铁工程建设安全管理存在的几点问题
1)地铁工程建设安全风险管理体制不完善。
在我国现行的一些城市轨道交通工程建设相关性法律文件,并没有明确指向对地铁工程建安全风险的相关法律文件,这一块仍存在很大的漏洞。例如,从近些年关于安全事故的评估中可以看出,对事故的发生只是做简单的分析,没有从多方面去分析事故发生的可能性,这种片面的评估实质上是排除了一些存在的风险,然而,地下工程的建设过程中的安全风险是一个动态过程,很有可能由于某种原因导致忽略的因素升级为主要矛盾,导致事故发生造成巨大的损失。
2)安全风险责任机制不合理,缺乏先进的管理经验。
在我国的工程建设体系中主要有施工方、监理方和业主三方面构成,在我国目前的工程建设管理中,安全风险责任的主要承担者是施工方,监理和业主负责监督存在较小一部分的责任。但在实际的地下工程的事故中,安全风险是由多方面引起的,并不是单一的是施工方的责任,同时,缺乏先进的管理理念,陈旧的管理机制已经完全不能适应地铁工程建设的发展。
3)缺乏专业性人才。
近年来,我国城市轨道交通得到了快速的发展,总量大、增长速度快,而技术支持和管理理念并没有完全跟上,安全管理人才和评估监理人才严重缺少,工程监测市场比较复杂。在实际的地铁工程建设中,安全监测和评估监理人员工作有着重要的地位,在地下工程的建设中,加强工程的监测和安全评估,可以最大限度的规避安全风险,即使有风险存在,可以提前发现并解决,减少损失。因此,加强地下工程人才队伍的建设也是规避地铁工程建设安全风险的重中之重。
3地铁工程建设中安全风险管理实践中存在问题的有效解决方法
1)加强地下工程安全风险管理的法律法规建设,完善体制。
国家相关部门应该建立具体详细的关于地下工程建设安全风险的法律文件,具有一定的指向性和强制性。尤其是在工程建设中的安全风险评估体系,要全面而细致,同时还要建立专项的安全风险管理资金,确保在评估过程中安全风险因素得到准确合理的评估,从而从客观上去规避和减少事故的发生。
2)建立完善的工程安全责任机制,学习和引进西方先进的管理理念。
地铁工程建设的风险因素是存在多方面的,而且还处于不断的变化之中,要改变我国建筑工程合同制将责任完全归结于施工方的局面,要将责任合理的分配到相关的各个部门,形成高效的安全管理责任机制。同时,还要不断的去学习和借鉴西方先进的管理理念和管理制度,再结合我国的地下发展的情况,形成一套独特的管理方式。
3)加强地铁工程人才队伍的建设。
首先,国家应该重视地铁工程人才的培养,加大培养资金的投入,建立与高校合作的机制,鼓励创新;其次,建立严明的奖惩制度和考核制度,同时提高地下工程部门人员的薪资,对地下工程相关部门进行严格的管理,每年进行知识技能考核,对表现优秀的予以一定的精神物质奖励,对知识技能不过关的予以淘汰;最后,引进西方优秀的管理人才和技术人才,定期到高校和相关工作部门进行讲座,同时建立专项资金,鼓励学生和员工学习。
4结语
论文关键词:地铁施工事故,风险评价,控制区间和记忆(CIM)模型
0 引言
为缓解城市空间容量不足、城市交通拥挤的状况,国内很多城市相继投资修建地铁。地铁施工具有隐蔽性、复杂性和不确定性等特点,由于建设规模庞大、发展迅速,技术和管理力量难以充分保证,造成地铁工程施工安全风险加大。[1]近年来,我国地铁工程相继发生了很多安全事故,造成很严重的人员伤亡和财产损失。因此,对地铁工程施工的安全风险进行分析和评价风险评价,并指导工程实践就显得尤为重要。
本文首先对我国近年来发生的地铁施工事故进行了统计分析,针对地铁施工安全风险因素复杂且具有评估模糊性和发生随机性的特点,建立了地铁施工安全风险CIM评估模型,最后运用这一模型对大连地铁一号线一期工程102标段进行施工安全风险评估。
1 我国地铁施工事故统计分析
近年来,国内地铁施工事故频发,给社会和国家造成不必要的重大损失和不可估量的社会负面影响。我国近年地铁施工事故统计如表1。
表1 地铁施工安全事故统计表[2]
序号
事故时间
事故地点
事故类型
事故原因
1
2009.1.12
南京地铁2号线大行宫站
坍塌
异常荷载
2
2009.1.11
上海地铁11号线曹杨路车站
火灾
安全管理制度缺失
3
2009.1.8
上海轨道交通9号线小南门站工地
机械伤害
人的不安全行为
4
2009.1.2
西安地铁二号线钟楼站
火灾
人员技术不熟练
5
2008.11.15
杭州地铁1号线湘湖站工程
坍塌
安全管理制度缺失
6
2008.11.8
南京地铁1号线南延线第15标段
坍塌
异常荷载
7
2008.07.13
上海地铁10号线杨浦区四平路
机械伤害
人安全意识差
8
2008.6.26
深圳地铁3号线
坍塌
降排水
9
2008.6.11
港铁九龙南线工程
坍塌
地质
10
2008.5.30
南京地铁二号线大行宫施工区间
坍塌
地下水
11
2008.4.20
沙坪坝区三峡广场轻轨施工
坍塌
地下管线
12
2008.4.1
深圳市地铁3号线荷坳段工地
坍塌
支护
13
2008.3.22
深圳布吉地铁3号线
水害
地下水
14
2008.3.18
西安地铁2号线北大街站
其他伤害
地下管线
15
2008.3.11
上海地铁4号线宜山路
坍塌
支护
16
2008.01.31
广州地铁5号线中山八路与南岸路交界处
坍塌
降排水
17
2008.1.18
广州地铁5号线中山八路与南岸路交界处
坍塌
施工组织混乱
18
2008.01.17
广州地铁5号线大西盾构区间
【关键词】地铁信号 运营维护 维护管理信号系统 地铁信号系统 管理
中图分类号:U231+.3 文献标识码:A 文章编号:
一.前言
近几年来,地铁系统因信号故障而引发的事故时常都有发生。2009年6月22日,美国首都华盛顿发生地铁列车相撞事故,造成9死亡75人受伤。2009年12月,我国上海地铁1号线发生两车侧撞事故,引起地铁全线瘫痪。事故中所有的地铁都由随车装载的电脑控制运行,来实现列车的行驶速度控制和刹车,同时另一个电子装置检测列车间的安全距离,一旦距离太近就自动刹车,让列车及时止步。即便如此,还是发生了严重的列车相撞事故。较多的事故调查结果均出现信号故障,或者是因为信号系统出现延误导致系统故障。前车之覆后车之鉴,历经类似事故之后,地铁运输企业开始着手改善,开始研究提高地铁信号稳定的方法,地铁信号系统的稳定成为地铁系统安全的保证,信号运营的维护管理成为地铁运输企业日常工作的重中之重。
二.地铁信号系统危险因素。
1.设备受到干扰、系统失灵影响行车安全。
通常在以下情况下,容易造成信号系统失灵:(1)系统设备受电机牵引所产生的谐波电流、静电、外界电磁波、杂散电流腐蚀等破坏和干扰,造成系统损坏或故障,导致信息丢失或破坏。(2)列车在运行中,形成的震动容易造成弱点设备的元件接点脱落、出现接触不良、接插件松动、部件损坏等问题,造成系统无法正常通信,影响行车安全。(3)在我国南方地区,特别是在沿海城市的梅雨季节、台风暴雨季节,地铁内湿度较高,容易引起电子设备受潮、浸水,造成设备失灵。同时,温度和湿度的剧烈变化导致电气元件电气参数变化,在某些电子元件上还容易形成水汽凝结,造成电气设备无法正常工作。
2.硬件设施缺乏稳定性,导致影响系统安全运行。
地铁信号系统设备质量低下、元器件的使用寿命短、性能不稳定、设备抗干扰能力差等问题,都容易造成设备发生故障。设备故障轻则造成站点和控制中心失去联系,严重情况下会造成整个地铁线路瘫痪。在地铁信号系统中,是由电子计算机系统和电子设备组成的综合系统,而电子设备和元件极易因为设备散热不良、电气线路老化、短路、设备故障或认为损坏等,造成设备破坏,甚至有可能引发火灾;在计算机系统中,系统设备可能由于接地不当,受到外界原因或自身设备、元件的损坏,造成信号故障,影响行车安全。
3.人为因素造成系统故障,影响行车安全。
在地铁信号系统中,由于系统电源故障造成断电、运营操作人员操作失误或违章操作,导致系统设备故障;信号系统中敷设在控制中心、正线地下区段的电缆受到老鼠啃咬、明火、拉扯等造成短路,引发火灾危险;系统未经安全检测或者是检测不合格就开始投入使用,导致运行无法保证稳定性,容易发生事故;信号系统中计算机网络系统存在安全漏洞,遭受木马、恶意软件、病毒的破坏或者是受到黑客的共计,造成数据丢失、运行错乱、系统故障,进而造成整个系统瘫痪。
三.地铁信号维护支持系统和信号运营维护管理。
轨道交通信号系统中,将地体信号的维护支持系统即MSS(Maintenance Support System)引入,并作为整个信号系统在进行状态监测、日常维护的辅工具,在列车自动保护系统(ATP)、列车自动运行系统(ATO)、列车自动监控系统(ATS)和计算机联锁(CBI)、信号通信等系统故障的情况下,能帮助信号维护人员将故障设备进行定位,对维修作业进行管理,并能提供维护项目相对应的指导文档,制定维护计划,完成维护管理。
1.目前我国国内地铁信号维护系统现状。
在目前,我国国内地铁信号维护系统及其配套设备,一般都是采用以下几种方式:
(1)子系统分立模式。在列车运行系统和信号系统中,每个子系统都设置了能独立进行故障诊断的系统。采用分立模式优点是能提供子系统内进行专业故障诊断,并具有分析功能,缺点是容易在各个子系统中形成信息孤岛,在维护中缺乏统一故障检测和运营维护管理,没有建立一致的信息化管理平台,不大利于设备维护的统一管理工作。
(2)ATS集中管理所有报警信息。
列车的自动监控系统(ATS)主要功能就是进行运营调度,系统只能提供有限的设备报警信息,而无法给信号维护人员提高较为完善的维护支持,导致无法系统的安排、计划维护管理工作。
(3)采用单独设置的信号维护检测子系统,管理维护工作。
目前,我国采用的CBTC系统核心设备部件都是从国外进口而来,由信号供货商提供ATP、ATS、ATO、和计算机联锁等核心设备的维护支持系统;一般在国内采购轨旁基础信号设备,并根据国家铁道部制定的标准微机监测系统进行监测,此种方式在没有实现国产化的信号系统中被广泛采用。该系统缺点是,在维护时,维护人员需要通过两套独立的系统,才能够实现对维护工作的完整支持,同时这两套独立系统之间无法进行通信,更不利于信号系统的统一管理。
2.地铁信号维护支持系统应用。
随着城市轨道交通的快速发展,地铁发展规模越来越大。在线路维修中心或是车辆段设置独立的地铁信号维护支持系统,对列车的运行进行监视,对整个信号系统的所有设备进行集中报警、集中控制,并能够对在线的信号设备进行远程维护和管理。在信号维护支持系统中,维护中心设置系统配置工作站、维护工作站、维护支持服务器;控制中心设置维护工作站和信息打印机;在主干网上设置信号工区维护终端、车站维护终端、车辆段维护终端、停车场维护终端、便携维护终端;由网络设备、轨旁设备、车载设备、计算机设备和基础信号设备、微机监测系统组成信号设备。
维护支持系统的中心级子系统中,包括位于维修中心的数据库服务器和中央应用,其主要功能是用于采集ATO、ATO、ATS、CBI等系统设备的工作状态,并记录运行时间和设备报警情况,将报警的历史记录保存在数据库中,并由系统管理全线路维护支持系统的相关参数、维护计划和维护工单。在维修中心和控制中心的维护调度工作站上,主要是用来提供全线设备的运行状态和实时显示报警内容,可进行报警确认,完成维护工单的下达,跟踪维护工单的执行情况,制定维护计划。
在车站级子系统中,信号工区维护终端用来接收中心维护调度所下达的维护指令,在查阅维护相关文档后,将设备维护结果上报给中心维护调度。设置在设备集中站的车站维护终端,既有信号工区维护终端的基本功能,同时也可以作为信号微机监测站机,对基础信号设备的状态信息进行收集;在停车场或车辆断的维护终端,主要功能要和信号工区维护终端功能一样,是对工区信号的补充。
3.维护管理。
根据不同类型的报警信息,地铁信号维护支持系统提供了不同类型的维护管理,其中包括预防修、计划修和状态修三种。预防修是指在故障发生之前进行报警,在车辆运行一定公里数、设备运行了一段时间周期时,根据维护程序提示进行设备的预防性检查。在设备的运行过程中,技术参数出现频繁超出预设限值时,维护支持系统则发出“设备可能发生故障,需要检修”的警告,提升维护人员进行检修。计划修是维护支持系统提供较为完整的设备基础信息,将报警记录、维护历史记录等相关资料进行统计分析,辅助维护人员定期对设备进行检查维护。在设备的监测过程中,发现设备出于异常状态,根据设备维护程序,对故障设备或是故障的部件进行更换,替换完成后进行调试,完成状态修。当前的地铁信号技术较为成熟,系统设备较大部分都使用了模块化设计,状态修可在不影响设备正常运行的情况下,完成故障设备的更换,优化了维护管理。
四.结束语
我国的城市交通轨道发展正迎来一个新的建设高峰,信号系统的安全成为推动城市轨道交通健康发展的基本保证。在进行信号系统运营维护管理时,通过维护支持系统的应用,实现信号报警和信息的集中管理,有利于提高信号安全性能,保障行车安全。
参考文献:
[1] 王红光 浅谈地铁信号运营维护管理 [期刊论文] 《科技风》2010年15期
[2] 吴国兴 Wu Guoxing 以可靠性为中心的维修技术在地铁信号系统中的应用
[期刊论文] 《城市轨道交通研究》 ISTIC PKU2007年9期
[3] 周庭梁 张兵建 Zhou TingliangZhang Bingjian 地铁的信号维护支持系统
[期刊论文] 《城市轨道交通研究》 ISTIC PKU2010年8期
[4] 王昆 地铁信号计算机维护管理系统研究 [会议论文] 2006首届城市轨道交通关键技术论坛(第十七届地铁学术交流会)
[5] 朱杰 浅谈地铁信号的维护管理 [期刊论文] 《城市建设理论研究(电子版)》 2012年35期
[6] 孙思南 刘金叶 Sun SinanLiu Jinye 轨道交通信号系统的可靠性、可用性、可维护性和安全性分析[期刊论文] 《城市轨道交通研究》 ISTIC PKU2007年11期
论文关键词:效益,车站设备,维修模式
0 引言
传统上人们习惯地将地铁作为政府公益性项目,认为政府部门对地铁的经营亏损弥补是理所当然的,往往不从转换经营理念着手,在盈利模式的研究上做得不够。南京地铁运营分公司在总公司的领导下,秉承“承恩施善、德贯全程、敢担大任、回馈社会”的企业宗旨,居安思危,高瞻远瞩,早在地铁一号线建设的后半期就开始有意识地着手地铁设备维保模式的研究,探索在运营初期做到收支平衡、不使用政府财政补贴的可能性。地铁运营5周年以来,南京地铁运营分公司在设备维修管理工作中,学习国内外设备管理的先进经验和管理策略维修模式,结合车站设备管理的特点和设备管理的高可靠性、安全性的本质要求,开展了以乘客价值提升为中心的效益型车站设备维修模式研究。通过加强内部管理,实施科学的预算,节约开支,降低成本,在管理上做好运营盈利模式的扩充。同时做好政府对轨道交通运营企业的政策扶持和补贴的研究。
南京地铁公司践行科学发展,创新管理模式,通过科学高效的制度设计、精细化的管理水平以及不折不扣的执行力,在国内率先实现了造价最省、用工最少、开通首先在轨道交通行业同口径统计下略有盈余的佳绩,备受同行瞩目,打造了具有南京特色的经济节约型地铁。
1 南京地铁效益型的车站设备维修管理模式
1.1 创新运作机制,确保安全
南京地铁通过摸索、实践、总结、完善,在创建设备维修工作机制上不断更新“版本”,形成高效运作机制,保障了地铁设备维修管理与运营的安全、顺畅论文的格式。
一是改善了维护机制,对列车、信号等设施系统的维护,确定了“降低故障率,提高完好率”的目标。针对相对粗放的传统的计划预防修体制,创新性地提出在设备管理现场采用世界先进的全面生产维护(TMP)和可靠性为中心的维护(RCM)方法。特别是可靠性为中心的维护,专注于防止故障,按重要性将设备故障进行降序排列,等级划分,对非常类似的设备采用“模板”方法维修模式,避免作用很小或没有作用的维护工作。从而更加有益于安全和环保;减少了不必要的维护带来的故障;提高了设备可靠性;降低维护费用等。
二是深化了安全保障机制。没有安全,就没有运营。南京地铁把安全工作当作头等大事来抓。在三级安全管理保证体系、安全生产责任制的落实、安全规章制度的建立、员工安全培训、安全检查和事故责任追究六个环节上进行了深化,确保了运营的安全。
三是完善了应急机制。不断优化完善运营应急预案。在原有预案基础上,经过多次更新,南京地铁运营分公司制定完善了运营生产、治安消防、自然灾害等各类预案及其实施管理办法。
四是实施了联动机制。经过几年与地铁公安分局的磨合,本着地铁为乘客服务,公安为地铁服务的指导思想,双方梳理了各自工作流程,相互配合,紧密对接,制定了《警地联动工作的实施意见》,标志着各自工作纳入了规范化、制度化的轨道,加强了互动,促进了团结,提高了效率,取得了成效。
1.2 长效维修模式管理,控制运营成本
为了更好的履行企业的使命、实现其目标,南京地铁通过几年的设备维修模式的探索,尤其是针对以乘客服务为中心,逐步建立以乘客价值为提升的效益型的车站设备维修管理模式,其总体框架如图1所示。
图1 南京地铁效益型的车站设备维修管理模式
从图1中可以看出,首先在盈利模式方面,南京地铁车站设备维修管理主要是获得经济效益、促进人机和谐论文的格式。为此维修模式,在收入方面通过改善设备维护状况,提升地铁运营安全性和可靠性,诱增客流以提高运营的票务收入,实现“增收”,在支出方面主要是控制运营成本,实现“节支”。
其次,在维修管理模式方面,主要体现在以可靠性为中心设备维护管理策略。通过车站设备管理的可靠性和安全性的提升,为车站设备管理现场提供更安全、更规范、更简明和更人性的服务。一方面通过开展关键设备的RCM系统分析,提升车站设备维护管理的可靠性和安全性;另一方面通过开展TPM的规范化车站设备管理现场,提供更加规范的车站设备检维修流程与技术要求,提升设备维护质量,降低维修成本。与此同时,在南京地铁一线设备房设备管理现场,深入推广一目了然工程与“6A+”设备房标识系统,从而实现设备维修管理的更人性、更简明的管理模式,提升设备维修管理的工作效率、管理效率和经济效率。
再次,在内部运作方面,一方面是要以可靠性为中心的模式创造提供后台支撑,主要包括安全管理、维修模式管理,在确保安全的前提下,强化设备维修管理的规程管理、流程管理和应急管理;另一方面需要从企业的经济效益出发,在票价一定的情况下维修模式,需要不断的控制成本,从降低能耗、减少维修消耗、备件国产化、员工自主管理、实施精益维修以及委外管理等六个方面实施成本管理。
最后,在实施保障方面,主要是通过设备维修管理的组织保障(主要是组织结构设计与职责划分,如车站设备属地化管理、建立同心共保体系等)、人员保障(主要是人员的选聘、培训和考核激励)、信息保障(信息系统(PDA)的建立与应用、车站设备状态监控系统)的实施与控制,提高企业运作效率,持续改善运作流程。
2 结论
为了更好的履行大城市公共交通企业的使命、实现广大乘客快速移动的目标,南京地铁通过几年的运营探索,初步建立起具备特色的以服务乘客为中心的车站设备效益型维修管理模式,通过乘客价值管理,为乘客提供比其他公共交通工具更安全、更快捷、更便利和更舒适的运营服务,一方面提升乘客的满意度;另一方面,通过适时、适度、可靠的车站设备、行车设备的维修服务改善和管理模式策划,降低设备评价故障率和提供乘客能够明显感知到的便利的换乘条件和高效的设备现场管理。
【关键词】地铁工程,深基坑,施工技术,风险管理
中图分类号: TU74 文献标识码: A 文章编号:
一、前言
随着经济社会的发展,地铁已经成为我国许多城市不可缺少的交通设施。而地铁深基坑工程具有开挖难度大、费用高、降水困难及周围环境影响大等特点,它已经成为地铁建设中的一大难题。深基坑工程质量的好坏,直接影响到基坑工程的造价和安全。深基坑施工对保护周边建筑的安全具有重大的经济效益和社会效益。因此,在新时期,伴随着城市化建设步伐加快,加强对城市地铁的施工技术管理和风险控制,对完善城市的交通网络,保证地铁系统的运行安全具有十分重要的社会经济意义。
二、地铁深基坑施工技术要点控制
1.基坑围护支撑体系
(一)地铁深基坑支护方式包括地下连续墙+支撑、围护桩+支撑、土钉+喷射混凝土等支护形式,受场地限制一般采用围护桩+内支撑的支护体系,根据土体侧压力、地下水位情况确定围护桩类型、桩径及间距。围护桩施工一般采用冲击钻、旋挖钻、全套管回转钻、人工挖孔等工艺。冲击钻、旋挖钻对地质条件比较苛刻,在砂卵石、软土地层中成孔难度较大,且噪音大、污染环境、工艺落后,很难在市区施工中推广,全套管回转钻成孔速度快,精度高、污染轻,适用于所有地层,是目前围护桩施工中值得大力推广的先进工艺。
(二)钻孔灌注桩施工完成后,进行冠梁处土方开挖施工,土方开挖采用挖掘机或装载机直接将土方装车运走,开挖至设计冠梁底标高后进行冠梁及砖挡墙施工,冠梁以上土方开挖采用自然放坡形式。待挡墙施工完毕后对挡墙背后采用粘土回填并夯实至地面。冠梁施工前需将钻孔桩桩头凿除,清洗、调直桩顶钢筋,冠梁主筋应与桩顶锚固筋焊接,以保证结构的整体性。
(三)深基坑钢管内支撑体系是保证深基坑稳定关键因素,根据土体侧压力值确定钢管直径、管壁厚度等参数。角部支撑由于受力复杂是内支撑体系控制的关键环节,为防止角部支撑滑动应安装防滑装置。在基坑开挖过程中充分利用“时空效应”,钢支撑的安装和预应力的施加应控制在12h以内。施工中应作到随挖随撑,防止开挖深度与钢支撑架设不匹配造成基坑监测值变化异常,影响基坑稳定。
2.土方开挖及其施工要点控制
基坑开挖按照“分层分段开挖,随挖随撑,开挖与支撑结合”的原则,采取竖向分层、纵向分段的措施开挖,及时支撑,减少围岩土体暴露区域和时间。基坑开挖中设置集水槽,集水槽随开挖随加深,将基坑中积水及时抽出,保证土方开挖无水作业。
土方开挖采用竖向分层、纵向分段拉槽、横向扩边的原则,每1层每1段土方施工中,在横断面跨中开中槽,由车站东端开始沿纵向挖掘;由中槽向两侧开挖面进行开挖作业。中槽的大小首先要满足挖掘机回转弃土的要求,同时要尽可能多地保留两侧土体,以支撑围护结构,减小对周边环境的扰动,并满足钢支撑施作要求。中槽开挖至4m后架设钢支撑,然后横向扩边拓展,挖至钻孔桩附近时人工配合,以免机械开挖破坏围护桩。当放坡开挖至坡脚线附近运输车辆无法进入时,将采取多台挖机接力倒运开挖;局部位置无条件作业的,可用坑内挖机将土方装至提升料斗内,再用行轨龙门将其吊。
(一)土方开挖过程必须严格接照技术方案设定的顺序分段分层开挖,严格做到开挖一层、支护一层,上层未支护完,不得开挖下一层,并且做到不得在大雨天开挖施工。
(二)根据钢支撑位置确定基坑竖向分5层开挖,每层开挖至钢支撑下50cm。开挖完成及时安装钢支撑,按设计要求预加轴力后方可继续开挖;第5层开挖至设计坑底标高以上20~30cm时进行人工清底,以控制好基底标高和防止土层扰动。
(三)土方开挖前必须先放边坡线 ,土方开挖中必须随开挖进度放出开挖边线,以便及时控制开挖深度及边线,避免超挖或开挖不足。
(四)坑底人工的清土、基坑边角部位和桩边机械开挖不到之处的土方应配备足够的人工及时清运至挖机作业半径范围内,及时通过挖机将土方挖走,避免误工。
(五)基坑开挖尤其是最底一层开挖中必须特别小心,避免挖斗碰撞基桩,在各层开挖中均应避免挖机直接碾压桩头,若挖机无法避开密集的桩头时,需先截掉部分桩头。
三、地铁深基坑风险管理与控制
建设、规划、勘察、设计、施工、监理、第三方监测等单位组成深基坑施工风险管理体系的基本单元。根据深基坑风险来源分为客观风险和主观风险,主观风险包括各参建单位风险管理不到位,如由于前期拆迁影响造成后期工期压力较大,出现盲目抢工;设计环节对区域地质条件认识不足;监理单位技术力量和同类工程管理经验薄弱;施工单位施工和技术管理不到位等。客观风险包括复杂地质、水文条件,周边管线及建筑物对深基坑施工造成的影响。
1.严格控制施工设计
设计阶段应保证现场勘察资料的真实性、完整性,设计意图应充分结合现场实际具有可操作性,如有的设计单位为了提高基坑的稳定性,采取加密钢支撑、底撑换撑设计方案,造成施工阶段实施难度较大,现场可操作性差,反而对深基坑的稳定性造成了潜在安全隐患。施工方案的编制和审核是降低深基坑风险的另一个关键因素。方案编制阶段应充分考虑周边管线对深基坑造成的潜在影响并采取相应的措施。
2.科学进行项目决策
地铁深基坑工程的复杂性已远远超出任何一个专家的知识领域或一种专业的专家群,而是需要技术、管理、财务、环境等一大批相关的不同领域的专家群体。利用群体决策支持系统可最大限度的发挥各决策人员的作用,增强决策结果的可信度,提高决策效果,帮助管理人员“做正确的事情”,将工程总体风险值压缩在合理的范围之内。
3.建立完善的深基坑风险监控体系,实现风险控制程序化
建立深基坑风险评估、分级、变形指标、风险预警控制体系,严格按程序进行风险控制,实现风险控制科学化、程序化。在设计阶段根据深基坑周边环境和基坑深度进行风险评估及分级,确定变形临界值,对风险进行量化。在施工阶段根据基坑变形监测情况及时通过监测平台预警,根据预警响应程序参建各单位采取措施,对防止事故发生起到了一定的积极作用,这套风险管理体系应在地铁行业大力推广。
4.施工条件的具备是工程顺利实施的前提。重要部位和环节施工前,对技术、环境、人员、设备等相关条件是否满足工程质量和安全生产要求的检查验收,成为有效规避或减少安全质量事故的有效措施,近来采取对重要部位和环节进行分类,并按制定的检查要素,组织施工前条件验收成为风险控制的重要手段。城市地下空间项目是在已有城市基础设施具备的环境中实施,项目的本身往往又是多个分项组成,而分项目实施的顺序,对地下工程来说,决定了项目设施的成败和功效,具有十分的重要的意义,控制分项目实施的步骤也是风险控制的重要因素。
四、结束语
地铁深基坑工程难度大,基坑安全控制极为重要。深基坑工程应选择合适的支护形式和降水方式。在施工过程中,基坑开挖要严格按照设计进行,同时密切关注周围地表沉降、围护桩水平位移等监测监测数据。良好的施工安全风险管理体系为深基坑工程的顺利进行提供保障。加强其施工技术管理和风险控制具有十分重要的意义。
参考文献:
[1]-刘翔,罗俊国,王玉梅 地铁深基坑工程风险管理研究[期刊论文] 《施工技术》 ISTIC PKU -2008年7期
[2]刘臣俊, 深基坑工程施工中的安全风险管理研究 [会议论文] 2010 - 2010城市轨道交通关键技术论坛暨第二十届地铁学术交流会
[3]-钱健仁,黄捷,吴盛,刘壮志 郑州地铁车站超深基坑施工风险管理与控制[期刊论文] 《华北水利水电学院学报》 -2011年3期
【关键字】地铁建设桩基托换技术应用研究
中图分类号:U231+.3 文献标识码:A 文章编号:
一、基处理基本原则
根据施工经验并结合本工程的具体情况,桩基处理应遵循如下几项基本原则:
(1)新托换结构体系的承载力有足够的保证和储备。
(2)托换体系的总变形应控制在原建筑物允许的局部附加变形范围以内。
(3)托换施工过程中必须保证把上部荷载从原来的桩基上可靠的转换到新的托换结构体上,并有效地控制被托换结椅在施工中的有害变形。
(4)桩基托换后应保证区间隧道的施工安全,并严格控制隧道施工对新托换结构的影响坏。
(5)桩基托换施工不得改变原建筑物的使用功能。
(6)桩基托换前后对影响范围内地表下沉、建筑倾斜、变形及下沉等进行严格的监测,并用于指导施工。
二、地铁施工中的桩基托换技术
桩基托换技术涉及专业类别多、技术含量高,桩基托换把已建成建筑物中的柱与托换梁连接起来,将建筑物上部的荷载传递到托换梁上,再传递到托换桩上。桩基托换技术的核心是已建成建筑物中的柱和新建桩基间的荷载传递,在托换施工过程中,结构变形限制在设计允许的范围。中国桩基托换技术主要有主动和被动托换技术两种类型:
1、主动托换技术。
主动托换的结构变形控制更主动。主动托换技术是施工前,运用顶升装置动态调整上部荷载及变形,对新建桩和托换体系施加荷载,部分消除已建成建筑物结构长期变形的效应。托换建筑物的托换荷载大、变形控制要求严格,被托换桩随托换梁一起上升,使上部建筑物荷载全部转移到托换梁上,通过顶加载,部分消除新桩和托换结构的变形,使结构变形控制在较小范围。
2、被动托换技术。
被动托换技术一般用于托换结构荷载较小的建筑物,在施工安全上可靠性较低。被动托换技术的原桩上部结构荷载在施工过程中,随托换结构的变形被动地转换到新桩,托换后无法调控上部结构的变形。当托换建筑物荷载小、变形要求不高时,在托换结构的托换桩切除后,可不采取其它调节变形,直接将上部荷载通过托换梁传递到新桩。不调节托换后桩和结构变形,由托换结构承受变形的能力控制上部建筑物的沉降。基础托换技术难度高、造价较高、工期长,必须精心设计、安全施工,施工前要详细勘察建筑物的地基情况,详细了解已建成建筑物的桩基的类型和结构受力情况,以便确定合适的托换桩和技术。为保障工程顺利实施,需要特别重视以下几个问题:
(1)对整体结构性能的充分了解。结构现状的调查与分析十分重要,特别是对结构目前受力性能和主材性能分析。
(2)根据已建成建筑结构和周围建筑物的环境,确定托换结构类型及托换施工方法。
(3)保障已建成建筑物和新施工建筑物结构的托换点处连接。在基础托换中,有可能因为应力集中而导致结构出现损坏。
(4)托换方案的选择受到场地的限制、降水、基础开挖等多种因素的制约。由于地基条件的复杂性、基础型式的不同、地基与基础相互作用等多种原因,需要采取严密的监测反馈措施,全面监控施工过程。
三、桩基托换的主要施工工艺。
1、桩基托换钻孔桩施工。
托换钻孔桩依据其直径的不同可分为两种类型,因为有的托换桩之间的间距过小,所以普通的钻机不能满足施工的需求,于是对钻机钻杆以及钻头都进行饿改造,在遇到无法钻进的情况时,改用小型的冲孔钻机钻进,从而加快了钻孔桩的施工效率,保护了周边的建筑物。钻孔桩施工是一种比较成熟的施工工艺,但由于施工时受到施工环境的影响,因此,必须进行施工工艺和设备的改善。
2、基坑支护以及开挖。
基坑开挖的深度较深,以及受施工环境的限制,选择进行放坡分段分层开挖,采用人工开挖加上小型挖掘机开挖;安排足够的施工人员,尽快完成基坑的开挖工作。钢板桩和旋喷桩共同进行支护的支护方式。
3、临时性钢支架以及吊扣轨施工。
在桩基托换过程之中,为确保广深铁路桥的正常运营,在桩基施工之前,需设置临时性的钢支架。这种临时钢支架选用的是微型嵌岩钢管群桩。微型嵌岩钢管群桩的施工方法是:先使用地质钻机进行钻孔,然后放入钢管,再将孔内以及桩基沉渣清除干净,灌入碎石子,注入水泥浆,就形成了钢管桩。为确保施工的绝对安全,还要进行吊扣轨加固的施工。于工字钢梁顶部摆放不同型号的H 型工字钢分别作为吊扣的纵梁和横梁。
4、桩帽以及托换梁施工。
桩帽之间的钢筋密度较大,并且要灌入混凝土,在桩帽顶面要预留锚固钢垫板。桩帽是托换梁受力转移到新桩的主要结构,它可以承托千斤顶与临时可调支座。桩基托换施工中最关键的结构就是托换梁施工。托换梁施工采用纵向其后张预应的体系。托换梁和承台之间是通过梁托承台进行联系的。托换梁的施工的工艺流程主要为:浇注硂垫层、新旧硂界面处理、钢筋绑扎、浇注结构硂以及硂养护。托换梁混凝土用商品防水混凝土,混凝土的浇注过程要连续,浇注完毕后,要进行洒水养护,从而保持混凝土表面的湿润,避免出现混凝土开裂的现象。
5、加载托换施工。
在桩顶和托换梁之间要预留一定的距离升顶加载空间,在升顶的过程中,支座随千斤顶的升高而升高。若千斤顶突然出现故障,则支座能够起到临时支撑的作用。托换梁能否荷载转移的关键在于加载升顶与张拉预应力的协调,为避免因荷载的突变而导致的事故,需要严格控制顶力。托换完毕后,浇注托换梁与桩顶间的混凝土。
6、围堰施工。
进行围堰施工的主要目的在于:将桥梁下的水抽取干净。首先在钢板桩的顶部做围堰,并在围堰与钢板桩上钻出合适的洞,用螺纹钢使围堰和钢板桩贯穿起来,再把螺纹钢焊在型钢上,清除围堰的表层淤泥以及杂土,排放出围堰内的积水,及时修整围堰的内坡,补土夯实,并且在围堰的中间用袋装土以及黏土填实,从而防止渗漏问题的出现。
四、施工注意事项
1、植筋钻孔若碰到钢筋应立即移位再钻。以免伤害原钢筋;
2、植筋前必须将钻孔冲干净,保证胶结质量;
3、托换梁施工前。新旧混凝土表面必须凿毛,深度宜为10em~20em,然后将凿毛面用水冲洗干净,并充分湿润;
4、托换梁混凝土浇筑前4h内,必须在凿毛面上涂刷环氧乳液水泥浆界面处理剂;
5、托换梁预顶施工分级进行,要求在施工中要做到准备充分,操作细微,监控严密,措施安全可靠。
6、对建筑物及基础沉降量、裂缝变化等的监测贯穿整个基础托换施工过程,直至拆除临时托换梁和监测结果稳定后。
【参考文献】
[1]宋伟.孙明伟地铁基坑工程中开挖方案对施工成本及工期的影响[期刊论文]-科技信息2011(4)
[2]王俊.Wang Jun 地铁敞开式TBM过站施工技术[期刊论文]-现代城市轨道交通2011(3)