时间:2023-03-17 18:02:10
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇无线传输技术论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
关键词:AT89C51串行口无线数字电台串行通信
一般的数字采集系统,是通过传感器将捕捉的现场信号转换为电信号,经模/数转换器ADC采样、量化、编码后,为成数字信号,存入数据存储器,或送给微处理器,或通过无线方式将数据发送给接收端进行处理。无线数据传输系统就是样一套利用无线手段,将采集的数据由测量站发送到主控站的设备。
1系统组成
系统组成如图1、图2所示。
系统由测量站和主控站两部分组成。测量站主要完成对现场信号的采集、存储,接收遥控指令并发送数据。主控站的主要工作是发送遥控指令、接收数据信息、进行数据处理和数据管理、随机显示打印等。
2AT89C51与数字电台的串行通信
Atmel公司的AT89C51单片机,是一种低功耗、高性能的、片内含有4KBFlashROM的8位CMOS单片机,工作电压范围为2.7~6V(实际使用+5V供电),8位数据总线。它有一个可编程的全双工串行通信接口,能同时进行串行发送和执着收。通过RXD引脚(串行数据接收端)和TXD引脚(串行数据发送端)与外界进行通信。
2.1通信协议与波特率
数字电台与单片机、终端主控机的通信协议为:
通信接口——标准串行RS232接口,9线制半双工方式;
通信帧格式——1位起始位,8位数据位,1位可编程数据位,1位停止位;
波特率——1200baud。
数字电台选用Motorola公司的GM系列车载电台,工作于VHF/UHF频段,可进行无线数传(9线制标准串行RS232接口),也可进行话音通信;采用二进制移频键控(2FSK)调制解调方式,符合国际电报电话咨询委员会CCITT.23标准。在话带内进行数字传输时,推荐在不高于1200b/s数据率时使用。实际使用时,电台工作于220~240MHz频率范围,采用半双工方式(执行收、发操作,但不能同时进行)即可满足系统要求。
2.2AT89C51串行口工作方式
AT89C51串行口可设置四种工作方式,可有8位、10位和11位帧格式。本系统中,AT89C51串行口工作于方式3,即鳘帧11位的异步通信格式:1位起始位,8位数据位(低位在前),1位可编程数据位,1位停止位。
发送前,由软件设置第9位数据(TB8)作奇偶校验位,将要发送的数据写入SBUF,启动发送过程。串行口能自动把TB8取出,装入到第9位数据的位置,再逐一发送出去。发送完毕,使TI=1。
接收时,置SCON中的REN为1,允许接收。当检测到RXD(P3.0端有“1”到“0”的跳变(起始位)时,开始接收9位数据,送入移位寄存器(9位)。当满足RI=0且SM2=0或接收到的9位数据为1时,前8位数据送入SBUF,第9位数据送入SCON中的RB8,置RI为1;否则,这次接收无效,不置位RI。
串口方式3的波特率由定时器T1的溢出率与SMOD值同时决定:
方式3波特率=T1溢出率/n
当SMOD=0时,n=32;SMOD=1时,n=16。T1溢出率取决于T1的计数速率(计数速率=fosc/12)和TI预置的初值。
定时器T1用作波特率发生器,工作于模式2(自动重装初值)。设TH1和TL1定时计数初值为X,则每过“28-X”个机器周期,T1就会发生一次溢出。初值X确定如下:
X=256-fosc×(SMOD+1)/384×BTL
本系统中,SMOD=0,波行率BTL=1200,晶振fosc=6MHz,所以初值X=F3H。
2.3AT89C51与数字电台的硬件连接
AT89C51与数字电台的硬件连接如图3所示。
系统采用异步串行通信方式传输测量数据。利用单片机串口与数字电台RS232数据口相连。电台常态为收状态(PPT=0,收状态;PPT=1,发状态),单片机P3.5脚输出高电平。单片机使用TTL电平,电台使用RS232电平,由MAX232完成TTL电平与RS232电平之间的转换。3片光电耦合器6N137实现单片机与电台之间的电源隔离,增强系统抗干扰性能。
单片机通过带控制端的三态缓冲门74HC125、非门74HC14控制电台的收发转换,以及指令的接收和数据发送。接收时,P3.5=1,c2=1,74HC125B截止;P3.5经74HC14反相、光电隔离,使电台PPT脚为低电平,将其置为接收状态;同时c1=0,74HC125A导通,接收的指令由电台的RXD端输入,经MAX232电平变换、光电隔离、74HC125A缓冲门,送入单片机RXD脚。发射时,P3.5=0,经74HC14反相、光电隔离,使电台PPT脚为高电平,将其置为发射状态;同时c1=1,74HC125A截止,c2=0,74HC125B导通,数据由单片机TXD脚输出,经74HC125B缓冲门、光电隔离、MAX232电平变换,通过电台TXD端口将数据发送出去。
3通信软件设计
通信软件至关重要,一旦出现问题,整个系统就会瘫痪。采取差错控制与容错技术是非常重要的。
*主控站发送的指令中包含一定数量的同步符55H和3字节的密码。测量站在连续收到5个同步符后进行密码验证,验证通过后正式接收指令字节;如未通过,则测量站发一信号让主控站重发,三次验证不过则停发该命令。测量站发/主控站收时,验证方式与此相同。验证通过后,测量站开始发送数据。
*一个指令由3字节构成,第二字节等于第一字节加上35H,第3字节等于第二字节加上36H。如果收到的指令不符合此规则,则重发该命令,连续三次错误时停发。
*主控站每发一个指令,测量站都回送一个应答信号。该应答信号中包含原指令样本。
下面给出单片机串行口与电台的基本通信程序。
初始化程序:
BTLEQU2FH;波特率放在内部RAM的2FH单元
MOVTMOD,#21H;T0方式1,16位计数器,T1方式2,串口用
SETBTR0;启动T0
MOVBTL,#0F3H;波特率设定为1200
MOVSCON,#0C0H;串口方式3,9位数据,禁止接收
接收及验证程序:
NUMEQU2BH;同步符个数值存放在内部RAM的2BH单元
TEMPEQU2CH
ROM-CH:DB55H,55H,55H,55H,55H,55H,55H,55H,55H,55H
DB55H,55H,55H,55H,55H,55H,55H,55H,55H,55H;20字节同步符
MIMDB''''WSC'''':3字节密码“WSC”
SETBP3.5;置电台收状态
SETBREN;允许串口接收
A1:MOVNUM,#0;记录连续到同步符55H的个数
A2:JBRI,A2;串口有数据转A3
A3:CLRRI;清接收中断标志
MOVA,SBUF;读串口数据
CJNEA,#55H,A1;不是同步符转A1
INCNUM;收到的同步符个数加1
MOVA,NUM;取收到的同步符个数
CJNEA,#5,A2;未收够连续5个55H转A2
A4:MOVNUM,#0;密码验证,记录收到密码字节数
A5:MOVDPTR,#MIM;密码字符首址
MOVA,NUM
MOVCA,@A+DPTR;查表取密码
MOVTEMP,A;保存密码
JBRI,A6;串口收完一个字节转A6
…
A6:CLRRI;清接收中断标志
MOVA,SBUF;读串口数据
CJNEA,TEMP,A4;与密码不符转A4
INCNUM;收到的密码个数加1
MOVA,NUM;取已收到的密码字节数
CJNEA,#3,A5;密码未收完转A5
发送程序:
CLRP3.5;置电台发状态
MOVB,#23
MOVDPTR,#ROM-CH
B1:CLRA
MOVCA,@A+DPTR;查表发送同步符和密码共24字节
INCDPTR
LCALLSEND-CH;调发送单字节子程序
DJNZB,B1
…
CLRA
MOVDPTR,#7000H;外部RAM数据首址,发送外部RAM中的数据到电台
B2:CJNER4,#0,B3
CJNER3,#0,B3;R4R3=发送字节数
B3:MOVXA,@DPTR;取数据
INCDPTR
LCALLSEND-CH
CJNER3,#0,B4
CJNER4,#0,B5
B4:DECR3
LJMPB2
DECR3
DECR4
LJMPB2
…
SEND-CH:SETBTB8
MOVSBUF,A
DB0,0,0,0,0,0,0,0
JNBTI,$;延时4μs
CLRTI
RET
[论文摘要]3G的时代已经来临,其主要技术标准WCDMA和CDMA2000谁优谁劣自然引起了我们的关注。本文从各个方面对两个技术标准做了全面的对比研究。
一、引言
上世纪70年代末,诞生了被称为第一代蜂窝移动通信系统的双工FDMA模拟调频系统,但由于模拟系统固有的先天缺陷,在90年代初被以TDMA为基础的第二代数字蜂窝移动通信系统所取代,相对FDMA系统有诸多优点,如频谱利用率高,系统容量大、保密性好等。与此同时产生了以CDMA为基础的数字蜂窝通信系统,相比TDMA系统具有低发射功率、信道容量大、软容量、软切换、采用多种分集技术等优点。
随着网络的广泛普及,图像、话音和数据相结合的多媒体和高速率数据业务的业务量大大增加,人们对通信业务多样化的要求也与日俱增,而一代二代系统远远不能满足用户的这些需求,所以诞生了第三代移动通信技术,它能够处理图像、音乐、视频流等多种媒体形式,提供包括网页浏览、电话会议、电子商务等多种信息服务。国际上承认的3G标准有三个:CDMA2000、WCDMA以及TD-SCDMA,这里主要从各个方面做WCDMA和CDMA2000的对比研究。
二、WCDMA和CDMA2000的综合比较
由于WCDMA和CDMA2000这两种技术都是将CDMA技术用于蜂窝系统,许多的思想都是源于CDMA系统,因此WCDMA和CDMA2000有许多相试之处:从双工方式上看,WCDMA和CDMA2000属于FDD模式。WCDMA和CDMA2000都满足IMT-2000提出的技术要求,支持高速多媒体业务、分组数据和IP接入等。但它们在技术实现、规范标准化、网络演进等方面都存在较大差异。
WCDMA和CDMA2000各有优势和缺点。WCDMA技术较成熟,能同广泛使用的GSM系统兼容;相比第二代通信系统能提供更加灵活的服务;而且WCDMA能灵活处理不同速率的业务。其缺点是只能共用现有GSM系统的核心网部分,无线侧设备可以共用的很少。
CDMA2000的优势是可以和窄带CDMA的基站设备很好地兼容,能够从窄带CDMA系统平滑升级,只需增加新的信道单元,升级成本较低,核心网和大部分的无线设备都可用。容量也比IS-95A增加了两倍,手机待机时间也增加了两倍。缺点是CDMA2000系统无法和GSM系统兼容。
1.WCDMA与CDMA2000的物理层技术比较
WCDMA和CDMA2000物理层技术细节上有相似也有差异,由于考虑出发点不同,造成了不同的技术特点。WCDMA技术规范充分考虑了与第二代GSM移动通信系统的互操作性和对GSM核心网的兼容性;CDMA2000的开发策略是对以IS-95标准为蓝本的窄带CDMA的平滑升级。
(1)这两个标准的物理层技术相似点可以归纳为以下几点:
①内环均采用快速功率控制。CDMA系统是干扰受限系统,因此为了提高系统容量,应尽可能的降低系统的干扰。功率控制技术可以减少一系列的干扰,这意味着同一小区内可容纳更多的用户数,即小区的容量增加。因此CDMA系统中引入功率控制技术是非常必要的。
②系统都支持开环发射分集,信道编码采用卷积码和Turbo码。
③系统均采用软切换技术。所谓软切换是指移动台需要切换时,先与新的基站连通再与原基站切断联系,而不是先切断与原基站的联系再与新的基站连通。软切换只能在同一频率的信道间进行,因此模拟系统、TDMA系统不具有这种功能。软切换可以有效地提高切换的可靠性,大大减少切换造成的掉话。
④WCDMA工作频段:1900~2025MHz频段分配给FDD上行链路使用,2110~2170MHz频段分配给FDD下行链路使用,2110~2170MHz频段分配给TDD双工方式使用。其中WCDMA和CDMA2000利用1900~2025MHz频段(上行),2110~2170MHz(下行)。
(2)两个标准的物理层技术差异可以归纳为以下几点:
①扩频码片速率和射频带宽。WCDMA根据ITU关于5MHz信道基本带宽的划分规则,将基本码片速率定为3.84Mcps。WCDMA使用带宽和码片速率是CDMA2000-1X的3倍以上,能提供更大的多路径分集、更高的中继增益和更小的信号开销。CDMA2000分两个方案,即CDMA2000-1X和CDMA2000-3X两个阶段。CDMA2000系统可支持话音、分组数据等业务,并且可实现QoS的协商。室内最高数据速率达2Mbit/s,步行环境384kb/s,车载环境144kb/s。CDMA2000在前向和反向CDMA信道在单载波上采用码片速率1.2288Mcps的直接序列扩频,射频带宽为1.25MHz。
②支持不同的核心网标准。WCDMA要求实现与GSM网络的兼容,所以它把GSMMAP协议作为上层核心网络议;CDMA2000要求兼容窄带CDMA,因此它把ANSI-41作为自己的核心网络协议。
③WCDMA进行功率控制的速度是CDMA2000的2倍,能保证更好的信号质量,并支持多用户。
④为了使支持基于GSM的GPRS业务而部署的所有业务也支持WCDMA业务,为了完善新的数据话音网络,CDMA2000-1x需要添加额外的网元或进行功能升级。
2.WCDMA与CDMA2000网络接口的比较
3G标准的基本目标是能在车载、步行和静止各种不同环境下为多个用户分别提供最高为144kbit/s、384kbit/s和2048kbit/s的无线接入数据速率。为多个用户提供可变的无线接入数率是3G标准的核心要求。CDMA2000可分别用于900MHZ和2GHZ两个频段CDMA2000的码片速率与IS-95相同,两系统可以兼容。WCDMA的码片速率为3.84Mcps,显然WCDMA系统中低速率用户或语音用户的移动台成本会大幅上升,在CDMA2000系统中则不会如此。
WCDMA的接口标准规范、制定严谨、组织严密,而CDMA2000的接口标准严谨性有待加强。IS-95厂家设备难以互通,给运营商设备选型带来了较大问题;3G许诺的高速无线数据服务必须可以和话音一样实现无缝的漫游,这是至关重要的。多媒体信息要漫游、视频通话也要漫游,没有这些基本要素,3G就不能称其为3G。漫游涉及到的不仅仅是技术问题,更重要的是商业利益。在这方面WCDMA显然更胜一筹,它支持全球漫游,全球移动用户均有唯一标识,而CDMA2000尚不能很好做到这一点。
3.WCDMA和CDMA2000网络演进的比较
(1)WCDMA的网络演进技术
现有的GSM系统利用单一时隙可提供9.6kbit/s的数据服务。如果复用多个时隙就能升级为HSCSD(高速电路交换数据)方式;此后出现了GPRS(通用分组无线业务),首次在核心网中引入了分组交换的方式,可提供144kbit/s的数据速率。接着继续升级采用8PSK调制,这样传输速率可以上升至384kbit/s这就是EDGE;WCDMA的数据传输速率将高达2M/s。
(2)CDMA2000网络演进技术
主要的CDMA2000运营商将来自现在的窄带CDMA运营商。窄带CDMA向CDMA2000过渡的方式为IS-95AIS95BIS-95CIMT2000。IS-95A的数据传输速率为14.4kbit/s,为了提供更高的速率,1999年部分厂商开始采用IS-95B标准,理论上支持115.2kbit/s的速率。IS-95C进一步使容量加倍,最后升级为CDMA2000。
窄带CDMA系统向CDMA2000系统的演进分为空中接口、网络接口及核心网络演进等方面。
①目前窄带CDMA系统的空中接口是基于IS295A,其支持的数据速率为14.4kbit/s,由IS295A升级到IS295B,可支持64kbit/s。
②窄带CDMA网络接口的演进主要指窄带CDMA系统A接口的升级和演进。对于窄带CDMA系统,以前其A接口不是规范接口(即不是开放接口),窄带CDMA和GSM的A接口的规范相比较,GSM是先有A接口标准,然后厂家依据标准开发;窄带CDMA是厂家各自开发,然后广泛宣传,最后凭借自身影响修改标准。
③窄带CDMA的核心网在美国经过多年发展后,从IS241A到IS241B到IS241C,我国CDMA试验网和红皮书以IS241C为基础,IS241D规范在1999年底,目前IS241E规范还未正式。
三、WCDMA和CDMA2000在我国的前景
对3G标准的选择不仅要看其技术原理及成熟程度,还要结合本国国情、市场运作状况等因素进行考虑。按目前的进展来看,两种标准最后不能融合成一种,但可以共存。
在我国,GSMMAP网络已形成巨大的规模,欧洲标准的WCDMA在网络上充分考虑到与第二代的GSM的兼容性,在技术上也考虑了与GSM的双模切换兼容,向WCDMA体制的第三代系统演进,从一开始就解决了全网覆盖的问题。而且CDMA2000采用GPS系统,对GPS依赖较大;在小区站点同步方面,CDMA2000基站通过GPS实现同步,将造成室内和城市小区部署的困难,而WCDMA设计可以使用异步基站,运营者独立性强;对于电信设备制造行业,我国在GSM蜂窝移动通信方面发展成熟,而窄带CDMA系统尚未形成规模和产业。
WCDMA采用全新的CDMA多址技术,并且使用新的频段及话音编码技术等。因此GSM网络虽然可采用一些临时的替代方案提供中等速率的数据服务,却不能提供一种相对平滑的路径以过渡到WCDMA。而CDMA2000的设计是以IS-95系统的丰富经验为依据的,因此窄带CDMA向CDMA2000的演进无论从无线还是网络部分都更为平滑。在基站方面只需更新信道板,并将系统软件升级,即可将IS-95基站升级为CDMA2000基站。
由此可见,WCDMA和CDMA2000还将长时间在我国共存,鹿死谁手?尚未分晓。
参考文献:
[1]TeroOjanpera,RamjeePrasad.朱旭红译.宽带CDMA:第三代移动通信技术.北京:人民邮电出版社.
本文以常用的车载物流过程为研究对象,在货柜中部署传感器节点,来实时监测货物运输过程的相关环境参数,WSN中的汇聚节点通过蓝牙传输协议将数据传给作为网关的智能手机,智能手机通过GPS卫星定位将位置信息加入到参数数据中,再通过移动通信网络将数据传输到后台系统中。本论文研究主体为车载部分,其架构如图2所示。
1.1传感器节点的设计本系统中,传感器节点的主要任务是实时监测相关环境参数,并对其他节点转发来的数据进行存储和转发,使数据通过WSN传输到汇聚节点处,其处理能力、存储能力和通信能力要求不高,因此采用简单节约的设计方案。如图3所示,传感器节点由传感器模块、处理器模块、射频模块、电源模块和电路等部分组成。传感器模块负责对所需参数进行采集和模数转换。处理器模块负责控制整个传感器节点的操作,存储和处理传感器模块采集的以及射频模块发送过来的数据。射频模块负责与其他节点之间的通信,对数据进行发送或接收。电源模块负责为整个节点提供运行所需的能量,是决定节点寿命的关键因素之一。电路则包括声光电路、复位电路及接口电路等。(1)处理器模块。处理器模块是传感器节点的核心部分,本设计方案中,处理器选用德州仪器(TI)公司的16位超低功耗微控制器MSP430F135,该处理器采用1.8V-3.6V的低电压供电,可以在低电压下以超低功耗状态工作,非常适合应用在对功耗控制要求甚高的无线传感器网络。该处理器同时拥有较强的处理能力和较丰富的片内资源,拥有16kB闪存、512BRAM、2个16位的定时器、1个通用同步异步接口(USART)、12位的模数转换器(ADC)和6个8位并行接口。(2)射频模块。在无线传感器网络实际应用中,传感器节点既需要发射又需要接收数据,因此本设计方案中的射频模块采用收发一体的无线收发机。射频模块采用Chipcon公司推出的无线收发芯片CC2420,它的工作电压位于2.1~3.6V之间,收发电流不超过20mA,功耗低;其具有很高的集成度,只需要较少的电路就可工作,天线设计采用PCB天线,进一步减小模块体积。CC2420工作在2.4GHz频段上,支持IEEE802.15.4和Zig-Bee协议;采用O-QPSK调制方式,抗邻道干扰能力强;128B接收和128B发射用的数据缓存空间,数据传输速率高达250kb-ps。(3)传感器模块。传感器节点的数据采集部分根据实际需要选择相应的传感器,如温度、湿度、振动、光敏、压力等传感器。本文的研究重点不在传感器上,因此仅以温湿度传感器作为例子。本方案采用Sensirion公司的SHT15温湿度传感器,该传感器将传感元件和信号处理电路集成在一起,输出完全标定的数字信号[3]。其工作温度范围在-40℃-123.8℃之间,其在-20℃-70℃范围内,温度测量精度在±1℃以内;湿度范围在0%-100%之间,在10%-90%范围内,湿度测量精度在±2%以内。
1.2汇聚节点的设计在本系统中,汇聚节点的主要任务是接收传感器节点转发来的数据,进行存储和处理后传输到网关节点处,同时,接收来自网关节点的信息,向传感器节点监测任务。汇聚节点是连接WSN和外部网络的接口,实现两种协议间的转换,使用户能够访问、获取和配置WSN的资源,对其处理能力、存储能力和通信能力要求较高。而为了与传感器节点匹配,汇聚节点的硬件结构与传感器节点基本相似,如图4所示,汇聚节点没有传感器模块,增加了存储器模块和蓝牙通信模块。(1)处理器模块。同样的,处理器模块也是汇聚节点的核心部分,主要负责控制整个汇聚节点的操作,存储和处理来自射频模块或者蓝牙通信模块的数据,再将处理结果交给射频模块或者蓝牙通信模块发送出去。本设计方案中,处理器选用TI公司的16位超低功耗微控制器MSP430F1611,该处理器和MSP430F135一样,可以在1.8V~3.6V的低电压下以超低功耗状态工作,但其拥有更强的处理能力和更丰富的片内资源,48kB闪存和10KBRAM、2个16位定时器、1个快速12位ADC、双12位DAC、2个USART接口和6个8位并行I/O接口。(2)存储器模块。考虑到物流运输过程中环境多变,容易带来一些不确定因素,这些不确定因素可能引起处理器自带的存储器中的数据丢失,因此汇聚节点需要存储一些重要的数据。本设计方案中,汇聚节点的外部存储器芯片选用由Mi-crochip公司生产的24AA64,工作电压低至1.8V,它采用低功耗CMOS技术,工作时电流仅为1mA,而且可以在恶劣的环境下稳定工作。由于汇聚节点对存储容量要求不高,而且24AA64芯片的存储容量为64KB,擦写次数可达到百万次,因此一块芯片即可满足本系统的存储要求。(3)蓝牙通信模块。本系统采用智能手机作为后台系统和WSN之间的网关,来实现远距离的数据传输。为了使汇聚节点与智能手机能够进行通信,采用蓝牙通信协议。而在汇聚节点使用蓝牙通信方式需要增加一个蓝牙通信模块。本设计方案中,采用SparkFun公司的BlueSMiRF模块,其工作电压为3.3V-6V,工作电流最大为25mA,功耗较低;其最大传输距离为100m,通信速率最高可达115200bps;其天线为PCB天线,所需器件很少,故模块的体积很小,可以通过串行接口直接与处理器模块相连。
1.3网关节点的设计本系统要求在后台系统和WSN部署点间进行双向通信,为了实现远距离的数据传输功能,有两种方案,一是汇聚节点增加移动通信模块,如GPRS模块[4];二是采用智能手机作为后台系统和汇聚节点之间的网关。方案一对汇聚节点的要求进一步提高,不仅处理过程更加复杂,其能量消耗也大大提高;另一方面要实现物流过程的跟踪,还需有定位功能,一般采用GPS模块[5],这样成本也将大大提高。相比之下,方案二优势明显,采用智能手机可以进行各种复杂的数据处理,进行大量数据的存储,使用移动通信网络与后台系统进行通信,使用内置的GPS定位功能,后台用户可以在紧急事件发生时直接联系货车司机等。因此,本系统采用智能手机作为网关节点。本设计方案中,采用中国移动M811手机作为测试对象,其支持4G/3G/GPRS等移动网络,可以方便地使用移动网络与后台系统进行通信;其具有GPS定位功能,可以实现货车定位;具有蓝牙通信功能,可与汇聚节点间采用蓝牙通信;使用An-droid4.0操作系统,拥有丰富的开源资源,方便软件的设计。
2系统软件部分设计
本系统使用WSN中的传感器节点检测物流过程中相关环境参数并发送到汇聚节点处,由其将数据通过蓝牙连接传输到智能手机,智能手机通过移动通信网络将加入GPS信息的数据传输到后台服务器。系统各部分的工作任务不一,硬件条件也有很大差别,因此系统的软件设计也十分关键。
2.1传感器节点程序设计传感器节点主要承担数据采集和发送的工作,由于其能量及处理资源有限,因此需要采取节能和减少数据处理的设计方案。本设计方案中,传感器节点采取按需求唤醒的工作方式,检测等待时间(等待时间可由后台设置)未到或者没有收到汇聚节点命令时节点处于休眠状态;当等待时间一到或者收到命令时,立刻开始工作,进行采集数据并发送,或者根据命令完成相应操作,完成后又进入休眠状态,等待下一次激活,其程序流程如图5所示。
2.2汇聚节点程序设计汇聚节点的主要任务是接收传感器节点转发来的数据,处理后通过蓝牙传输到网关节点处,同时接收来自网关的命令,完成相应的操作。相比于传感器节点,汇聚节点的工作更加复杂,而且其能量和处理资源也不多,因此采取与传感器节点相似的节能设计方案,将复杂的数据处理工作交予网关节点,其程序流程如图6所示。
2.3智能手机APP设计智能手机作为本系统的网关节点,承担协议转换、数据传输、数据处理等复杂工作,因此开发相应的应用程序(Applica-tionProgram,简称APP)来实现上述功能,其流程图如图7所示。该APP实现对智能手机内部蓝牙模块的调用,通过蓝牙连接与汇聚节点通信;利用智能手机的GPS模块获取位置信息,加入到接收到的传感器数据中,再通过移动通信网络传输到后台系统;接收后台系统的命令,完成相应的操作;同时通过智能手机对应的界面提供数据显示、告警提醒以及日志功能。
3结语
在以LTE为代表第4代移动通信正在普及应用的时候,第5代移动通信(5G)的研发已经拉开了帷幕。在过去30多年里,移动通信提高系统容量的方法主要有3个:增加无线传输带宽、提高无线传输链路的频谱效率和增加小区密度。而技术革新最多、最有成效的是无线传输技术,通过引入高阶调制和高性能信道编码等技术有效改善了频谱效率。特别是在第4代移动通信中采用了多天线技术,并通过引入空间资源改善了频谱效率。在未来10~15年,移动通信业务数据量将有数千倍的增加,我们采用什么技术来满足这个需求将成为5G研发需要面对的问题。
目前,移动通信的主要需求是来自移动互联网的发展,特别是智能终端的发展激发了移动通信数据业务量的猛增。未来将有更多类型的终端引入达到移动通信网络中,移动通信终端的数量将远远超过人口数量,数据业务成为绝对的主流。5G移动通信的主要技术突破点仍然是新频段、无线传输技术和蜂窝组网技术。5G移动通信可能采用5 GHz以上的频段增加带宽,而28 GHz、47 GHz和60 GHz将可能用于微功率小区和室内覆盖,解决高密度数据量的热点覆盖需求。大规模MIMO是一种充分利用空间资源的技术,可用于5G移动通信系统中提高频谱效率和功率效率的有效手段,当天线数量增加到上百根后也会引发一系列的技术难题。增加小区密度,多系统、多层次异构协同组网是提高单位面积数据量的最有效手段,但是,多小区的干扰协同与抑制、多系统间的协作与资源调度成为高密度异构小区的主要瓶颈,我们需要全新的思路来解决。
此外,移动通信对新技术的引入方式也在发生着本质的变化,从早期的与场景无关的普适技术到现在依场景优化的自适应技术;1G和2G使用单一技术满足所有的应用场景,无疑将只能针对最恶劣的使用场景进行优化,系统整体性低;3G和4G使用了AMC、智能天线和MIMO等技术,更加精确地利用无线传输信道的特征,可以在更多的使用场景达到最优,整体性能较高;到了5G,这个特点将更加突出,现在提出的一些新技术都是在特定场景中使用的,可达到更高的系统性能。
5G移动通信的研究才刚刚开始,本专题只是涉及了部分5G相关技术。希望通过这些论文能部分反映中国在5G移动通信领域的研发现状,并促进未来5G移动通信技术的研究。
蓝牙计划基本上是一个无线传输的计划,不需要透过实质线路,在一定的距离范围内,可以传输可观的资料量,当然这种无线传输并不像行动电话那样数十公里内皆可传达,而是数十至数百公尺内的短距离无线传输。此外可传输的装置不限于手机,只要有装设蓝牙收发模块的装置都可以使用蓝牙传输,眼前的构想即是让其它的行动装置都可以使用蓝牙传输,包括PDA、笔记型计算机、车用装置等等。蓝牙计划的发起,主要是1998年5月,由Ericsson(爱立信,瑞典)、Intel(英特尔,美国)、NOKIA(诺基亚,芬兰)、IBM(国际商务机器,美国)、TOSHIBA(东芝,日本)等五家公司,共同组织一个“特别参与组织(SIG,SpecialInterestGrou)”称为BluetoothSIG,以此组织来制定一套短距离的无线传送、接收的技术规格。
二、浅谈蓝牙技术
蓝牙计划虽是1998年开始,但是蓝牙的技术根基却来自1997年制订完成的无线局域网络通讯协议:IEEE-802.11。
蓝牙基本上也是运用射频(RF)方式进行无线通讯,至于使用的频带范围,则是使用2.45GHz,这个无线电频带是全世界共同开放、不受法令限制的频带,举凡工业、科学、医疗(ISM,Industrial/Scientific/Medical)、甚至微波炉等都是使用2.45GHz的频带。
由于这个频带被广泛使用了,那么使用此频带进行通讯,绝对是很容易收到干扰的,因此蓝牙规格被设计成可跳频通讯,能够在一秒钟内进行1,600次的跳频动作,此这样的动作避免其它通讯的干扰。由于每秒1,600次的快速跳频,这也使得蓝牙无线收发的数据封包不能太长,否则不能满足如此频繁的跳频次数,所以蓝牙短封包、快速跳频的特性,也使其无线传输能抗干扰、更稳定通信。
蓝牙规格已经正式公布v1.0版,规格方面算是踏出成熟的第一步,接下来就是商品化、投入实际制造的阶段。而要让蓝牙迅速普及,就是在既有的用途装置上,追加设计蓝牙功能即可,以节省开发时间与成本,为此蓝牙射频模块就成为非常重要的一项零组件。
蓝牙射频模块一方面要够便宜,才可能快速普及,另一方面也要够小巧,才能适用于所有的需求装置上,目前专家推估射频模块的成本必须低于5美元才能普及,而各家公司也正加紧将射频模块设计地更精小、更便宜中。
三、蓝牙技术的应用
蓝牙由于具有1-2Mbps、10-100公尺的无线通讯能力,因此蓝牙技术可以舒缓若干问题,例如可以直接利用蓝牙的高速数据传输率来传输语音,等于是把蓝牙通讯当成无线电话的功能。
另外对于小公司、小环境等,也可以省去布设实质线路的成本,以及后续线路维护的困扰。还有蓝牙可以指定隔绝与通行的通信功能,也等于可以建立无线的LAN环境、小族群通讯环境。
四、蓝牙技术的展望
(一)蓝牙收发话器对健康的好处。由于手机有高功率的电磁波,据报导证实电磁波会对人体造成伤害,所以有了蓝牙,你将可以把一个小小的蓝牙附件装在你的大哥大,然后把收发话器戴在你的耳朵(由于蓝牙应用的是低功率,所以不会对人体有任何伤害)。准备好了以后,你就把你的大哥大放在口袋里讲电话,不必把电话紧贴的脸,甚至按下收发话器上的按钮就可以直接接听来电。
(二)比一般传统式红外线传输更快,且不用对准两个传输端口成一直线。蓝牙科技在传输方面的好处就是,它能够允许两个装置,在不排成一直线的状态下,还能够以无线的方式传送数据。不像红外线传输最大的缺点是,你必须对准两个传输端口成一直线才有办法传送数据。蓝牙传输甚至无视于墙壁、口袋、或公文包的存在而可以顺利进行。蓝牙的数据传输速度比红外线传输还要快,每秒钟高达1MB
(三)手表可自动对时间,无线下载Mp3。只要将来手表有内建蓝牙且有Mp3拨放功能,这样一来将可自动设定为标准时间,且可很方便的随时从计算机传输歌曲。
(四)其它还有很多很多,只要现在是要接线的,都有可能会被蓝牙所应用。蓝牙技术一旦普及,相信对通讯方式、产品设计、生活方式等都会有巨幅的冲击,甚至很难想象冲击的程度。不过就现阶段而言,蓝牙可能带来的便利却是可以想象的,各位可以想象家里安装一个蓝牙收发基地台,家中的计算机、电话、传真机都不用实际接线,就可以互通或连外。在公司内外务人员赶时间,只要在蓝牙收发范围内都可以传送数据,例如咖啡厅、车站等都可以。此外仓库的盘点盘查,只要带个PDA,仓库内设有蓝牙基地台,马上可以跟全省各地的仓库进行盘点加总,当然,蓝牙基地台后面有接往Internet,或是以公司专线,或VPN方式连接。另外数字相机拍完的相片,只要接近笔记型计算机就可以回传,省去记忆卡的插拔,既有计算机外设装置也都可以无线化,无线打印机、无线键盘、鼠标、摇杆。还有家中、公司都设有蓝牙基地台,则一支具有蓝牙功能的手机,在家就可以跟居家无线电话一样使用,而且是付居家电话费,在公司则变成自己的办公分机,公司替您付电话费,而在外出时就跟一般行动手机一样使用,这样真正落实一人一机终生用的理想,这种方式也被人称为三合一电话,即是居家、办公、行动电话三者合一。
五、结束语
蓝牙技术一定会飞速发展,但仍然有一些应用的细节问题需要解决,如相邻设备之间为防止信息误传和被截取,必须要用户提前设置对应频段等,严重影响蓝牙技术产品面市的速度。但相信随着一个不断完善的发展过程,蓝牙技术会为我们的未来家居和办公带来不仅仅是方便一点的革命。
参考文献:
[1]NathanJ.MullerBluetoothDemystified(影印本).人民邮电出版社。
[2]金纯,许光辰,孙睿.蓝牙技术.电子工业出版社。
[3]井雅,徐晓东,吕志虎.蓝牙协议模型及应用.现代通信技术,2001.3。
关键词:UML,建模,检测系统,实时系统
Abstract: This paper builds model for subway running state Measuring system based on UML-RT. Real-time analysis and design process of the system is illustrated by modeling system from an overall point by UML diagram such as use case diagram, class diagram, activity diagram and sequence diagram. The paper provides the basis for system development.
Key words: UML; modeling; Measuring system; real-time system
1.引言
地铁性能动态调试是列车调试过程中的重要环节,动态调试主要检测地铁车辆的牵引、动力、制动系统[1]。而现有的地铁动态调试测试手段主要是基于列车本身牵引网络系统自带测试软件,即利用列车通信网络中的列车诊断系统接收列车子系统(包括微机控制与非微机控制系统)的状态信息、故障信息,并进行评估、储存,在司机室的显示屏上进行显示[2]。因此其测量准确性无法衡量。为此开发地铁动态试验性能检测及数据分析装置对于列车的安全正常运行具有重要意义。
2.地铁运行状态检测系统建模
地铁动态试验性能检测及数据分析系统对列车运行过程中的速度、加速度、冲击率、闸瓦温度进行检测和分析。通过测速雷达、压力传感器、红外辐射温度等传感器分别测量地铁行驶过程中的速度、制动管路压力、制动器温度等特征量,然后利用无线传输装置将数据发送给由笔记本电脑和系统控制软件构成的系统控制终端,系统分析软件根据采集的数据进行牵引加速度、制动距离、制动减速度、冲击率、静态制动响应时间等状态量的计算,然后进行数据分析,由此完成对车辆运行状态的监测。
2.1用例模型
用例是模型中结构实体的指定功能,它描述了系统的功能需求,将系统看作黑盒,从外部执行者的角度来理解系统[3]。绘制用例图的第一步是确定系统的参与者。分析可知,系统共有三个参与者,即检测人员、管理人员及地铁。检测人员负责对地铁运行状态进行检测,包括速度、加速度、温度、压力的检测,得出检测结果后,在系统初步分析结果的基础上做出检测报告。管理人员负责进行用户管理和设备管理,以保证检测工作的正常进行。地铁是被检测对象的承载体,由各传感器对检测量进行检测。根据系统要实现的目的和任务,建立系统的用例图如图1所示。
系统中的关键用例有:
(1) 自检模块
系统启动时首先进行系统自检以确认检测设备是否有效,自检包括:测试数据采集命令、数据分析命令、数据导出命令能否正确输出,测试DMI(即人机界面,在本系统即为笔记本电脑)显示等。系统自检完成后能够在DMI上显示自检结果。
(2) 数据采集
根据要求选择各种传感器,将其安装在合适的位置。通过传感器对设备的电压或者电流信号进行采样、保持,并送入A/D转换器变成数字信号,然后将该信号送到FIFO中。当FIFO中存放的数据到了一定数目时,由ARM7从FIFO中读出,从而达到利用各传感器对相应的特征量进行测量的目的。
(3) 数据传输
监控或控制设备无线网络通信,目前主要采用IEEE802.11 a/b/g WLAN或者Zigbee技术。鉴于Zigbee是一种低耗、低成本且能满足要求的无线串行网络通信技术,本系统采用Zigbee无线传输技术,以CC1110无线soc为核心的无线通信装置进行数据传输。无线传输模块与传感器模块通过串口通信,无线传输模块取得传感器数据后以无线方式将采集到的监测数据发送到数据采集接入点(AP),然后数据采集接入点通过串行方式把数据传输到系统监测终端。
(4) 数据导出
将传感器检测到的数据导出,数据保存为通用格式,可以用EXCEL等第三方软件打开,方便数据分析阶段进行图表分析。
(5) 数据分析
对接收到的检测数据进行计算,根据预先设置好的监测数据阈值,对比采集到的监测数据,做出初步的分析判断,并可根据需要在数据导入EXCEL等第三方软件后进行图表分析。MATLAB在图像处理领域中,功能强大,使用简单,可用于对DMI界面的图像处理;C#可以快速开发可视化界面,数据读取等,用于检测设备测试结果分析界面的搭建[4][5]。在获取检测设备测试的数据之后,需要进行结果的分析与评估时,在C#主程序里通过匿名管道调用MATLAB可执行程序来对数据进行分析和评估。
(6) 数据库
对检测的数据及数据分析过程产生的图表行储存;对测试特征量的阀值进行设定;对用户进行管理等。
2.2类图分析
类图反映了系统中类的静态结构。类图不仅定义系统中的类,还表示类之间的联系,如关联、依赖、聚合等,同时也包括类的内部结构(类的属性和操作)。
检测系统提供显示和操作界面DMI,检测员通过对系统界面进行一系列操作完成检测过程,在此过程中DMI也会为检测员提供检测过程的参考信息。因此围绕DMI进行深入分析具有重要意义,其类图如图2所示。
1.控制的内容包括:
1) 数据采集的启动与停止:包括对速度、加速度、温度、压力等信息的采集进行控制,并将采集到的信息通过无线传输装置发送给控制终端并显示出来。
2) 数据分析的启动与停止:包括将采集的数据导入到EXCEL等第三方软件,并做图表分析。
2.显示的内容包括:
1) 采集数据显示:显示速度值、加速度值、压力值、温度值。
2) 警示信息显示:速度异常显示、加速度异常显示、压力异常显示、温度异常显示。
3) 数据分析结果显示:速度、加速度、温度、压力的分析图表显示。
4) 设备状态信息显示:控制模式、工作模式等信息显示。
2.3检测过程活动图
活动图在用例分析中主要用来描述用户当前完成的工作以及用例实例或对象中的活动[6],为了更详细地描述用户使用系统的工作过程,我们给出本系统的用户活动图。检测过程建模的主要业务有登录、数据采集、数据分析和数据存储。其活动图如图3所示。
事件流程可以描述如下:
检测人员使用用户名和密码登录系统;
检测人员发出数据采集指令,传感器进行数据采集;
无线传输装置将传感器采集到的数据发送到控制终端进行存储;
控制终端对数据进行计算,并作图表分析;
检测人员根据分析结果整理出检测报告;
检测人员也可再次登陆系统查看上次检测结果。
2.4检测过程序列图
为防止活动图变得过于复杂,数据采集、数据分析等过程都分别被压缩在了一个超级活动里,为了更详尽的描述实例间的消息,现在使用交互图[7]。序列图显示对象之间的动态合作关系,它强调对象之间消息发送的顺序,同时显示对象之间的交互,检测过程序列图如图4所示。在活动图中已经详细表达清楚的内容在下面的序列图中不再进行赘述,仅从登录成功角度进行描述。
3.结论
本文利用实时UML,通过用例图、类图、活动图、序列图建立了地铁运行状态检测系统的模型,研究表明,为地铁运行状态检测系统构建UML 模型,能够规范系统开发流程、优化软件结构、提高系统开发效率,增强程序可读性和可维护性。该项工作的完成为地铁运行状态检测系统的开发提供了依据。
参考文献
[1]王磊,列车网络控制系统的分析与研究[D],西南交通大学硕士学位论文,2008,01
[2]李春璞,记者试乘长沙地铁提速停车都“温柔”[N],长沙晚报,2013-04-11(A8)
[3]GB/T 7928-2003,地铁车辆通用技术条件[S]
[4]李伟,CTCS-3级列控系统车载设备测试平台关键问题研究[D],北京交通大学硕士学位论文,2008,06
[5陈建球,CTCS级车载设备自动测试方法研究[D],北京交通大学硕士学位论文,2009,05
参考文献的写作在某一程度上提升论文学术价值和质量水平,所以参考文献在论文的写作当中也是不能忽视的,写好论文还参考文献那么我们写出了的论文才更有水平。下面是学术参考网的小编整理的无线通信论文参考文献,欢迎大家阅读赏析。
无线通信论文参考文献:
[1]钮心忻,杨义先.软件无线电技术与应用[M].北京邮电大学出版社,2000.6-20.
[2]李世鹤.TD-SCDMA第三代移动通信系统标准[M].北京:人民邮电出版社,2003.3-22.
[3]潘涛,等.第三代移动通信系统TD-SCDMA的核心技术[J].通信技术,2002.
[4]赖玉强,王甲琛.软件无线电的体系结构及其关键技术[J].武警工程学院学报,2002.
[5]朱东照,罗建迪,等.TD-SCDMA无线网络规划设计与优化[M].北京:人民邮电出版社,2007.206-228.
[6]张书强,朱守中,金永杰.基于3G通信的软件无线电应用研究.测试测量技术,2008(9).第三代移动通信系统中的软件无线电技术
无线通信论文参考文献:
[1]熊卿青,邓媛姬.现代无线通信技术的现状分析及其发展前景[J].科技创新导报,2012(2):31
[2]赵晗.现代无线通信技术的发展现状及未来发展趋势[J].企业技术开发,2011(8)
[32]纪越峰等,现代通信技术,北京邮电大学出版社,2002年3月
[4]蒋同泽著.现代移动通信系统[M].电子工业出版社,1994
[5]百度及谷歌网站
无线通信论文参考文献:
[1]陈哲.张正江.尹长川.乐光新B3G技术演进与发展趋势电信工程与技术标准化2008,12
[2]孙常清.王琪琳.张佳麓B3G技术发展浅析电信科学2007,23(7)
[3]万屹.李扬B3G技术的研究及发展趋势电信网技术2006,1
[4]林辉B3G研究与标准化进展电信科学2007,23(9)
[5]张汉毅.粟欣B3G的关键技术及其发展趋势移动通信2008,6
关键词:实时监测;环境参数;控制台
1 引言
随着可再生能源技术的发展,在最近几年太阳能光伏发电系统得到了比较广泛的应用。但是目前影响太阳能系统输出参数的因素很多,主要的外部环境参数为温度、表面风速和照度。温度是光伏系统的重要参数之一,在给定光强下,光伏电池工作温度的升高影响电池的输出功率[1]。因此对温度的采集和 检测在光伏发电系统中显得尤为重要。光伏发电系统的环境风速会影响到光伏发电组件的表面热量散发,因此对风速的采集和监控也是需要的。对于照度的监控,能很好的监控组件工作状况,防止“热点效应” [2]的产生。
本文设计了一种自动的、可以实时检测、记录以及传输的太阳能光伏发电系统的数据检测装置,该装置不仅可以实时检测光伏发电组件的环境参数,而且可以把采集到的参数通过无线传输发送到远程的控制台,进行记录处理分析。
2 系统构成及硬件部分
2.1 系统构成
系统主要包括电源模块、数据采集模块、数据处理模块、显示模块、无线通信模块,系统框图如图1所示。太阳能光伏发电系统的数据采集模块使用多个传感器采集太阳能光伏发电系统的光伏发电组件的温度、风速、照度;数据处理模块,控制多个传感器进行数据采集并处理传感器采集的数据;无线通信模块,执行太阳能光伏发电系统的数据检测装置与通信基站的无线通信,传输采集的数据;电源模块为上述各模块提供电源。
2.2 硬件结构及工作过程
数据采集模块包括温度传感器,风速传感器和照度传感器。温度传感器包括美国AD公司生产的集成接触式传感器芯片AD590信号放大器,AD590的测温范围为-55℃~+150℃。AD590将外部温度信号转换为模拟电流信号,接着信号放大器将电流信号转换成电压信号并自动调整信号的增益大小。风速传感器采用了脉冲式风速传感器,脉冲式风速传感器体积小、质量小、原理简单,同时能够将风速模拟量直接转换成电子脉冲数。
数据处理模块采用德州仪器(TI)公司的LM3S1138微处理器,该微处理器可以对采集来的温度和照度数据进行A/D转换,并经行数据比较和BCD码转换,最后可以在显示模块上显示出当前的温度、风速以及照度的数值。微处理器还可以控制采样的周期,设定报警的上限,一旦采集到的数据超过报警的上限时,即发出报警信号。该微处理器还可以按照用户定义的数据格式打包,并发送到无线通信模块的缓存中去。显示包括四个键,这4个按键可以对微处理器进行参数和报警上限的设定。
无线通信模块采用索尼爱立信公司的G64无线传输模块,G64可以将数据处理模块发送过来的数据包封装,通过GPRS接入Internet,传入监控中心。监控中心的终端对接收来的数据包解析,还原,并由PC机执行相关的处理,如记录下一周期内的温度,风速,照度的变化曲线,定期进行数据库更新等等。监控中心的终端还可以通过Internet和无线网络对太阳能光伏发电系统的数据监测装置经行远程设定。
数据采集模块采集太阳能光伏发电系统的温度、风速、照度参数,并且把这些参数传送到数据处理模块,数据处理模块对这些参数滤波,A/D转换后打包发送到无线通信模块的缓存中,无线通信模块把这些数据包通过现有的无线网络罗如GSM,CDMA,WCDMA,TDSCDMA发送到各个基站,进而再传送到控制台,对这些数据进行记录分析,当采集到的数据超过所设定的参数时,还可以发出报警信号。
3 软件设计
在采集过程中,传感器的输入模拟信号经前段信号处理之后送至C8015F320的引脚上,经过ADC转换为数字信号。单片机片外有8个45DB321C芯片组成一个32MB的Data flash 存储器,采集到的数据不断地通过SPI接口送到45DB321C芯片中存储。
4 总结
本论文设计了一种太阳能电站使用的太阳能光伏发电系统的数据监测装置,该装置包括数据采集模块,数据处理模块,无线通信模块,电源模块。本装置可以把数据监测由原来人工手持式监测为自动实时监测,大大提高效率,采集的数据可以通过无线网络发送到各个计算机终端,进行记录分析,使得工作人员可以在任意地方都能随时了解到太阳能光伏发电系统的工作状况,对于产生的问题可以及时处理,符合国家职能电网建设中,免维护、可控、可视等要素的要求。
参考文献:
[1] 赵 为.太阳能光伏并网发电系统的研究[J].合肥工业大学学报,2010(4):101-103.