欢迎访问爱发表,线上期刊服务咨询

概率统计论文8篇

时间:2023-03-16 15:49:30

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇概率统计论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

概率统计论文

篇1

一是课时设置较少,而老师为了完成教学任务,不得不加快速度,知识点没办法讲细,势必会造成学生“贪多嚼不烂”;且课程内容较多,如果老师本身的知识结构沉淀不够,只是“照本宣科”,简单介绍概念、定义、理论和方法,缺少对实际的概率统计背景知识及发展现状的介绍,忽视对学生实践和应用能力的培养,导致所教知识、方法不能被学生接受、及时掌握。二是在应试教育的影响下,学生思维固定,缺乏学习的主动性。许多学生学习的目的是为了考试过关,对于考试涉及不到的课程知识,就只是简单了解或干脆不学,所以在整个学习过程中,不注重课程思想方法的领悟,只是忙于做题,把学习的目标仅仅定位于能看懂例题,会做课后习题,只关心具体解题的步骤,从而去模仿解题,而不是领会课程知识所呈现的方法。三是教师忽略与相关学科间的关系,只进行单一教材的课堂教学,没有适当穿插一些相关学科的知识,教学资源不能得到优化配置;教材比较陈旧,理论联系实际的应用实例较少,即使有一些联系实际的实例,也不涉及到当今科技信息,导致了学习与实践的脱节;教师在教学中解决实际问题的能力不够,理论与实际联系少之又少,即使有,表现的应用背景也被形式化的演绎一带而过,学生“雾里看花”,难以琢磨、难以理会,畏惧心理滋生。同时,教材中都是一些联系很紧凑的理论,以及简化了过程的证明和计算,学生感觉不到学习乐趣,意义就更谈不上了,这也是造成很多学生放弃对这门课程的学习,只背重点、记忆模仿解题应付考试的重要原因。

2问题的解决方案

2.1从整体内容上把握教材

根据《概率论与数理统计》教材,该课程整体上是讲述三个大的问题:一是概率论部分,介绍必要的理论基础;二是数理统计部分,主要讲述参数估计和假设检验,并介绍了方差分析和回归分析的方法;三是随机过程部分,在讲清基本知识的基础上主要讨论了平稳随机过程,是随机变量的集合,能完全揭示概率的本质。课本上的很多问题都是围绕这三个问题来讲述的,因此,要打破“重理论,轻应用”“重概率,轻统计”的教学思想,且从整体上完整地对这三个问题进行讲授。由于概率论与数理统计的知识点多而零散,初学者对知识点不容易全面系统地把握,所以老师在教学中要经常引导学生进行简单复习回顾,从而使学生能够高效而快速地理解所学知识,系统掌握这有机结合的三部分内容。

2.2在讲授中要有其客观背景

很多学生虽然在中学接触过概率知识,但那只是皮毛,大学更注重的是思想的培养,而且本课程从内容到方法与其它数学课程都有本质的区别。因此,老师在讲解基本概念时,一定要把来龙去脉讲清楚。比如在评价棉花的质量时,“既需要注意纤维的平均长度,又需要注意纤维长度与平均长度的偏离程度,平均长度较大,偏离较小,质量较好”,这些常识性知识容易理解,学生也有兴趣听,然后就此引入概念———这是由随机变量的分布所确定的,能刻画随机变量某一方面的特征的常数统称为数字特征,它在理论和实际应用中都很重要。由此就很自然地引出了数字特征、数学期望、方差、相关系数和矩,这样学生就很好地理解了概念的实际背景。也就是说,在概念定理的教学中,首先应该在概念、定理产生的背景上下功夫,找出每个概念的实例,用大量事实来说明提出这些概念定理的客观依据是什么,它在实际应用中有什么意义。比如,一个随机变量由大量的相互独立的随机因素综合影响而形成,而且其中每一个个别因素在总的影响中所起的作用都是微小的,这种随机变量往往近似服从正态分布,那么这种现象正是中心极限定理的客观背景;再如,在介绍随机过程时,不妨从随机过程实例出发,如股票和汇率的波动、语音信号、视频信号、体温的变化等等。如果忽视了概念与定理产生的实际背景,离开实际去讲概念和定理,学生会觉得学习内容枯燥,而且也很难理解,更不会应用于解决实际问题,这样就降低了学习的积极性,也没有发挥该课程的功能。

2.3在教学过程中使用案例教学

案例教学的主角是学生,通过学生之间对概念、定义、定理、标注、例题积极主动的讨论,以达到更深入理解和掌握的目的。在教学中引入的案例,要能够激发学生的学习兴趣、学习积极性和参与讨论的主动性。如何选取案例,就要求教师在备课当中多花时间找资料、思考,在教学案例中尽可能选取社会热点、先进的科技信息为案例素材,尤其财经类院校应尽可能编写一些涉及财经信息方面的案例。比如,讲到随机变量内容部分,定要在金融经济学中编写涉及到的随机变量的案例;讲到中心极限定理部分,投资学中期权定价理论就是一个很好的案例;讲到参数估计和评价时,保险精算中对平均寿命函数的估计和评价则是很好的案例;随机过程部分,分数布朗运动投资组合的风险度量都是很好的案例等等。如此教学,才能激发学生的学习兴趣,在讨论中逐步体会基本概念、定义、定理的来龙去脉,实现了有效学习,培养了学生解决实际问题的能力和抽象概括、推理论证的能力。

2.4重视引导学生主动思考问题

培养创新思维“在教学过程中提出一些思考性和启发性都很强的问题,让学生分析、研究和讨论,引导学生去发现问题,分析问题,然后解决问题。”学生的学习要自觉要靠自己,不是由教师牵着走,而是由教师引导走,“授人与鱼,只供一日之炊;授人与渔,使人受益终身”,所以教师应多引导、鼓励学生主动思考问题。比如,教师在每次课结束前5分钟进行下堂课新知识的介绍时,对本堂课学的知识点和前面学过的知识做个串联,最好能随手画出知识点“网络状”图,引导学生积极思考,引出下次课要讲的内容,勾起学生的预习兴趣。再如,在讲课时,教师可以针对本节课的内容设计一系列“问题链”,用“问题链”带动和完成课堂教学,可很好地引导学生主动思考、创造性思维,引导学生思考、发现问题,讨论、做出结论,从而逐步地使教学由“灌输式教育”向“创新型教育”转变,教学互动,教学相长。同时,教师一定要想方设法改变“学生被动接受知识”为自主、有兴趣地去学习知识,引导和组织学生展开讨论,鼓励学生提出大胆的猜想,及时解决学生提出的问题,激发学生的求知欲,注重教学方法的灵活运用,鼓励学生动手探究和创新,这样教学效果才会明显。

3结语

篇2

周口师范学院学院在第四学期为统计学专业开设了计量经济学这门课程,每周4个(3节理论课+1节实践课)学时,共68学时。计量经济学是经济、统计、数学交叉结合的学科。其内容体系分为:单方程计量经济学模型、联立方程计量经济学模型、违背基本假设的模型、时间序列分析等内容。该课程开设目的在于让学生基本掌握现代经济学分析与研究理论及方法,能够应用计量经济学模型理论知识分析解决实际经济问题。经典单方程计量经济学模型主要包括线性回归分析、违背基本假定的经典计量经济学模型及联立方程计量经济学模型等。计量经济学课程在内容体系与数学分析、高等代数、概率统计、西方经济学等紧密相联,我校目前的教学以教师讲授为主,学生被动的学习。

2教学过程中存在的问题

第一,计量经济学是以经济学理论为理论基础,以现实观测数据和实验数据为支撑,利用数学、概率统计等方法,依据计算机技术,来研究分析伴有随机因素效应的现象的定量关系和发展变化的统计规律的一门学科。计量经济学作为西方经济学的新的一个分支,西方经济学为其发展奠定了的理论基础,西方经济学中关于对经济变量之间质的分析是计量经济学进行定量研究的前提。数学与概率统计是计量经济分析、理论研究的主要工具,计量经济学在的建立与选择时,很多地方需要用到数学的方法和技巧。但在实际教学中,仅注重计量经济学模型的求解及检验方法,而忽略模型建立的经济学基础;仅仅强调模型的设定是正确的,但是却没有教会学生如何去检验模型是否正确;同时,也未将经济学基础考虑进来。第二,目前的教学过于强调“重思想、重方法”,把必要的数学过程与技巧只是作为解决计量经济学基本思想的工具,不过分强调,而是着重于基本思想和解决问题思路的分析。第三,在教学时,并没有将计量经济学方法应用到实际问题中进行实践。在上机课上,让学生自己操作Eviews软件对课本习题进行操作练习,并写实验报告,训练了学生的动手能力,但是学生并没有机会将所学到的知识运用到实际的经济问题中,计量经济学的教学理论在一定程度上与实践相脱节,相当一部分学生在使用计量经济学方法处理经济问题时,感到迷茫,也不知运用相关软件来完成计量经济学的运算,即使能够运用软件,却不知该怎样解释与分析模型的结果。

3计量经济学教学措施

通过教学改革提高教学质量,进一步使学生达到掌握经典的计量经济学模型理论和方法,了解计量经济学理论与方法的新发展;要求学生能够应用简单的计量经济学模型和方法,对实现经济数量关系进行实证分析;为继续学习高级计量经济理论、方法打下基础。

3.1理论与实验教学的互动发展

提升教学效果加强理论教学,同时开展创新实验教学,理论教学与实验教学的互动、协调发展。

3.2以"任务"驱动教学

课程理论知识、使用专用软件、提出研究问题、解决研究问题为计量经济学课程教学的四大任务。带动学生的自主创新及动手能力,适时的给学生布置任务,提高学生学习的积极性。

3.3划分和挑选教学内容

对计量经济学教学内容的层次划分进行反复讨论和界定,形成分层次的课程教学体系。

3.4教学和考核形式的改革

篇3

作为数学与应用数学专业一门重要专业课,首先在教学内容上突出了师范性。这是培养中学合格数学师资的基本要求,主要做了以下两方面工作:一是为适应素质教育和社会发展的要求,加强了中学数学中概率统计内容的教学,例如古典概型、事件的独立性等。突出了中学数学中概率统计的随机性思想方法的教学。二是为适应教育科研的需要,渗透了教育统计的相关内容,增加了试卷统计分析的基本方法,为学生今后从事教育科研打下了一定的基础。其次在教学内容突出了先进性。先进性是概率统计课程教学改革的根本要求,而目前高师概率统计的教学内容对新知识体现不够,缺乏先进性和时代性。因此,在教学内容中增加了统计方法在解决经济中问题的有关内容。第三,突出了本学科的实际应用性。应用性是由这门学科的特点所决定,这门学科可以说是一门应用性非常强的学科,是一种工具和方法。因此,我们调整了教学内容,加大了应用性方面内容的教学,例如用假设检验方法解决实际问题等。

2.改进了概率统计的教学方法

目前高师概率统计的课堂教学仍在采用传统的“满堂灌”的教学方法,无视学生的表现和教学效果,教学的目的往往只针对最后的统一考试,教学过程中只是简单地把知识灌输给学生,强调对解题能力的训练,忽视了学生对知识理解和应用的掌握,忽视了对学生创新能力的培养。因此,我们改进了概率统计的教学方法,首先在概率统计课堂教学中突出了的数学思想的教学。概率统计中的数学思想的教学主要有随机思想、统计调查思想、统计描述思想、统计推断思想等。在概率统计教学过程中,我们注重了数学思想方法的教学,注意了各种统计方法的使用条件及注意事项,而且分析它们与一般的数学思想方法的异同,突出概率统计思想方法的特点。其次在概率统计教学中采用了类比方法进行教学。类比是一种从特殊到特殊的推理,具有推理的猜测性、联系的广泛性、探索性等特点。概率统计中有许多内容可以作类比教学,例如,多维随机变量的教学可与一维随机变量的进行类比,连续型随机变量的教学与离散型随机变量进行类比。

3.加强了现代信息技术与课程内容的整合

现代信息技术的发展对数学教育的影响是不言而喻的。在实际课堂教学中,教师们充分利用计算机的优势,使得概率统计这门学科学生学起来更便利,使得课堂更加多样和丰富多彩,现在在我们这个学科的课堂上,计算机已经成为了学习的有力工具。对于概率统计的教学,除了采用多媒体教学之外,还让学生通过数学软件或统计软件,如MatLab、SAS等上机操作实验,体验概率统计的思想,如概率中的蒲丰投针问题、冯-诺依曼用数学程序在计算机上模拟等给我们上机操作提供了有趣的题材。我们在概率统计课堂教学中强调了学生动手能力的培养,在教师指导下运用所学的知识和计算机技术,分析解决一些实际问题,写出分析报告。例如,在回归分析这部分内容的学习过程中,通过让学生收集本校大学生学习投入与学业成绩的相关数据,指导学生运用统计软件,建立大学生学习投入与学业成绩之间关系的回归模型。这样做大大提高了实践教学的效果,在实验中,通过动手能帮助学生理解该课程中一些抽象概念和理论,同时利用所学的方法和技巧,让学生独立完成研究型的小课题,从而培养学生的创新精神和实践能力。

4.改革了考核方法

课程的考核方法是教学中重要的一个环节。现在该课程的考核方式与其他课程基本上类似,期末考试成绩占80%(或70%),平时成绩占20%(或30%)。现行的考核方式不尽合理,不能全面的评价学生的整体成绩,所以我们进行了改进。我们在实际工作中采取了灵活多样的多种方式相结合的考核方法。就是将传统的单一闭卷考试方式改为闭卷与开卷相结合、平时考核与期末考试相结合的灵活多样的考核方法。闭卷考试主要考查学生对概率统计概念、理论的掌握程度;开卷考试主要考查学生对概率统计方法的掌握程度,通过设计一些与教学相关的、应用性的综合型案例,采用数学建模的形式,让学生完全自主的运用所学方法去分析、讨论和解决实际问题。平时考核的方式采取多种形式,包括平时的作业训练、学习小结及撰写课题小论文等。课题小论文是教师在教学过程中设计一些小课题,通过学生对这些课题的分析、讨论、总结及撰写论文的过程,达到了调动学生学习主动性、促进了自主学习的目的。多样的考核形式,既增强了教师教学的灵活性,又让学生真正体会到学习的乐趣,增加学习的积极性,真正培养了学生的应用能力和创新思维,达到了明显的教学效果。

5.总结

篇4

关键词:概率统计数学教学文化性

数学的文化性特征应该具有多元性、开放性和动态性等特点。概率论是研究大量随机现象规律性的一门数学分支。而随机现象的两个重要特征即不确定性和规律性,却经常使得学生在直觉与科学之间无所适从,给学习与教学带来一定的困难。正是因为如此,从文化的角度重新审视概率统计的教学,既能促进教学,又符合新课程的理念。

1.概率统计理论的发展史略

纵观历史,自文艺复兴时期的数学家,医学教授Cardan在其热衷的赌博游戏中开始思考获得7点和在一副牌中获得“A”的概率开始,数学的一个新的分支——概率论,便在对游戏的思考中展开了它的宏伟画卷。我们知道,在自然界和现实生活中,随机现象十分普遍,它表面上杂乱无章,但在多次实验后却隐藏着规律性。续Cardan之后大约100年,另一位赌徒Mere继续研究了上述赌博问题,但是由于他数学知识的局限性,不得不求助当时数学奇才Pascal,而Pascal在与Fermat的通讯讨论中逐步明确了概率值的确定方法等理论问题,从而将游戏问题上升到了数学问题。而十七、十八世纪之后,由于商业保险、产品检验,以及军事、选举、审判调查和天气预报等大量随机问题的涌现,概率论逐步从最初为给赌徒提供咨询,转变成为急需解决的数学理论问题。自1713年Bernouli到1917年Kolmogorov,以及十九世纪二三十年代的凯特勒更是将概率统计理论不断系统化、公理化,从而确立了概率统计成为数学的一个逻辑严谨的分支。

在教学中,特别是讲授概率统计概念的教学中,还原它的文化性,将历史再现出来,既能够让学生在有趣的游戏中了解概率统计的源头,也可以让学生体验到概率统计源于生活,服务于生活的科学本质,并了解人类在认识这一问题的过程中所付出的巨大努力,从而在学习知识的同时潜移默化地感受到数学文化的存在性。

2.概率统计教学文化性的外部表现

2.1丰富有趣的生活问题,为概率统计教学的文化性增加了多元性元素。

概率统计的生活背景可谓丰富多彩,这为课堂教学提供了十分丰富的情景基础。

在概率定义理解教学中,赌博游戏的下注问题、赎金分配问题、比赛优先权问题、无法投递信件比例问题、商场结账快慢问题等。

古典概型教学中,抛硬币问题、生日问题、天气预报问题、男女出生比例问题等。

几何概型教学中,有转盘中奖问题、蒲风投针实验问题、会面问题等。

随机变量及分布教学中,有中奖问题、银行卡密码问题、感冒指数问题等。

正态分布教学中,智力分布问题、线段测量误差问题、一天的气温平均值问题等。

这些问题来自我们生活的方方面面,而且许多问题都是历史经典问题,因此问题本身的数学思维性加上历史背景性,其文化的气息更加浓厚,甚至童年故事“狼来了”问题,成语故事“三个臭皮匠顶个诸葛亮”问题,评分术语“去掉一个最高分,去掉一个最低分”问题,等等,都渗透着概率统计的思想,这无不体现着数学来源于生活,服务于生活的文化思想。

2.2大量动手操作性的实验学习活动,是概率统计教学文化性的又一体现。

在抛硬币实验中,学生在抛掷中收集数据,通过操作方式学习数学的结论。

在义务教育阶段,通过收集同学的体质健康情况,年龄,身高数据进行数据学习。

在变量的相关关系教学中,收集同学使用计算机时间,物理成绩与数学成绩等,学习变量的相关性。

在随机抽样教学中,设计调查问卷等。

可以看到,以上这些实验性学习方式,是其他数学学习中较少出现的,然而正是这些带有操作性的学习方式,丰富着学生的思维,增加着他们的心理感受,认识到所学的东西有用,能解决现实问题,学习热情高涨,从情感上丰富着他们对数学的感受。超级秘书网

3.概率统计教学文化性的内部表现

3.1科学思维的深刻提升。

概率统计的核心是认识隐藏在随机现象背后的统计规律性,强调随机现象的个别观察的偶然性与大量观察中的统计规律性之间的联系。必然性通过偶然性表现出来,偶然性背后总是隐藏着必然性。通过这种必然性去认识和把握随机现象,而不确定与确定,可能与不可能的集中体现,更是辩证思想的体现,是人类思维成熟的体现。因此概率统计的学习实际上是对学生过去习惯的确定性思维的一次挑战,是一次思维文化的碰创。例如抛一次硬币的结果是无法确定的,学生可以理解,但是大量抛掷的结果却是一个概率确定值,这里具有辩证统一的思想,为了让学生能够理解这样的事实,实验是必不可少的,这又使得学生经历了从具体到抽象及归纳的逻辑思维形式。在学生使用概率模型解决问题的同时,归纳思维、合情推理等思想方法与随机思想方法的交融,都是数学化意识的体现,它深入到内部,不断完善他们的思维,使其日趋成熟,这正是数学的学科特征。

3.2人文精神的不断升华。

概率统计的产生就像它的理论那样带着大量的偶然因素,但是因为有众多优秀数学家的钻研,其产生与发展又是一个必然的结果,并不断系统化、条理化。如今,概率统计已经渗透到了自然科学和社会科学的方方面面,而对于大量来源于生活的概率统计问题,必将教会学生主动利用所学的知识去认识世界、改造世界,有助于培养学生将数学理论应用于解决实际问题的能力和创新意识。

参考文献:

[1]人民教育出版,课程教材研究所,中学数学课程教材研究开发中心.高中数学必修3[M].人民教育出版社,2004.

[2]人民教育出版,课程教材研究所,中学数学课程教材研究开发中心.高中数学选修系列(2-3)[M].人民教育出版社,2004.

[3]大连理工大学应用数学系.大学数学文化[M].大连理工大学出版社,2008,(182-212).

[4]施业琼.在概率统计教学中渗透人文精神培养[J].教育研究,2009.7.

篇5

网络教学已经成为新时期教育教学改革的一个重要突破口,其作用已是深入人心,它克服了许多传统教学中的缺陷和不足,尤其在培养学生创新能力、个性发展方面起到了显著的效果。《概率统计》网络教学平台还有很多潜能等待我们发掘和利用,同时我们台上传播的知识进行消化和吸收。因此,如何在信息化、网络化的教学环境下,更好地构建、运用及深度开发网络教学平台,激发网络教学平台的交互式能量,是每位高校数学教师密切关注的课题。

二、《概率统计》交互式网络教学平台的开发

以我校实施完全学分制为契机,基础教学学院依托数字化校园的网络环境,在原有精品课程平台建设的基础上,整合我校现有大学数学课程教学资源,建立了大学数学课程网络教学大平台,为教学双方提供了更好的信息化,网络化教学环境,为更好地提升我校创新型人才培养水平和教学质量奠定了基础。对于《概率统计》课程而言,虽然已经建成了《概率统计》精品课程,但由于课堂教学的课时相对较短,与学生的互动环节较少,因此,概率统计教学团队在对教学资源进行优化整合的基础上,对网络教学平台进行深度开发,改变传统教学过程中“教”与“学”的关系,实现向交互式的双向教学方式的转变。为了更好地适应我校《概率统计》课程的教学要求,我们将整个《概率统计》网络教学平台划分为十个子数据库:教师队伍信息库、教材及教案库、教学软件库、教学课件库、例题及数据库、教学视频库、数学实验库、答疑系统、评价系统及师生互动论坛。

1.教学团队师资力量强,教师结构合理,既有从事多年有教学经验的老教师,也有学有所成的硕士与博士,他们教学效果好,工作效率高。在“教师队伍”中,详细介绍概率统计教学团队教师的具体情况,让学生能够一目了然地弄清楚每一位教师的擅长点,以及教学风格,为更好地在课程教学中开展师生互动提供了有利条件。

2.教学团队经过多年的教学改革,积累了丰富的教学经验和教案,编写了相关教材,辅导书和习题册。在“教材及教案库”中,存储一些电子教材及一些实用的参考书籍,同时将对应课程的教学大纲、教学日历、内容简介,以及各章节的电子教案放入教案库中,方便学生预习、自主学习。

3.在“教学软件库”中,放入概率统计课程的在线备课系统,可以让教师根据教学需要和学生的实际情况,及时对课程教学中的内容进行修正和完善,使得课程教学更具有针对性和实用性。

4.在“教学课件库”中,存放概率统计课程的PPT教案,为教师备好每一堂课提供方便。同时,在进行集体备课时,可以从教学课件库中调出对应的课件,供所有教师参考和探讨,集全体教师之智慧和精华,备出更具有针对性的教案。

5.在“例题及试题库”中,存放概率统计课程的典型例题、同步测试题、综合测试题以及历年考研试题。让学生在学习中及时发现自己存在的不足,及时对相关知识点进行补学和充实,同时也让励志考研的同学及时掌握考研的方向,了解清楚该门课程的考研大纲,为学生的考研打好坚实的基础,吸引更多的学生加人我校的考研队伍。

6.在“教学视频库”中,存放一些与各种概率统计课程相关的教学视频,同时,对于教学团队中讲课水平特别突出的教师,将他们的部分教学过程录制成视频,存放入该视频库中。教师可以在休闲的时候随时点击这些视频,学习这些教师的授课技巧。这样,更有利于加强数学教师的教学素养和提高教学水平,尤其对于刚走上教学岗位的年轻教师,这种视频更具有实用价值。

7.“数学实验库”是一个符合当代教研教改需求的非常具有实用价值的数据库,针对目前比较流行且简明易懂的MATLAB软件,在该数据库中存入概率统计课程中各章节的数学实验,编写部分程序,同时留有实验题目,让学生自主编写。

8.如果学生在自学过程中遇到难题及不懂的知识点,就可以在“答疑系统”中直接询问老师,没有必要为了一个问题而跑到办公室去询问教师,这样节省了很多的时间。

9.“评价系统”是一个教师教学评价系统,而教师教学评价是教学质量评价中的重要内容。通过该评价系统,我们可以及时收集教学过程中的相关信息,了解学生的心理动态,及时完善自己的教案,更正自己在教学过程中所存在的不足,提升自己的教学水平。

篇6

为了将“概率论与数理统计”课程教学内容紧密地与各专业培养目标相结合,学校组织相关人员对全校各专业进行了调研,了解了各专业对“概率论与数理统计”课程的需求,及时修订、调整和更新了课程的教学内容,重新制定了教学大纲,增加了突出课程内容的应用性。例如,在经管学院各专业,我们增加了统计内容的学时,达到64学时,有利于学生后续专业课程的学习;在社会工作专业,增设了概率论这门课程,便于学生更好地理解统计方法。“概率论与数理统计”课程在信息与计算科学专业共有80学时,学校开设过本课程的双语教学,使用英文原版教材,使教学内容与国际接轨;曾将本课程分成“概率论基础”与“数理统计”两门课开设。本系教师在上数理统计课时给学生讲了一点SAS软件和SPSS软件知识,起到了较好的效果,之后由于课程整合的需要又合并成一门课程。经过多年教学改革与教学实践,结合长春理工大学专业特点和学生的实际情况,1997年开始使用学校自编的《概率论与数理统计》教材。目前课程组成员编写的《概率论与数理统计》2011年由高等教育出版社出版发行,新教材在本校已经使用了3年,效果很好,2013年获得兵工高校优秀教材一等奖。与教材配套使用的同步练习册每年发行一次,做到实时更新。在校园网上建立了“概率论与数理统计”精品课网站,同学们可以下载与课程同步的PPT、往届的练习题,还可以在网上留言,解决疑难问题。在该课程的改革与实践中也遇到了一些问题。如分类教学改革成果还没有充分显现出来,对理、工、文、经、管、法等不同专业的“概率论与数理统计”课程分类教学还缺乏反馈信息;有些院系缺乏本课程的实践环节,不利于提高学生运用数学知识的实践能力;信息化背景也给教师队伍提出了很高的要求。

二、对课程教学改革中出现的问题的改进

在教学过程中为了更好地解决信息化背景下“概率论与数理统计”课程教学与培养学生创新实践能力和应用能力的关系,实现教学内容与教学模式的改革与学生应用能力培养的统一。下面从三个方面说明进一步的改进措施。

(一)进一步加强“概率论与数理统计”课程的分类教学与课堂教学改革

结合学校学生的实际情况,进一步加强理、工、经管、生命、社会工作等不同专业的分类教学,针对不同专业采取不同学时、内容有所侧重的分类教学模式,加强统计方法的应用教学,对不同专业的分类教学进一步进行探讨。

(二)进一步更新、优化教学内容,完善“概率论与数理统计”精品课网站的建设

定期对全校各专业进行调研,了解各专业对“概率论与数理统计”课程教学的反馈与需求,及时修订、调整和更新课程的教学内容,优化课程体系。目前长春理工大学的“概率论与数理统计”是省级精品课,为了更好地顺应信息化大环境的需求,学校会进一步完善本课程网站的建设,使得学生在自主学习的过程中更加便捷。

(三)增加课程设计、计算机实践环节,鼓励学生申报

创新实验计划项目,参加数学建模竞赛在教学过程中增加课程设计、计算机实践环节,结合较多的应用实例,留一些开放性的案例,要求学生做案例研究,写出合格的研究报告,训练学生的实践能力。鼓励学生申报创新实验计划项目,参加数学建模竞赛。通过创新实验计划项目、数学建模竞赛等活动,提供一个学生、教师课后交流的平台,吸纳部分本科生参与到教师的科研活动当中,最大限度的挖掘学生潜在的能力。“概率论与数理统计”教学,不再是单一的数学理论与方法,而是通过教学,在传授相关数学知识和方法的同时,使学生更多地领悟该门课程的精神实质和思想方法,促使学生自觉地接受数学文化的熏陶,从而提高学生的创新思维能力。

篇7

1.教学课堂中注重实例的讲解

概率论以及数学统计这门课程具有较强的实践性,因此,在教学课程上,教师需要在教学的基本内容中加入更多的实例教学,帮助学生理解这门学科的基本知识点,加深学生对基本理论的记忆。例如:在讲概率学中最基本的加法公式时,加入数学建模的基本思想,利用俗语“三个臭皮匠”的相关内容作为教学实例。俗语中有三个臭皮匠的想法能够比的上一个诸葛亮,意思就是说多个人共同合作的效果比较大,可以将这种实际中的问题引入到数学概率论的教学中,从科学的概率论中证明这种想法是否正确。首先需要根据具体的问题建立相应的数学模型,想要证明三个臭皮匠能否胜过诸葛亮,这个问题主要是讨论多个人与一个人在解决问题的能力上是否存在较大的差别,在概率论中计算解决问题的概率。用c表示问题中诸葛亮解决问题的能力,ai表示其中(ii=1,2,3)个臭皮匠解决问题的能力,每一个臭皮匠单独解决问题存在的概率是P(a1)=0.45,P(a2)=0.6,P(a3)=0.45,诸葛亮解决问题存在的概率是P(c)=0.9,事件b表示顺利解决问题,那么诸葛亮顺利解决问题的概率P(b)=P(c)=0.9,三个臭皮匠能够顺利解决问题的概率是P(b)=P(a1)+P(a2)+P(a3)。按照概率论中的基本加法公式得P(b)=P(a1+a2+a3)=P(a1)+P(a2)+P(a3)-P(a1a2)-P(a2a3)-P(a1a3)+P(a1a2a3)解得P(b)=0.901。因此,得出结论三个臭皮匠顺利解决问题存在的准确概率大于90%,这种概率大于诸葛亮独自顺利解决问题的概率,提出的问题被证实。在解决这一问题过程中,大部分学生都能够在数学建模找到学习的乐趣,在轻松的课堂氛围中学到了基本的概率学知识。这种教学方式更贴近学生的生活,有效的提高了学生学习概率论以及数学统计这一课程的兴趣,培养学生积极主动的学习。

2.课设数学教学的实验课

一般情况下,数学的实验课程都需要结合数学建模的基本思想,将各种数学软件作为教学的平台,模拟相应的实验环境。随着科学技术的不断发展,计算机软件应用到教学中已经越来越普遍,一般概率论以及数学统计中的计算都可以利用先进的计算机软件进行计算。教学中经常使用的教学软件有SPSS以及MABTE等,对于一些数据量非常大的教学案例,比如数据模拟技术等问题,都能够利用各种软件进行准确的处理。在数学实验的教学课程中,学生能够真实的体会到数学建模的整个过程,提高学生的实际应用能力,促进学生自发的主动探索概率论以及数学统计的相关知识内容。通过专业软件的学习和应用,增强学生实际动手以及解决问题的能力。

3.利用新的教学方法

传统数学说教式的教学方法并不能取得较高的教学效果,这种传统的教学也已经无法满足现代教学的基本要求。在概率论以及数学统计的教学中融入数学建模的基本思想并采用新的教学方法,能够有效的提高课堂教学效果。将讲述教学与课堂讨论相互结合,在讲述基本概念时穿插各种讨论的环节,能够激发学生主动思考。启发式教学法,通过已经掌握的知识对新的知识内容进行启发,引导学生发现问题解决问题,自觉探索新的知识。案例教学法,实践教学证明,这也是在概率论中融入数学建模基本思想最有效的教学方法。在学习新的知识概念时,首先引入适当的教学案例,并且,案例的选择要新颖具有针对性,从浅到深,教学的内容从具体到抽象,对学生起到良好的启发作用。学生在学习的过程中改变了以往被动学习的状态,开始主动探索,案例的教学贴近学生的生活学生更容易接受。这种教学方法加深了学生对概率论相关知识的理解,发散思维,并利用概率论以及数学统计的基本内容解决现实中的实际问题,激发了学生的学习兴趣,同时提高了学生解决实际问题的综合能力。在运用各种新的教学方法时,应该更加注重学生的参与性,只有参与到教学活动中,才能够真正理解知识的内涵。

4.有效的学习方式

对于概率论以及数学统计的相关内容在教学的过程中不能只是照本宣科,而数学建模的基本思想并没有固定不变的模式,需要多种技能的相互结合,综合利用。在实际的教学中,教师不应该一味的参照课本的内容进行教学,而是引导学生学会走出课本自主解决现实中的各种问题,鼓励学生查阅相关的资料背景,提高学生自主学习的能力。在教学前,教师首先补充一些启发式的数学知识,传授教学中新的观念以及新的学习方法,拓展学生的知识面。在进行课后的习题练习时,教师需要适当的引入一部分条件并不充分的问题,改变以往课后训练的模式,注重培养学生自己动手,自己思考,在得到基本数据后,建立数学模型的能力。还可以在教学中加入专题讨论的内容,鼓励学生能够勇敢的表达自己的想法和见解,促进学生之间的讨论和交流。改变以往教师传授知识,学生被动接受的学习方式,学会自主学习,自主探究,勇于提出自己的看法并通过理论知识的学习验证自己的想法。有效的学习方式能够调动学生学习的积极性,加深对知识的理解。

5.将数学建模的基本思想融入课后习题中

课后作业的练习是巩固课堂所学知识的重要环节,也是教学内容中不可忽视的过程。概率论统计课程内容具有较强的实用性,针对这一特点,在教学中组织学生更多的参与各种社会实践活动,重在实际应用所学的知识。对于课后习题的布置,可以将数学建模的思想融入其中,并让这种思想真正的解决现实中的各种问题,在实践中学会应用,不仅能够巩固课堂学到的理论知识,还能够提高学生的实践能力。例如:课后的习题可以布置为测量男女同学的身高,并用概率统计学的相关知识分析身高存在的各种差异,或者是分析中午不同时间段食堂的拥挤程度,根据实际情况提出解决方案,或者是分析某种水果具体的销售情况与季节变化存在的内在关系等。在解决课后习题时,学生可以进行分组,利用团队的合作共同完成作业的任务,通过实践活动完成训练。在学生完成作业的过程中,不仅领会到了数学建模的基本思想,还能够将概率统计的相关知识应用到实际的问题中,并通过科学的统计和分析解决实际问题,培养了学生自主探究以及实际操作的综合能力。

二、总结

篇8

对传统的概率论与数理统计教学进行归纳,大致是:理论知识+说明举例+解题+考试。这种教学模式可以让学生掌握基础知识,提升计算能力,也有利于解决课后习题。但这种教学模式也有一定的缺陷,不难看出,它与实际脱离较大,更多地停留在书本上。学生掌握了理论知识,未必会将其运用到实际,这违背了素质教育的宗旨,不利于学生学习积极性的提高。运用数学建模的指导思想,可以有效避免传统教学模式的缺陷。数学建模的一个重要功能就是培养学生理论联系实际的能力。将数学建模思想融入教学,是概率论与数理统计教学的需要,也是顺应教学改革的需求。

二、数学建模思想融入课堂教学

教师在讲授概率论与数理统计课程时,面临着非常重要的任务。如何让学生通过学习增强对本课程的理解,并将知识合理地运用到实践中,是摆在教师面前的问题。教师要将数学建模思想合理地融入到课堂。

(一)课堂教学侧重实例

概率论与数理统计课程是运用性很强的一门课程。因此,将教学内容与实例想结合,可以有效提高学生的理解力,加深学生对知识点的印象。例如,在讲授概率加法公式的时候,可以用“三个臭皮匠问题”作为为实例。“三个臭皮匠赛过诸葛亮”是对多人有效合作的一种赞美,我们可以把这个问题引入到数学中来,从概率的计算方面验证它的正确性。首先可以建立起数学模型,三个臭皮匠能否赛过诸葛亮,主要是看他们解决实际问题的能力是否有差距,归结为概率就是解决问题的概率大小比较。不妨用C表示诸葛亮解决某问题,Ai表示第i个臭皮匠单独解决某问题,其中i=1,2,3,每个臭皮匠解决好某问题的概率是P(A1)=0.45,P(A2)=0.55,P(A3)=0.60,而诸葛亮成功解决问题的概率是P(C)=0.90。那么事件B顺利解决对于诸葛亮的概率是P(B)=P(C)=0.90,而三个臭皮匠解决好B问题的概率可以表示成P(B)=P(A1)+P(A2)+P(A3)。解决此问题的过程中,学生既感受到了数学建模的乐趣,也在轻松的氛围中学习到了概率知识。这种贴近实际生活的教学方式,不但可以提高学生学习概率的积极性,也可以增强教师从事素质教育的理念。

(二)开设数学实验课

数学实验一般要结合数学模型,以数学软件为平台,模拟实验环境进行教学。发展到今天,计算机软件已经很成熟,一般的统计计算都可以由计算机软件来完成。SPSS、SAS、MABTE等软件已经广泛得到了运用,较大数据量的案例,如统计推断、数据模拟技术等方面的问题,都可以用这些软件来处理。通过数学实验,不但可以体现数学建模的全过程,还能增强学生的应用意识,促使他们主动学习概率论与数理统计知识。学生通过软件的学习与运用,增强了动手能力,解决实际问题的能力也会有所增强。

(三)使用新的教学方法

众所周知,传统的填鸭式的教学方法很难取得好的教学效果,已经不适应现代教学的要求。实践证明,结合案例的教学方法可以由浅入深,从直观到抽象,具有一定的启发性。学生可以从中变被动为主动,加深对知识的理解。这种教学方法还能让学生的眼光从课堂上转移到日常生活,进行发散思维,学生会进一步发挥主观能动性,思考如何将实际问题数学化,如何结合概率论与统计知识解决实际问题,等等。在这种情况下,学生的兴趣提高了,教学效率自然也会得到提高。

(四)建立合理的学习方式

概率论与数理统计教学不能一味地照本宣科。数学建模并无固定模式,它需要的更多是技能的综合。教师在实际教学过程中,不应该以课本为标准,而应该多引导学生自主解决实际问题,让学生去查阅相关背景资料,以提高其自学能力。教师可以适当补充一些前言的数学知识,让一些新观念和新方法开阔学生的视野。在处理习题问题上,教师要适当引入一些不充分的问题,而不是仅仅局限于条件比较充分的问题上,要让学生自己动手分析数据、建立模型。教师应该经常开展专题讨论,引导学生勇于提出自己的见解,加强学生间的交流与互助。例如,在讲授二项分布知识时,为了加深学生对知识的领悟,教师可以用“盥洗室问题”为实例来讲授二项式的实际运用。问题:宿舍楼内的盥洗室处于用水高峰时,经常要排队等待,学生对此意见很大。学校领导决定把它当作一道数学题来解答,希望学生能从理论上给出合理的解决方法。分析:首先收集基本的资料,盥洗室有50个水龙头,宿舍楼内有500个学生,用水高峰期为2小时(120分钟),平均每个学生用水时间为12分钟,等待时间一般不超过12分钟,但经常等待会让学生失去耐心。学生希望100次用水中等待的次数不超过10次。解决方法:设X为某时刻用水的学生人数,先找到X服从什么分布。500个学生中,每个学生的用水概率是0.1,现在X人用水,与独立实验序列类似,比较适合用二项分布,因此设X服从二项分布,n=500,p=0.1,用概率公式表示为P(X=K)=CKnPK(1-P)n-K。接下来计算概率,主要关注不需要等待的概率(即X<50),P(X<50)=∑49K=0CKnPK(1-P)n-K,这个二项式分布是一个初步的模型,可按二项分布来计算。由于n较大(n=500),直接用二项分布计算过于复杂,我们可以利用两种简化近似公式来计算(泊松分布和正态分布)。经过查正态分布表,我们可以算出x=58,这说明水龙头的个数在59~62这个范围时,学生等待的时间概率比较合理。

三、课后练习反馈数学建模思想

数学课程离不开课后练习,课后作业是其重要的组成部分,对于巩固课堂知识、进一步理解所学理论具有重要作用。因此,教师要把握好课后练习环节。概率论与数理统计这门课涉及到很多随机试验,一般的统计规律都需要在随机试验中找到结果。例如通过投掷骰子或硬币可以理解频率与概率的关系,通过双色球的抽样可以理解随机事件中的相互独立性,统计一本书上的错别字可以判断其是否符合泊松分布等。通过亲自做实验,学生们不但能探求到随机现象的规律性,还能进一步巩固所学的统计理论。除了一般的练习题以外,教师可以适当增加一些与日常生活密切相关的概率统计题目,这些题目往往趣味性较强。例如,在知道彩票的抽奖方法和中奖规则后,可以明确三个问题:(1)摸彩票的次序与中奖概率是否相关?(2)假如彩票的总量是100万张,则一、二等奖的中奖概率是多少?(3)一个人打算买彩票,在何种情况下中奖概率大一些?这种课后练习对于学生趣味的提高很有帮助。

四、考核方式折射数学建模思想

作为一门课程,肯定需要考核,这是教学过程中的一个必然环节。课程考核是评估教学质量的重要方式。概率论与数理统计课程传统的考试一般采用期末闭卷考试,教师通常按固定的内容出题。这种情况下,学生为了应付考试,会把很多精力都用在背诵公式和概念上面,从而会忽视知识的实际运用。学生的综合成绩虽然也包括平时成绩,但期末闭卷考试往往占据很大比例。就是是平时成绩,其主要还是考核学生课后的习题完成情况。因此,考核实际就成了习题考试。对于学生在课后的实验,考核中往往很少涉及。这会导致学生逐渐脱离日常实际,更注重课堂考勤和作业。要改变这种情况,有必要改变传统的考核方式。灵活多变的考核方式才更有利于调动学生的积极性,激发他们各方面的潜能。考核可以适当增加平时成绩所占的比重,比如,平时成绩可以占总成绩的30%以上。平时成绩主要采用开放性考核,由课后实验或课外实践组成。教师可以提出一些实践问题,让学生自主去解决。学生可以单独完成任务,也可以组队进行,最后提交一份研究报告,教师在此基础上进行评定。

五、结语

推荐期刊