时间:2023-03-16 15:50:15
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇纳米材料论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
1.1纳米金刚石近年来,纳米尺度的金刚石作为新型碳纳米材料已经成为研究的热点之一。纳米金刚石具有优异的机械、光学和电学等性能。在场发射、剂和生物医学等领域具有应用价值。1961年Decarli等[5]首先用爆炸法制得了超细金刚石粉。目前,纳米金刚石的制备方法主要包括爆炸法、激光蒸发法、CVD法、高能离子轰击法及放电等离子烧结法等。Zhang等[6]使用碳纳米管(CNTs)做原料,在1500℃和80MPa的条件下,采用放电等离子烧结法制得了纳米金刚石。表征结果表明,制得的金刚石颗粒被一层无定形碳包裹着。Terranova等[7]采用热丝CVD法,使用平均粒径为40nm的碳颗粒做碳源,在分散有铁纳米颗粒的硅基底上制得了纳米金刚石。表征结果表明,制得的金刚石呈金字塔形,直径在20~100nm之间。
1.2碳纳米洋葱碳纳米洋葱是1992年Ugarte在显微镜中通过强电子束照射碳灰而发现的[9]。碳纳米洋葱的微观形貌为多层石墨构成的洋葱状颗粒,尺寸在纳米数量级。迄今为止,人们已经发展了多种制备碳纳米洋葱的方法,如电子束照射法、离子注入法、电弧放电法、碳烟灰的冲击波处理法及等离子体喷头上的碳沉积法等。电子束照射法是用具有一定能量的电子束照射含碳原料,使其汽化成碳原子和原子团,然后再重新结合、形成新的碳纳米材料的方法。一般情况下,电子束照射法制得的碳纳米洋葱呈球形,对称性好,形成的壳层在3~10层之间[8]。Sano等[9]采用水中电弧放电法,制得了碳纳米洋葱;表征结果表明,制得的碳纳米洋葱直径在4~36nm之间,石墨化程度不高,具有较大的表面积(984.3m2/g)。
1.3碳纳米笼碳纳米笼的结构和形貌多样,具有优异的理化性质。笼状结构的碳纳米颗粒之间存在空隙,很方便填充金属颗粒或其它分子,制备成具有特殊性质的纳米复合材料。由于范德华力的作用,碳纳米颗粒往往团聚严重,不易分散,使得其性质和应用研究受到限制。因此,制备分散性好、性质优异的碳纳米笼颗粒具有重要的意义。碳纳米笼的制备方法包括CVD法、超临界流体法、模板法、激光蒸发法及溶剂热法等。Li等[10]在超临界二氧化碳中,使用二甲苯为原料,在Co/Mo催化剂上沉积制得了碳纳米笼。表征结果表明,制得的碳纳米笼的表面积和孔体积的大小与反应温度和压力有关。在650~750℃之间制得的碳纳米笼直径在10~60nm之间;在650℃和10.34MPa的条件下,制得的碳纳米笼的孔体积为5.8cm3/g,表面积为1240m2/g。Wang等[11]使用乙醇和Fe(CO)5为原料,采用模板法,在600~900℃条件下,制得了碳纳米笼。研究结果表明,制得的碳纳米笼的直径在30~50nm之间,表面积在400~800m2/g之间;其可以分散在水中,几个月都不会团聚。
2应用
2.1催化剂载体碳元素以其特有的成键形式(sp、sp2和sp3)构成了形貌和结构多样的纳米颗粒材料,这类碳纳米材料独特的结构和奇异的物理化学性质赋予其广泛的用途。尤其是碳纳米笼颗粒,在众多的应用中作为催化剂载体而成为催化领域的研究热点之一。Yun等[12]将铂催化剂负载在中空碳纳米球颗粒上,并且催化烯烃加氢反应。结果表明,中空碳纳米球颗粒负载催化剂的催化效果要高于活性炭;考察了碳纳米颗粒的结构对负载铂催化剂催化环己烷脱氢反应性能的影响。杜建平等[13]采用爆炸辅助化学气相沉积法制得了石墨化程度不高,类似球形的碳纳米颗粒。考察了其负载钼催化剂含量对环己烷脱氢反应的催化性能。结果表明,钼含量对环己烷脱氢催化反应有较大影响。钼含量15%时,催化性能最佳。
2.2生物医药与其它维数的纳米材料相比,零维纳米材料除了尺寸小之外,更重要的是其具有较大的比表面积,这使得其表面活性也有所增大。碳纳米颗粒直径越小,处于表面的原子比例就越大,反应活性越高,其对生物组织、细胞伤害就越大;直径越大,其在生物体内的免疫性越强,容易遭到免疫系统的攻击,从而被器官捕获和降解。周兆熊等[14]采用高压均质方法,使用全氟碳纳米颗粒荷载药物地塞米松磷酸钠或醋酸地塞米松。研究结果表明,荷载地塞米松磷酸钠和醋酸地塞米松的全氟碳纳米颗粒直径分别为(224±6)和(236±9)nm。荷载地塞米松磷酸钠和醋酸地塞米松的包封率分别为(66.4±1.0)%和(95.3±1.3)%,首日溶出比率分别为77.2%和23.6%。与不用全氟碳纳米颗粒荷载相比,全氟碳纳米颗粒荷载顺磁性造影剂钆喷酸葡胺可增加信号强16%。因此,全氟碳纳米颗粒荷载药物具有较好的缓释性,能增加磁共振造影剂的信号强度,从而提高其检测灵敏性。
2.3磁性材料安玉良等[15]采用控温还原炭化过程,利用纤维素和硝酸铁为原料,制得了包裹金属的碳纳米颗粒。表征结果表明,该碳纳米颗粒直径分布在20~90nm之间;具有对电磁波的电损耗和磁损耗效应;电损耗角正切值在1.1~1.2之间,磁损耗角正切值在0.45~0.70之间;电损耗角正切值随着频率的增加而增加;这些结果表明碳包覆铁纳米颗粒可以作为较好的电磁材料。陈进等[16]采用电弧放电法制得了包裹铜粒子的碳纳米颗粒,考察了该碳纳米颗粒的导电性能。结果表明,该碳纳米颗粒具有核壳结构,内部为铜粒子核,外部为碳层且石墨化程度较高。该包裹铜粒子的碳纳米颗粒的导电性随着铜含量的增加而增加。当铜含量为80(wt)%时出现突跃。
2.4发光材料荧光碳纳米颗粒是一类较为理想的荧光标记和检测材料。因此,目前制备和研究荧光碳纳米颗粒成为一项受到广泛关注的课题。郭艳等[17]在恒定电压下,利用邻苯二甲酸氢钾、乙二胺四乙酸二钠、柠檬酸盐为电解液,采用电化学刻蚀石墨的方法,制得了带有荧光的碳纳米颗粒。与邻苯二甲酸氢钾和柠檬酸盐的电解液相比,同浓度的乙二胺四乙酸二钠为电解液制得的碳纳米颗粒的荧光最强。荧光强度随某种电解液浓度的减小而降低。研究表明,具有sp2结构的碳簇可能是碳纳米颗粒的发光中心。Bourlinos等[18]利用有机物碳化的方法制得了不具有晶体结构的,直径小于10nm的碳纳米颗粒,其可以发出多种可见光,得到了3%的荧光量子产率。
3结语与展望
纳米材料制备技术的发展为解决这个问题提供了可能。随着制备技术的提高,纳米材料的晶粒尺寸、制造成本不断降低,而致密度、晶粒尺寸均匀度不断提高。例如,采用脉冲电沉积技术制备纳米Ni和Ni基合金薄板,通过各种参数的控制可使晶粒尺寸接近10nm,且沉积层具有很窄的晶粒尺寸分布范围。采用纳米材料进行微塑性成形,即使零件特征尺寸降低到微米尺度,零件内部依然包含大量的晶粒,可以排除各向异性的影响,从而抑制甚至消除尺度效应,解决微成形技术工程化应用的瓶颈问题。同时,纳米材料具有优异的力学性能,可以提高零件的质量。采用纳米材料进行塑性微成形,又带来了新的问题。随着晶粒尺寸的显著降低,纳米材料的强度、硬度成倍增加,塑性变形能力却明显变差[18],如果采用常规微成形工艺进行成形,为保证成形精度,对模具材料性能的要求明显增加,模具昂贵,摩擦磨损严重,寿命短。这会严重阻碍微塑性成形的广泛应用。研究经验表明,比较好的解决方式是采用超塑成形技术进行微成形,例如,Saotome等人采用超塑微成形技术制造了微齿轮[7],张凯锋等人采用该技术制造了微槽和微柱[13]。在超塑状态下,材料的变形抗力可以降低几十甚至上百倍[19—21],变形抗力和摩擦力都明显降低,从而显著降低微成形工艺对模具性能的苛刻要求,提高工艺稳定性和成形精度。采用超塑微成形技术的条件是,成形的材料必须是超塑性材料,幸运的是,纳米材料通常具有超塑性。Mcfadden等人[22]发现1420铝合金和Ni3Al材料的晶粒减小到纳米尺度后,材料在较低的温度就可以获得良好的超塑性。在超塑状态下,应力明显降低,从而降低对微小尺寸成形模具的性能要求,使得大批量生产微小零件成为可能。随着微机电系统的发展,微型零件的需求量不断增加。微阵列是一种典型的微结构零件,在医疗、通讯、光学、化学等领域有广泛应用,如生物微针阵列、微生物芯片、光存储器、微化学反应芯片、微传感器等。微阵列的制造工艺包括光刻、离子蚀刻、同步X射线光刻塑模电铸等,但各种工艺间的生产成本、制造周期、产品质量及适用材料等方面有较大差别。如果采用超塑微成形技术制造微阵列,可以显著降低生产成本,提高生产效率和工艺稳定性。而且,采用超塑微成形技术还可以胀形出空心圆柱微阵列,在生物芯片、微化学反应芯片上会有重要应用。拟采用电沉积技术制备镍基纳米材料,系统研究其超塑性微成形机理,实现微阵列的批量制造,不仅能够解决微成形技术工程化应用的瓶颈问题,而且有助于深入理解微成形的科学理论。
2微成形研究现状
微成形的工艺可以分为体积微成形和薄板微成形两种。体积微成形的加工工艺主要有微压缩、微锻造、微铸造等;薄板微成形工艺主要有微拉深、微弯曲、微冲裁等。随着微成形技术的发展,工件尺寸越来越微小,而在加工过程中,会由于工件尺寸的变小,得到的实验结果与宏观理论恰恰相反,许多宏观上得到应用的理论,不能简单地缩放就应用在微成形上[23—24],对于微成形中的尺寸效应,需要得出全面的实验结论和微观可用的理论[25]。MichaelD.Uchic等人利用微压缩实验和模拟以位错为基础的变形过程进行了深入的研究[26],清楚地证明了尺寸的变化对于材料性能的影响,如晶粒的受力变形或产生应变梯度等,并也发现了小尺寸样品会产生应变突变,这对于理解位错自由组合消耗能量具有新的理解意义,并可以推动尺寸变形理论的产生。美国的Mara等人利用微压缩测试Cu/Nb纳米层状复合材料的机械力学性能,其微柱的压缩形变在相对于圆柱轴和压缩方向的45°方向被观察到,剪切带也是显而易见地被发现,且出现了比较大的塑性变形和相对于压缩轴的旋转[27]。H.Justinger等人利用8mm到1mm直径的冲头对不同的晶粒尺寸和箔材的厚度比的材料进行了微拉深试验,观察到冲头的力出现了明显的变化,同时改变粗糙度会显著影响杯型的几何形状[28]。建立了一个不同数量晶粒的单位体积的立方体基本模型,可以在下一个微成形过程中估计单一晶粒的可能取向,并解释了不同影响条件在微拉深中压缩和拉伸过程的流变应力变化的原因。日本的K.Manabe等人成功地利用微拉深工艺将20μm厚的铝箔制造成直径为500μm的微杯,并对杯子的几何形状、厚度应变分布以及表面粗糙度进行了测定[29]。研究表明,降低表面粗糙度更有益于微拉深的成形,表面粗糙度的增大不仅影响表面质量,还对成形极限产生影响,材料表面的光滑和拉深冲头的光滑,仍然是研究的重点方向。中国台湾学者Cho-PeiJiang和Chang-ChengChen,利用V型弯曲测试系统研究了板材的晶粒尺寸效应与弯曲板材厚度之间的关系,平均晶粒尺寸为25~370μm,板材厚度为100~1000μm,T/D为1~30,结果表明当平均晶粒尺寸恒定时,屈服强度和最大冲压力随着T/D的减小而降低,而随着T/D的增大,回弹量变小;当板材厚度一定时,平均晶粒尺寸变化的回弹现象类似于宏观尺寸的板材V型弯曲试验结果[30]。
3实验研究与讨论
3.1电沉积过程影响因素研究
3.1.1电流密度变化Ni-Co/GO复合材料电沉积过程中,不同电流密度(1.1,1.4,1.7,2.0,2.3,2.6A/dm2)的常温拉伸工程应力-应变曲线图如图1所示,总体的变化趋势是随着电流密度的增大,应变出现先增大后减小的状态,应力在1.1A/dm2时较小,为721MPa,在2.0A/dm2时达到最大,为1260MPa,其余的电流密度对应的应力大小较接近,在870~930MPa之间变化。不同电流密度的高温拉伸真实应力-应变曲线图如图2所示,图中右上角的曲线图为不同电流密度与延伸率的关系图。随着电流密度的增大,延伸率出现先增大后减小的情况,在电流密度为2.0A/dm2时产生的延伸率最大,达到535.8%。较高的电流密度可以得到较高的过电势,产生较大的成核速率,形成较多的晶核数,从而使得晶粒细化,因此随着电流密度的提高,复合材料的晶粒尺寸减小,能够有效地提高材料的常温和高温拉伸性能。当电流密度过高时,在一个脉冲周期的导通时间内会快速沉积,因为受到电镀液中扩散速率的影响,导致达到下一个脉冲周期时阴极表面的金属离子较少,对沉积速率及沉积得到的复合材料的性能产生较大的影响。
3.1.2pH值变化图3是镀液中不同pH值制备的复合材料常温拉伸的工程应力-应变曲线图,pH值依次为2,3,4,5.5。在工程应力-应变曲线图中可以看到,随着pH值的增加,应力、应变随之增加,在pH值为2时应力最小,为773MPa,当pH值为5.5时,应力达到1260MPa。当pH值较低时,虽然能够提高阴极电流密度的范围,增大了沉积速率,但会导致阴极析氢增加,从而导致内部和外部出现气孔,降低复合材料的力学性能。而过高的pH值会使镀层的脆性增加,也不利于力学性能的提高。
3.2单向拉伸试验研究
3.2.1应变速率变化研究图4为常温条件下应变速率变化的工程应力应变曲线图。当应变速率为1.68×10-2和1.68×10-3时,应力约为630MPa,应变约为0.41;当应变速率为1.68×10-4时,应力和应变都出现明显增加,应力可以达到1245MPa,应变约为0.69;而当应变速率为1.68×10-5时,应力出现非常明显的减小,降到937MPa,应变变化较小,约为0.67。出现这个现象主要是因为,复合材料中由于存在一些空隙和位错,当应变速率较大时,位错来不及滑移,其他晶粒也来不及补充到空隙位置,导致在位错或空隙位置出现断裂,从而得不到较好的力学性能;随着应变速率变小,晶粒可以填充空隙位置,位错也出现滑移等,有效地增加复合材料的应力应变等力学性能;而当应变速率继续减小,填充的量增加,滑移也比较明显,出现了应变增大但应力增加较小的现象。
3.2.2复合材料的厚度变化研究图5是复合材料不同厚度的常温拉伸工程应力应变曲线图。从图中可以看出,随着复合材料的厚度的增加,材料应变随之增大,这主要是因为复合材料中有效的被拉伸晶粒增多,在同样存在位错和空隙的情况下,会一直存在晶粒被拉应力的作用,不会因为空隙导致突然断裂,从而导致应变增大。当复合材料较薄时,应力会稍小一些,这主要是因为试样薄,位错和间隙存在的情况下,会出现某部位突然断裂,从而影响材料的应力,而当复合材料厚度增加后,会因为存在较多晶粒,从而增加材料的应力。
3.2.3试样宽度变化研究图6是不同宽度试样的常温拉伸工程应力应变曲线图。由图6可以看出,随着试样宽度的增加,应变也随之增加。当试样宽度增加时,复合材料中有效的被拉伸晶粒增多,在同样存在位错和空隙的情况下,会存在有效的拉应力作用在不同的晶粒上,导致应变增大;同时不同的试样宽度,拉应力基本相同,这是因为虽然试样的宽度不同,但是作用在每个晶粒上的力基本相同,拉应力变化不大。
3.3微半球体高温气体胀形图7是电沉积液中GO不同加入量时的高温气体胀形得到的微半球体,图7a—c的GO的添加量依次为0.01,0.03,0.05g/L。所得到的高温胀形件的高度依次为2.5,2.7,3.0mm,模具的孔半径为2.5mm,因此,H/r依次为1,1.08,1.2。这与高温拉伸的数据符合,都实现了高温超塑性。图8为胀形件厚度分布图。微半球自底端至顶端,厚度逐渐变薄。厚向应变不均匀,这主要是胀形件在不同位置应力状态差异造成的。胀形件的顶端为等轴应力状态,而靠近底端的部分,由于模具夹持作用,限制了板材沿圆周方向变形,因此这个位置的应力状态为平面应变状态。由于局部应力的差异导致不同位置具有不一样的应变速率,最后造成零件不同位置厚度的差别。在顶端区域由于有较大的应变速率,造成了显著的变薄效应。图9为胀形件胀破断口的SEM图。断口的晶粒粒径比较均匀,为1~2μm,在图9中发现存在GO,且存在GO的位置的晶粒较其他部分的晶粒稍小一些,说明GO的加入可以提高材料的热稳定性,抑制金属晶粒在高温下的长大,但加入量比较少,对材料晶粒长大的抑制作用较小。在胀破断口很难寻找到GO的存在,是因为在高温下,GO出现了挥发,且由于GO的厚度比较小,在产生挥发后很难在SEM下发现。
4结论
1.1炭干凝胶的制备
传统炭凝胶的制备一般经过有机凝胶的形成、干燥和炭化过程3个步骤,炭干凝胶的具体合成步骤如下:首先采用间苯二酚和甲醛为原料在碱性催化剂下合成聚合物中间体,再经过进一步的交联形成空间网络状结构的气凝胶;然后在常压下直接蒸发干燥;最后在惰性气氛(氮气或氩气)或真空条件下高温炭化。经上述步骤制得的炭干凝胶具有比表面积大、导电性能好等特性。炭干凝胶是指在干燥步骤采用常压干燥的方式制备所得的材料。尽管常压干燥会引起材料孔道塌陷,但因其成本低廉成为近年来研究的热点。
1.2炭干凝胶的改性
近年来,国内外学者采用掺杂和复合的方法对炭干凝胶进行改性,改善并提升了其物理化学性质,使其更为广泛地应用于各个领域。
1.2.1氮掺杂炭干凝胶
Castilla等采用3-羟基吡啶等为氮源合成了氮掺杂炭干凝胶,研究结果表明,采用不同的原料配比和不同的炭化温度(500~900℃)可以得到一系列氮含量不同的炭干凝胶。Gorgulho等在间苯二酚和甲醛为原料的基础上,添加三聚氰胺和尿素为氮源,成功合成了氮掺杂炭干凝胶,以调控炭干凝胶的表面功能基团。结果表明,经过氮源掺杂合成的炭干凝胶,材料的表面碱度均有提升。
1.2.2金属掺杂炭干凝胶
为了增强炭干凝胶的导电、催化等性能,很多学者成功制备了各种金属掺杂的炭干凝胶。Pramanik等成功合成了锰、钴和钙等金属掺杂的炭干凝胶,研究了金属掺杂对材料比表面积及形貌的影响。研究结果表明,当间苯二酚与甲醛摩尔比为0.35,初始酚醛树脂溶液pH为3.0,掺杂的锰盐同间苯二酚质量比为11%时,得到的锰掺杂炭干凝胶比表面积最大。Liu等对铁、钴和镍掺杂的炭干凝胶进行了表征,并对其磁性进行了检测。结果表明,不同金属掺杂对炭干凝胶的结构性质有显著影响,3种金属掺杂的炭干凝胶在室温下均呈现出典型的铁磁特性。
1.2.3炭干凝胶复合材料
Gomes等采用溶胶-凝胶法合成了二氧化钛-炭干凝胶的复合材料,炭干凝胶作为载体增强了二氧化钛与铂颗粒的结合作用,该复合材料也成功应用于铂纳米颗粒的光化学沉积。此外,Fernández等成功合成了碳纳米管-炭干凝胶的复合材料,通过循环伏安法、充放电等手段对该复合材料的电化学性质进行测试后发现,碳纳米管的引入提升了材料的电容,而且在提升材料有效固相电导率的同时,还提升了液相电导率。
2炭干凝胶的应用研究进展
2.1储氢
近年来,多孔炭材料因其具有高比表面积和轻质的网状结构被广泛地应用于储氢领域。Tian等采用酸性催化剂合成了炭干凝胶,并测试了其储氢性能。结果表明,在pH为4.8的条件下合成的炭干凝胶,比表面积为1924m2/g,微孔容积为0.86cm3/g。在温度为77K以及压力为3.9MPa的条件下,合成所得炭干凝胶的储氢量为4.65%(wt,质量分数),证实了炭干凝胶是一种极具前景的储氢材料。
2.2电化学领域
炭干凝胶由于具有成本低廉、高比表面积和高电导率等优良性能,是一种理想的电极材料。FernNdez等将炭干凝胶用于电化学超级电容器,通过循环伏安法、计时电势分析法及交流阻抗测试研究了电容器阻抗理化参数同电化学行为之间的关系,研究结果表明炭干凝胶具有极高的比电容,可达280F/g。此外,炭凝胶电容器电吸附去除水溶液中重金属和无机盐的研究表明炭干凝胶用作电吸附剂在水体净化等领域拥有广阔的应用空间。
2.3催化剂及其载体
炭干凝胶所具备的比表面积大、稳定性好、高度交联的多孔结构等特性使之成为催化剂及其载体的最佳选择。Xin等采用锰掺杂的炭干凝胶作为催化剂,进行了液相放电等离子体去除微囊藻毒素的研究,随着炭干凝胶的加入,微囊藻毒素的去除率从75.3%提升到90.2%,并提出了相应的氧化-吸附动力学模型。Xu等将炭干凝胶作为金催化剂的载体,并筛选了用于苯甲醇选择性氧化的最佳载体,原因在于炭干凝胶材料表面具有足量的含氧官能团。Rodrigues等同样将金催化剂负载于炭干凝胶上,并将其用于甘油的氧化,通过改变炭干凝胶的中孔大小来改变催化剂的选择性。此外,Ale-gre等将铂负载在炭干凝胶上用来催化甲醇的电氧化,同催化剂Pt/E-TEK相比,其催化性能提升了2倍多。炭干凝胶还可以用作用作质子交换膜燃料电池的催化剂载体,该催化剂具有较高的循环电压和一氧化碳及甲醇氧化电流,并且在采用炭干凝胶作为催化剂载体的燃料电池中,贵金属颗粒的烧结趋势很小。还有许多研究人员将炭干凝胶作为催化剂用于污染物的催化氧化。CA等研究了炭干凝胶以及二氧化铈掺杂的炭干凝胶催化臭氧氧化的性能。对草酸的催化臭氧氧化结果表明,所有的催化剂均能在1h内将其全部降解。
2.4环境保护领域
在环境保护领域,炭干凝胶已广泛地应用于水处理方面。Ca等将炭干凝胶应用于亚甲基蓝的吸附。结果表明,炭干凝胶微孔容积和微孔比表面积的增加能够显著提升其对亚甲基蓝的吸附量,并且通过朗格缪尔模型计算得到的结合能同商业的微孔活性炭相比有了45倍的提升。Figueiredo等将制备得到的炭干凝胶用于2种阴离子染料的吸附,获得了良好的吸附效果。Almazan等研究了炭干凝胶结构特性对于挥发性有机物甲基碘动力学吸附的影响,结果表明吸附量同孔容密切相关,而且内扩散的传质阻力同孔结构密切相关。此外,Girgis等将炭干凝胶用于水中铜离子的吸附,吸附量为32~130mg/g,该研究为去除水体中的重金属离子提供了一种新型的纳米级多孔性炭材料。
3结语与展望
炭干凝胶作为一种新型的纳米材料。具有许多独特的性能,在近年来引起了广泛关注。针对目前存在的问题,炭干凝胶今后努力的方向大致为以下几个方面。
(1)制备工艺的完善与创新。
虽然目前国内外已经成功合成了不同孔径结构的炭干凝胶,并采用各种手段对其进行了性能改良,但是离实现产业化还有一定的距离。寻求适合工业发展的制备工艺,简化流程、降低生产成本是今后努力的方向。
(2)理论体系的完善。
尽管目前已经对炭干凝胶合成的机理有了很深入的研究,但如何实现孔径结构的完全可控还需要进一步的研究。此外,在炭干凝胶网络结构的形成机理以及聚合单体的生长动力学等方面也需要进一步的努力。
(3)应用领域的进一步拓展。
自70年代纳米颗粒材料问世以来,80年代中期在实验室合成了纳米块体材料,至今已有20多年的历史,但真正成为材料科学和凝聚态物理研究的前沿热点是在80年代中期以后。从研究的内涵和特点大致可划分为三个阶段。
第一阶段(1990年以前)主要是在实验室探索用各种手段制备各种材料的纳米颗粒粉体,合成块体(包括薄膜),研究评估表征的方法,探索纳米材料不同于常规材料的特殊性能。对纳米颗粒和纳米块体材料结构的研究在80年代末期一度形成热潮。研究的对象一般局限在单一材料和单相材料,国际上通常把这类纳米材料称纳米晶或纳米相材料。
第二阶段(1994年前)人们关注的热点是如何利用纳米材料已挖掘出来的奇特物理、化学和力学性能,设计纳米复合材料,通常采用纳米微粒与纳米微粒复合,纳米微粒与常规块体复合及发展复合材料的合成及物性的探索一度成为纳米材料研究的主导方向。
第三阶段(从1994年到现在)纳米组装体系、人工组装合成的纳米结构的材料体系越来越受到人们的关注,正在成为纳米材料研究的新的热点。国际上,把这类材料称为纳米组装材料体系或者称为纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝和管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系,基保包括纳米阵列体系、介孔组装体系、薄膜嵌镶体系。纳米颗粒、丝、管可以是有序或无序地排列。
如果说第一阶段和第二阶段的研究在某种程度上带有一定的随机性,那么这一阶段研究的特点更强调人们的意愿设计、组装、创造新的体系,更有目的地使该体系具有人们所希望的特性。著名诺贝尔奖金获得者,美国物理学家费曼曾预言“如果有一天人们能按照自己的意愿排列原子和分子…,那将创造什么样的奇迹”。就像目前用STM操纵原子一样,人工地把纳米微粒整齐排列就是实现费曼预言,创造新奇迹的起点。美国加利福尼亚大学洛伦兹伯克力国家实验室的科学家在《自然》杂志上,指出纳米尺度的图案材料是现代材料化学和物理学的重要前沿课题。可见,纳米结构的组装体系很可能成为纳米材料研究的前沿主导方向。
二、纳米材料研究的特点
1、纳米材料研究的内涵不断扩大
第一阶段主要集中在纳米颗粒(纳米晶、纳米相、纳米非晶等)以及由它们组成的薄膜与块体,到第三阶段纳米材料研究对象又涉及到纳米丝、纳米管、微孔和介孔材料(包括凝胶和气凝胶),例如气凝胶孔隙率高于90%,孔径大小为纳米级,这就导致孔隙间的材料实际上是纳米尺度的微粒或丝,这种纳米结构为嵌镶、组装纳米微粒提供一个三维空间。纳米管的出现,丰富了纳米材料研究的内涵,为合成组装纳米材料提供了新的机遇。
2.纳米材料的概念不断拓宽
1994年以前,纳米结构材料仅仅包括纳米微粒及其形成的纳米块体、纳米薄膜,现在纳米结构的材料的含意还包括纳米组装体系,该体系除了包含纳米微粒实体的组元,还包括支撑它们的具有纳米尺度的空间的基体,因此,纳米结构材料内涵变得丰富多彩。
3.纳米材料的应用成为人们关注的热点
经过第一阶段和第二阶段研究,人们已经发现纳米材料所具备的不同于常规材料的新特性,对传统工业和常规产品会产生重要的影响。日本、美国和西欧都相继把实验室的成果转化为规模生产,据不完全统计,国际上已有20多个纳米材料公司经营粉体生产线,其中陶瓷纳米粉体对常规陶瓷和高技术陶瓷的改性、纳米功能涂层的制备技术和涂层工艺、纳米添加功能油漆涂料的研究、纳米添加塑料改性以及纳米材料在环保、能源、医药等领域的应用,磨料、釉料以及纸张和纤维填料的纳米化研究也相继展开。纳米材料及其相关的产品从1994年开始已陆续进入市场,所创造的经济效益以20%速度增长。
三、纳米材料的发展趋势
1.加强控制工程的研究
在纳米材料制备科学和技术研究方面一个重要的趋势是加强控制工程的研究,这包括颗粒尺寸、形状、表面、微结构的控制。由于纳米颗粒的小尺寸效应、表面效应和量子尺寸效应都同时在起作用,它们对材料某一种性能的贡献大小、强弱往往很难区分,是有利的作用,还是不利的作用更难以判断,这不但给某一现象的解释带来困难,同时也给设计新型纳米结构带来很大的困难。如何控制这些效应对纳米材料性能的影响,如何控制一种效应的影响而引出另一种效应的影响,这都是控制工程研究亟待解决的问题。国际上近一两年来,纳米材料控制工程的研究主要有以下几个方面:一是纳米颗粒的表面改性,通过纳米微粒的表面做异性物质和表面的修饰可以改变表面带电状态、表面结构和粗糙度;二是通过纳米微粒在多孔基体中的分布状态(连续分布还是孤立分布)来控制量子尺寸效应和渗流效应;三是通过设计纳米丝、管等的阵列体系(包括有序阵列和无序阵列)来获得所需要的特性。
2.近年来引人注目的几具新动向
(1)纳米组装体系蓝绿光的研究出现新的苗头。日本Nippon钢铁公司闪电化学阳极腐蚀方法获得6H多孔碳化硅,发现了蓝绿光发光强度比6H碳化硅晶体高100倍:多孔硅在制备过程中经紫外辐照或氧化也发蓝绿光;含有Dy和Al的SiO2气凝胶在390nm波长光激发下发射极强的蓝绿光,比多孔Si的最强红光还高出1倍多,250nm波长光激发出极强的蓝光。
(2)巨电导的发现。美国霍普金斯大学的科学家在SiO2一Au的颗粒膜上观察到极强的高电导现象,当金颗粒的体积百分比达到某临界值时,电导增加了14个数量级;纳米氧化镁铟薄膜经氢离子注入后,电导增加8个数量级;
研究表明,聚苯乙烯纳米粒子的大小与DCs的相互作用关系密切。20nm与500nm的纳米粒子注射C57BL/c小鼠后,500nm的纳米粒子经淋巴结中CD8α+、CD8α-DC及类浆细胞DCs(plasmacytoidDCs,pDCs)转运,相反,20nm纳米粒子可自由运输,清除了DCs的小鼠中未见到500nm纳米粒子的转运。Kunzmann等[11]发现,硅包被的氧化铁纳米粒子诱导剂量依赖的DCs细胞毒性,但同样大小的葡聚糖包被的氧化铁纳米粒子对DCs无细胞毒性;硅和葡聚糖包被的氧化铁纳米粒子均可以刺激DCs产生致炎性细胞因子。Winter等[12]报道,14nmSi和TiO2均可以活化小鼠骨髓来源的DCs,促进CD11c和MHCⅡ的表达,活化炎症复合体,即14nmSi和TiO2通过影响DCs细胞的功能影响免疫反应。
2纳米粒子对适应性免疫反应的影响
关于纳米材料对适应性免疫反应的影响的研究较少。Gustafsson等[13]报道,单剂量(5mg/kg)的TiO2纳米粒子吸入后,DarkAgouti大鼠气道中介导免疫反应的是CD4+T细胞,早期的炎症因子是T细胞分泌的IL-1α、IL-1β、IL-6、细胞因子诱导的中性粒细胞趋化因子1(CNIC-1)和粒细胞-巨噬细胞集落刺激因子(GM-CSF)。Schanen等[14]用1.56μmol/L的TiO2纳米粒子处理人脐静脉内皮细胞(humanumbilicalveinendothelialcells,HUVECs)和人外周血单个核细胞(peripheralbloodmononuclearcells,PBMCs)24h,导致HUVECs和PBMCs产生IL-6、IL-8、TNF-α、IL-1α、IL-1β、INF-γ等炎性细胞因子;而且,纳米粒子可刺激DCs成熟,表达CD86、CD83、CCR7分子,促进NaveCD4+T细胞的活化与增殖。同样,Ghoneum等[15]发现,体外50~200μg/mL的纳米钻石或纳米铂(DPV576)刺激人单核细胞来源的DCs24h,可活化DCs,诱导DCs表达CD86、CD83,产生IL-6、TNF和IL-10,随后活化NaveCD4+T细胞并刺激其增殖。因而这些纳米粒子可通过刺激DCs成熟、增强CD4+T细胞的增殖,从而增强机体的免疫反应。Ogunwale等[16]发现,4nm的钴铬(Co-chromium,CoCr)纳米粒子对DCs、T细胞、B细胞产生的效应不同,25μg/mL的CoCr纳米粒子不能活化DCs和B细胞,但能抑制T细胞的增殖反应。与单独的DNA疫苗相比,DNA吸附阳离子聚苯乙烯(poly-L-lysine-coated)的纳米粒子皮内免疫小鼠,可增强抗体的产生,增强CD4+、CD8+T细胞的增殖反应[17]。而且,纳米粒子的大小也影响适应性免疫反应的类型。40~49nm纳米粒子包被的OVA抗原单次免疫小鼠,可诱导小鼠CD8+T细胞产生IFN-γ;而93~123nm纳米粒子包被OVA单次免疫小鼠,可诱导小鼠CD4+T细胞的活化,产生IL-4。49nm纳米粒子结合呼吸道合胞病毒(respiratorysyncytialvirus,RSV)抗原G88免疫小鼠,与单纯G88免疫组相比,能诱导更高水平的IFN-γ,显著减少经RSV滴鼻攻击感染后的病毒滴度。因而,选择不同大小的纳米粒子作为抗原载体免疫小鼠,可影响小鼠适应性免疫反应的类型[18]。
3纳米粒子的免疫调节机制
固有免疫和适应性免疫间存在精细的平衡。纳米粒子可通过调节固有和适应性免疫细胞的功能来调节免疫反应,但其具体的作用机制仍不清楚。近年来的研究发现纳米材料影响Th1/Th2细胞的平衡。10-5~10-7mol/L的钴纳米粒子刺激后,人PMBCs可产生大量的TNF-α、IFN-γ等Th1相关细胞因子,但IL-10等Th2相关细胞因子减少[19]。Liu等[20]报道,0.5μmol/kg的水溶性富勒烯C60注射小鼠后,血清中IL-2、IFN-γ、TNF-α等Th1相关细胞因子的产生增加,IL-4、IL-5等Th2相关细胞因子的产生减少,CD4+/CD8+T细胞的比例增高,小鼠免疫反应明显增强。纳米粒子的另一个重要调节机制是诱导或改变DCs的分化和成熟,因而,纳米材料可作为疫苗佐剂增加疫苗的免疫反应。Wang等[21]报道,乙型肝炎病毒的DNA疫苗用SiO2、层状双金属氢氧化物纳米颗粒负载,可刺激DCs成熟。体内免疫BALB/c小86江苏大学学报(医学版)第25卷鼠,纳米粒子负载的DNA疫苗诱导比单独DNA疫苗诱导有更强的血清抗体反应,能促进T细胞增殖,使T细胞向Th1方向极化,说明纳米粒子可作为一种有效的非病毒基因传递系统,增强疫苗的免疫反应。携带DNA疫苗的聚丙烯酸酯纳米颗粒,体外转染小鼠DC2.4细胞系,可促进DCs的分化成熟,转染了该DNA纳米颗粒的DCs可刺激活化NaveCD8+T细胞产生高水平的IFN-γ,表明聚丙烯酸酯纳米颗粒可作为高效的DNA疫苗佐剂,增强疫苗的免疫反应[22]。
4结论
自70年代纳米颗粒材料问世以来,80年代中期在实验室合成了纳米块体材料,至今已有20多年的历史,但真正成为材料科学和凝聚态物理研究的前沿热点是在80年代中期以后。从研究的内涵和特点大致可划分为三个阶段。
第一阶段(1990年以前)主要是在实验室探索用各种手段制备各种材料的纳米颗粒粉体,合成块体(包括薄膜),研究评估表征的方法,探索纳米材料不同于常规材料的特殊性能。对纳米颗粒和纳米块体材料结构的研究在80年代末期一度形成热潮。研究的对象一般局限在单一材料和单相材料,国际上通常把这类纳米材料称纳米晶或纳米相材料。
第二阶段(1994年前)人们关注的热点是如何利用纳米材料已挖掘出来的奇特物理、化学和力学性能,设计纳米复合材料,通常采用纳米微粒与纳米微粒复合,纳米微粒与常规块体复合及发展复合材料的合成及物性的探索一度成为纳米材料研究的主导方向。
第三阶段(从1994年到现在)纳米组装体系、人工组装合成的纳米结构的材料体系越来越受到人们的关注,正在成为纳米材料研究的新的热点。国际上,把这类材料称为纳米组装材料体系或者称为纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝和管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系,基保包括纳米阵列体系、介孔组装体系、薄膜嵌镶体系。纳米颗粒、丝、管可以是有序或无序地排列。
如果说第一阶段和第二阶段的研究在某种程度上带有一定的随机性,那么这一阶段研究的特点更强调人们的意愿设计、组装、创造新的体系,更有目的地使该体系具有人们所希望的特性。著名诺贝尔奖金获得者,美国物理学家费曼曾预言“如果有一天人们能按照自己的意愿排列原子和分子…,那将创造什么样的奇迹”。就像目前用STM操纵原子一样,人工地把纳米微粒整齐排列就是实现费曼预言,创造新奇迹的起点。美国加利福尼亚大学洛伦兹伯克力国家实验室的科学家在《自然》杂志上,指出纳米尺度的图案材料是现代材料化学和物理学的重要前沿课题。可见,纳米结构的组装体系很可能成为纳米材料研究的前沿主导方向。
二、纳米材料研究的特点
1、纳米材料研究的内涵不断扩大
第一阶段主要集中在纳米颗粒(纳米晶、纳米相、纳米非晶等)以及由它们组成的薄膜与块体,到第三阶段纳米材料研究对象又涉及到纳米丝、纳米管、微孔和介孔材料(包括凝胶和气凝胶),例如气凝胶孔隙率高于90%,孔径大小为纳米级,这就导致孔隙间的材料实际上是纳米尺度的微粒或丝,这种纳米结构为嵌镶、组装纳米微粒提供一个三维空间。纳米管的出现,丰富了纳米材料研究的内涵,为合成组装纳米材料提供了新的机遇。
2.纳米材料的概念不断拓宽
1994年以前,纳米结构材料仅仅包括纳米微粒及其形成的纳米块体、纳米薄膜,现在纳米结构的材料的含意还包括纳米组装体系,该体系除了包含纳米微粒实体的组元,还包括支撑它们的具有纳米尺度的空间的基体,因此,纳米结构材料内涵变得丰富多彩。
3.纳米材料的应用成为人们关注的热点
经过第一阶段和第二阶段研究,人们已经发现纳米材料所具备的不同于常规材料的新特性,对传统工业和常规产品会产生重要的影响。日本、美国和西欧都相继把实验室的成果转化为规模生产,据不完全统计,国际上已有20多个纳米材料公司经营粉体生产线,其中陶瓷纳米粉体对常规陶瓷和高技术陶瓷的改性、纳米功能涂层的制备技术和涂层工艺、纳米添加功能油漆涂料的研究、纳米添加塑料改性以及纳米材料在环保、能源、医药等领域的应用,磨料、釉料以及纸张和纤维填料的纳米化研究也相继展开。纳米材料及其相关的产品从1994年开始已陆续进入市场,所创造的经济效益以20%速度增长。
三、纳米材料的发展趋势
1.加强控制工程的研究
在纳米材料制备科学和技术研究方面一个重要的趋势是加强控制工程的研究,这包括颗粒尺寸、形状、表面、微结构的控制。由于纳米颗粒的小尺寸效应、表面效应和量子尺寸效应都同时在起作用,它们对材料某一种性能的贡献大小、强弱往往很难区分,是有利的作用,还是不利的作用更难以判断,这不但给某一现象的解释带来困难,同时也给设计新型纳米结构带来很大的困难。如何控制这些效应对纳米材料性能的影响,如何控制一种效应的影响而引出另一种效应的影响,这都是控制工程研究亟待解决的问题。国际上近一两年来,纳米材料控制工程的研究主要有以下几个方面:一是纳米颗粒的表面改性,通过纳米微粒的表面做异性物质和表面的修饰可以改变表面带电状态、表面结构和粗糙度;二是通过纳米微粒在多孔基体中的分布状态(连续分布还是孤立分布)来控制量子尺寸效应和渗流效应;三是通过设计纳米丝、管等的阵列体系(包括有序阵列和无序阵列)来获得所需要的特性。
2.近年来引人注目的几具新动向
(1)纳米组装体系蓝绿光的研究出现新的苗头。日本Nippon钢铁公司闪电化学阳极腐蚀方法获得6H多孔碳化硅,发现了蓝绿光发光强度比6H碳化硅晶体高100倍:多孔硅在制备过程中经紫外辐照或氧化也发蓝绿光;含有Dy和Al的SiO2气凝胶在390nm波长光激发下发射极强的蓝绿光,比多孔Si的最强红光还高出1倍多,250nm波长光激发出极强的蓝光。
(2)巨电导的发现。美国霍普金斯大学的科学家在SiO2一Au的颗粒膜上观察到极强的高电导现象,当金颗粒的体积百分比达到某临界值时,电导增加了14个数量级;纳米氧化镁铟薄膜经氢离子注入后,电导增加8个数量级;
纳米材料在结构、光电和化学性质等方面的诱人特征,引起物家、材料学家和化学家的浓厚兴趣。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学性质,使人们意识到它的可能给物理、化学、材料、生物、医药等学科的带来新的机遇。纳米材料的应用前景十分广阔。近年来,它在化工生产领域也得到了一定的应用,并显示出它的独特魅力。
1.在催化方面的应用
催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒于作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。
纳米微粒作为催化剂应用较多的是半导体光催化剂,特别是在有机物制备方面。分散在溶液中的每一个半导体颗粒,可近似地看成是一个短路的微型电池,用能量大于半导体能隙的光照射半导体分散系时,半导体纳米粒子吸收光产生——空穴对。在电场作用下,电子与空穴分离,分别迁移到粒子表面的不同位置,与溶液中相似的组分进行氧化和还原反应。
光催化反应涉及到许多反应类型,如醇与烃的氧化,无机离子氧化还原,有机物催化脱氢和加氢、氨基酸合成,固氮反应,水净化处理,水煤气变换等,其中有些是多相催化难以实现的。半导体多相光催化剂能有效地降解水中的有机污染物。例如纳米TiO2,既有较高的光催化活性,又能耐酸碱,对光稳定,无毒,便宜易得,是制备负载型光催化剂的最佳选择。已有文章报道,选用硅胶为基质,制得了催化活性较高的TiO/SiO2负载型光催化剂。Ni或Cu一Zn化合物的纳米颗粒,对某些有机化合物的氢化反应是极好的催化剂,可代替昂贵的铂或钮催化剂。纳米铂黑催化剂可使乙烯的氧化反应温度从600℃降至室温。用纳米微粒作催化剂提高反应效率、优化反应路径、提高反应速度方面的研究,是未来催化不可忽视的重要研究课题,很可能给催化在上的应用带来革命性的变革。
2.在涂料方面的应用
纳米材料由于其表面和结构的特殊性,具有一般材料难以获得的优异性能,显示出强大的生命力。表面涂层技术也是当今世界关注的热点。纳米材料为表面涂层提供了良好的机遇,使得材料的功能化具有极大的可能。借助于传统的涂层技术,添加纳米材料,可获得纳米复合体系涂层,实现功能的飞跃,使得传统涂层功能改性。涂层按其用途可分为结构涂层和功能涂层。结构涂层是指涂层提高基体的某些性质和改性;功能涂层是赋予基体所不具备的性能,从而获得传统涂层没有的功能。结构涂层有超硬、耐磨涂层,抗氧化、耐热、阻燃涂层,耐腐蚀、装饰涂层等;功能涂层有消光、光反射、光选择吸收的光学涂层,导电、绝缘、半导体特性的电学涂层,氧敏、湿敏、气敏的敏感特性涂层等。在涂料中加入纳米材料,可进一步提高其防护能力,实现防紫外线照射、耐大气侵害和抗降解、变色等,在卫生用品上应用可起到杀菌保洁作用。在标牌上使用纳米材料涂层,可利用其光学特性,达到储存太阳能、节约能源的目的。在建材产品如玻璃、涂料中加入适宜的纳米材料,可以达到减少光的透射和热传递效果,产生隔热、阻燃等效果。日本松下公司已研制出具有良好静电屏蔽的纳米涂料,所应用的纳米微粒有氧化铁、二氧化钛和氧化锌等。这些具有半导体特性的纳米氧化物粒子,在室温下具有比常规的氧化物高的导电特性,因而能起到静电屏蔽作用,而且氧化物纳米微粒的颜色不同,这样还可以通过复合控制静电屏蔽涂料的颜色,克服炭黑静电屏蔽涂料只有单一颜色的单调性。纳米材料的颜色不仅随粒径而变,还具有随角变色效应。在汽车的装饰喷涂业中,将纳米TiO2添加在汽车、轿车的金属闪光面漆中,能使涂层产生丰富而神秘的色彩效果,从而使传统汽车面漆旧貌换新颜。纳米SiO2是一种抗紫外线辐射材料。在涂料中加入纳米SiO2,可使涂料的抗老化性能、光洁度及强度成倍地增加。纳米涂层具有良好的应用前景,将为涂层技术带来一场新的技术革命,也将推动复合材料的研究开发与应用。
3.在其它精细化工方面的
精细化工是一个巨大的领域,产品数量繁多,用途广泛,并且到人类生活的方方面面。纳米材料的优越性无疑也会给精细化工带来福音,并显示它的独特畦力。在橡胶、塑料、涂料等精细化工领域,纳米材料都能发挥重要作用。如在橡胶中加入纳米SiO2,可以提高橡胶的抗紫外辐射和红外反射能力。纳米Al2O3,和SiO2,加入到普通橡胶中,可以提高橡胶的耐磨性和介电特性,而且弹性也明显优于用白炭黑作填料的橡胶。塑料中添加一定的纳米材料,可以提高塑料的强度和韧性,而且致密性和防水性也相应提高。国外已将纳米SiO2,作为添加剂加入到密封胶和粘合剂中,使其密封性和粘合性都大为提高。此外,纳米材料在纤维改性、有机玻璃制造方面也都有很好的应用。在有机玻璃中加入经过表面修饰处理的SiO2,可使有机玻璃抗紫外线辐射而达到抗老化的目的;而加入A12O3,不仅不影响玻璃的透明度,而且还会提高玻璃的高温冲击韧性。一定粒度的锐钛矿型TiO2具有优良的紫外线屏蔽性能,而且质地细腻,无毒无臭,添加在化妆品中,可使化妆品的性能得到提高。超细TiO2的应用还可扩展到涂料、塑料、人造纤维等行业。最近又开发了用于食品包装的TiO2及高档汽车面漆用的珠光钛白。纳米TiO2,能够强烈吸收太阳光中的紫外线,产生很强的光化学活性,可以用光催化降解工业废水中的有机污染物,具有除净度高,无二次污染,适用性广泛等优点,在环保水处理中有着很好的应用前景。在环境领域,除了利用纳米材料作为催化剂来处理工业生产过程中排放的废料外,还将出现功能独特的纳米膜。这种膜能探测到由化学和生物制剂造成的污染,并能对这些制剂进行过滤,从而消除污染。
4.在医药方面的应用
21世纪的健康科学,将以出入意料的速度向前,人们对药物的需求越来越高。控制药物释放、减少副作用、提高药效、发展药物定向,已提到日程上来。纳米粒子将使药物在人体内的传输更为方便。用数层纳米粒子包裹的智能药物进入人体,可主动搜索并攻击癌细胞或修补损伤组织;使用纳米技术的新型诊断仪器,只需检测少量血液就能通过其中的蛋白质和DNA诊断出各种疾病,美国麻省理工学院已制备出以纳米磁性材料作为药物载体的靶定向药物,称之为“定向导弹”。该技术是在磁性纳米微粒包覆蛋白质表面携带药物,注射到人体血管中,通过磁场导航输送到病变部位,然后释放药物。纳米粒子的尺寸小,可以在血管中自由流动,因此可以用来检查和治疗身体各部位的病变。对纳米微粒的临床医疗以及放射性治疗等方面的应用也进行了大量的研究工作。据《人民日报》报道,我国将纳米技术应用于医学领域获得成功。南京希科集团利用纳米银技术研制生产出医用敷料——长效广谱抗菌棉。这种抗菌棉的生产原理是通过纳米技术将银制成尺寸在纳米级的超细小微粒,然后使之附着在棉织物上。银具有预防溃烂和加速伤口愈合的作用,通过纳米技术处理后的银表面急剧增大,表面结构发生变化,杀菌能力提高200倍左右,对临床常见的外科感染细菌都有较好的抑制作用。
微粒和纳粒作为给药系统,其制备材料的基本性质是无毒、稳定、有良好的生物性并且与药物不发生化学反应。纳米系统主要用于毒副作用大、生物半衰期短、易被生物酶降解的药物的给药。
纳米生物学用来研究在纳米尺度上的生物过程,从而根据生物学原理发展分子应用工程。在金属铁的超细颗粒表面覆盖一层厚为5~20nm的聚合物后,可以固定大量蛋白质特别是酶,从而控制生化反应。这在生化技术、酶工程中大有用处。使纳米技术和生物学相结合,研究分子生物器件,利用纳米传感器,可以获取细胞内的生物信息,从而了解机体状态,深化人们对生理及病理的解释。
纳米材料在结构、光电和化学性质等方面的诱人特征,引起物理学家、材料学家和化学家的浓厚兴趣。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。近年来,它在化工生产领域也得到了一定的应用,并显示出它的独特魅力。
1.在催化方面的应用
催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒于作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。
纳米微粒作为催化剂应用较多的是半导体光催化剂,特别是在有机物制备方面。分散在溶液中的每一个半导体颗粒,可近似地看成是一个短路的微型电池,用能量大于半导体能隙的光照射半导体分散系时,半导体纳米粒子吸收光产生电子——空穴对。在电场作用下,电子与空穴分离,分别迁移到粒子表面的不同位置,与溶液中相似的组分进行氧化和还原反应。
光催化反应涉及到许多反应类型,如醇与烃的氧化,无机离子氧化还原,有机物催化脱氢和加氢、氨基酸合成,固氮反应,水净化处理,水煤气变换等,其中有些是多相催化难以实现的。半导体多相光催化剂能有效地降解水中的有机污染物。例如纳米TiO2,既有较高的光催化活性,又能耐酸碱,对光稳定,无毒,便宜易得,是制备负载型光催化剂的最佳选择。已有文章报道,选用硅胶为基质,制得了催化活性较高的TiO/SiO2负载型光催化剂。Ni或Cu一Zn化合物的纳米颗粒,对某些有机化合物的氢化反应是极好的催化剂,可代替昂贵的铂或钮催化剂。纳米铂黑催化剂可使乙烯的氧化反应温度从600℃降至室温。用纳米微粒作催化剂提高反应效率、优化反应路径、提高反应速度方面的研究,是未来催化科学不可忽视的重要研究课题,很可能给催化在工业上的应用带来革命性的变革。
2.在涂料方面的应用
纳米材料由于其表面和结构的特殊性,具有一般材料难以获得的优异性能,显示出强大的生命力。表面涂层技术也是当今世界关注的热点。纳米材料为表面涂层提供了良好的机遇,使得材料的功能化具有极大的可能。借助于传统的涂层技术,添加纳米材料,可获得纳米复合体系涂层,实现功能的飞跃,使得传统涂层功能改性。涂层按其用途可分为结构涂层和功能涂层。结构涂层是指涂层提高基体的某些性质和改性;功能涂层是赋予基体所不具备的性能,从而获得传统涂层没有的功能。结构涂层有超硬、耐磨涂层,抗氧化、耐热、阻燃涂层,耐腐蚀、装饰涂层等;功能涂层有消光、光反射、光选择吸收的光学涂层,导电、绝缘、半导体特性的电学涂层,氧敏、湿敏、气敏的敏感特性涂层等。在涂料中加入纳米材料,可进一步提高其防护能力,实现防紫外线照射、耐大气侵害和抗降解、变色等,在卫生用品上应用可起到杀菌保洁作用。在标牌上使用纳米材料涂层,可利用其光学特性,达到储存太阳能、节约能源的目的。在建材产品如玻璃、涂料中加入适宜的纳米材料,可以达到减少光的透射和热传递效果,产生隔热、阻燃等效果。日本松下公司已研制出具有良好静电屏蔽的纳米涂料,所应用的纳米微粒有氧化铁、二氧化钛和氧化锌等。这些具有半导体特性的纳米氧化物粒子,在室温下具有比常规的氧化物高的导电特性,因而能起到静电屏蔽作用,而且氧化物纳米微粒的颜色不同,这样还可以通过复合控制静电屏蔽涂料的颜色,克服炭黑静电屏蔽涂料只有单一颜色的单调性。纳米材料的颜色不仅随粒径而变,还具有随角变色效应。在汽车的装饰喷涂业中,将纳米TiO2添加在汽车、轿车的金属闪光面漆中,能使涂层产生丰富而神秘的色彩效果,从而使传统汽车面漆旧貌换新颜。纳米SiO2是一种抗紫外线辐射材料。在涂料中加入纳米SiO2,可使涂料的抗老化性能、光洁度及强度成倍地增加。纳米涂层具有良好的应用前景,将为涂层技术带来一场新的技术革命,也将推动复合材料的研究开发与应用。
3.在其它精细化工方面的应用
精细化工是一个巨大的工业领域,产品数量繁多,用途广泛,并且影响到人类生活的方方面面。纳米材料的优越性无疑也会给精细化工带来福音,并显示它的独特畦力。在橡胶、塑料、涂料等精细化工领域,纳米材料都能发挥重要作用。如在橡胶中加入纳米SiO2,可以提高橡胶的抗紫外辐射和红外反射能力。纳米Al2O3,和SiO2,加入到普通橡胶中,可以提高橡胶的耐磨性和介电特性,而且弹性也明显优于用白炭黑作填料的橡胶。塑料中添加一定的纳米材料,可以提高塑料的强度和韧性,而且致密性和防水性也相应提高。国外已将纳米SiO2,作为添加剂加入到密封胶和粘合剂中,使其密封性和粘合性都大为提高。此外,纳米材料在纤维改性、有机玻璃制造方面也都有很好的应用。在有机玻璃中加入经过表面修饰处理的SiO2,可使有机玻璃抗紫外线辐射而达到抗老化的目的;而加入A12O3,不仅不影响玻璃的透明度,而且还会提高玻璃的高温冲击韧性。一定粒度的锐钛矿型TiO2具有优良的紫外线屏蔽性能,而且质地细腻,无毒无臭,添加在化妆品中,可使化妆品的性能得到提高。超细TiO2的应用还可扩展到涂料、塑料、人造纤维等行业。最近又开发了用于食品包装的TiO2及高档汽车面漆用的珠光钛白。纳米TiO2,能够强烈吸收太阳光中的紫外线,产生很强的光化学活性,可以用光催化降解工业废水中的有机污染物,具有除净度高,无二次污染,适用性广泛等优点,在环保水处理中有着很好的应用前景。在环境科学领域,除了利用纳米材料作为催化剂来处理工业生产过程中排放的废料外,还将出现功能独特的纳米膜。这种膜能探测到由化学和生物制剂造成的污染,并能对这些制剂进行过滤,从而消除污染。
4.在医药方面的应用
21世纪的健康科学,将以出入意料的速度向前发展,人们对药物的需求越来越高。控制药物释放、减少副作用、提高药效、发展药物定向治疗,已提到研究日程上来。纳米粒子将使药物在人体内的传输更为方便。用数层纳米粒子包裹的智能药物进入人体,可主动搜索并攻击癌细胞或修补损伤组织;使用纳米技术的新型诊断仪器,只需检测少量血液就能通过其中的蛋白质和DNA诊断出各种疾病,美国麻省理工学院已制备出以纳米磁性材料作为药物载体的靶定向药物,称之为“定向导弹”。该技术是在磁性纳米微粒包覆蛋白质表面携带药物,注射到人体血管中,通过磁场导航输送到病变部位,然后释放药物。纳米粒子的尺寸小,可以在血管中自由流动,因此可以用来检查和治疗身体各部位的病变。对纳米微粒的临床医疗以及放射性治疗等方面的应用也进行了大量的研究工作。据《人民日报》报道,我国将纳米技术应用于医学领域获得成功。南京希科集团利用纳米银技术研制生产出医用敷料——长效广谱抗菌棉。这种抗菌棉的生产原理是通过纳米技术将银制成尺寸在纳米级的超细小微粒,然后使之附着在棉织物上。银具有预防溃烂和加速伤口愈合的作用,通过纳米技术处理后的银表面急剧增大,表面结构发生变化,杀菌能力提高200倍左右,对临床常见的外科感染细菌都有较好的抑制作用。
微粒和纳粒作为给药系统,其制备材料的基本性质是无毒、稳定、有良好的生物性并且与药物不发生化学反应。纳米系统主要用于毒副作用大、生物半衰期短、易被生物酶降解的药物的给药。
纳米生物学用来研究在纳米尺度上的生物过程,从而根据生物学原理发展分子应用工程。在金属铁的超细颗粒表面覆盖一层厚为5~20nm的聚合物后,可以固定大量蛋白质特别是酶,从而控制生化反应。这在生化技术、酶工程中大有用处。使纳米技术和生物学相结合,研究分子生物器件,利用纳米传感器,可以获取细胞内的生物信息,从而了解机体状态,深化人们对生理及病理的解释。