时间:2023-03-16 15:48:54
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇封装工艺论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
关键词:工艺;自控仪表;电气;安装
分类号:TU758.7
计算机、网络信息化发展提升了各个领域经济效益,而在集成化、智能化、数字化等方面自控仪表工艺取得前所未有的发展。自控仪表安装施工程序如下:对施工图与技术资料进行了解、给予土建预留预埋作业配合、调校仪表单体、铺设电缆管路、安装电缆桥架、安装控制箱盘、铺设线缆、铺设导压管、安装自控仪表等。
一 、自控仪表安装工艺
1. 调校仪表单体
仪表到货后,应核对、检查设备与装箱清单上数量、规格、型号是否相符。安装仪表前,根据说明书要求,合格校验单体后进行仪表安装。以出厂使用说明书为依据开展校验试验,选用标准仪器的量程、精确度,试验所用电源、气标准,连接线路、管路的原理等均需达到标准。试验工作人员应对试验方法、试验项目等内容明确。调校试验的情况应真实反映在调校试验记录中,调试仪表后,应出具试验报告。按照设备本体与工艺系统图,将调校合格的仪表清楚标志、完好封装,以备安装。
2.铺设电缆管路
电气保护管的管口应无锐边、光滑,内部应无毛刺、清洁,外部应无裂纹及变形。铺设路径应按照控制点或测量点至控制盘间的电气电缆、管道、设备的分布情况合理进行选择。应按照电缆的安装位置、型号、规格等来确定保护管的支架位置、铺设位置、材质以及管径。保护管弯曲位置不应有裂缝或凹坑,其弯曲半径应超过管外径的六倍,弯曲角度应小于90度。
3.安装电缆桥架
根据现场实际情况,按照各系统仪表设计更改图或施工图,应预先规划电缆桥架路径,以防止管道、工艺设备等发生冲突。测量路径,按施工设计安装高度以及美观整齐、横平竖直、固定牢固等原则制作并安装吊架、托臂、支架。电缆桥架的组对应按分段的原则,平直连接,分段吊装定位,桥架之间应由跨接保护接地,同时连接接地网。
4.安装导压管
选择管子及附件材料时,应与设计标准相符,为便于检查及清理管线,附件及管子的连接应方便拆装。应以1:10至1:15的比例确保仪表管路坡度。并确保倾斜处气体凝结水的排出。安装管子时,还需对管道沉降物、冷凝水的排放进行考虑。为避免测量精度受管内液体温度变化的影响,其它高温管路应与测量液位管路保持一定距离。测量液位管路。应将排气阀安设于液体管路中;将集水器或排水阀安装于管路最低处,以便含湿气体的排出。全面检查安装完成的导压管系统,如:可拆连接的严密性、管道及支架的可靠性与安全性、设置排放口的正确性等等。安装完毕后,可开展管道系统试压,此时应将靠近压力变送器的阀门关闭。试压完毕后,拆开仪表管路2端阀门接头,仪表管路内部的吹扫采用压缩空气,同时对仪表管的连接进行确认与检查。
5.安装自控仪表
(1)安装压力表
以盘上安装为例进行介绍,在表孔内缓慢装入压力表,找正后固定,在接头中放入垫圈,拧紧接头,注意压力表与导压管的连接。
(2)安装变送器
用SC50镀锌钢管制作差压变送器与压力变送器的支架,并将钢管固定于就近位置,之后再钢管上安装差压变送器与压力变送器。为便于维护时将外壳揭开、或调零,变送器顶部与调零侧须留有一定距离。须将三阀组接于差压变送器前面,而二次阀门须接在压力变送器前面。变送器上丝扣螺纹须匹配于与变送器相连接的螺纹。在安装差压变送器时,应先对安装位置进行查找,之后将变送器的支架固定在该位置上,于支架上固定变送器。将毛细管放开,对好法兰,先将2根螺栓穿上,再将另外的螺栓穿好、拧紧。为使变送器在具有粉尘或腐蚀性气体的环境中得到保护,还必须试压、冲洗、吹扫取压管,之后连接差压变送器与压力变送器。变送器的安。
(3)安装流量仪
在无交直流电场干扰或强烈振动的地方,按照说明书要求控制前后4段的长度。施工工艺管道时,应将变送器发盘置于安装处,找正、找平后将法兰盘点焊住,待冷却,将变送器安装好。值得注意的是,安装在立管上时,为使被测介质流进变送器,应遵循垂直的原则。水平安装电磁流量变送器时,应垫稳变送器,使2电极处于同一水平面。如果工艺管道与变送器电接触不良,连接须采用金属导线。安装变送器时,应将无衬里的金属管道接于有绝缘衬里的工艺管道之间。为确保法兰与接地环良好接触,被测介质与环内边缘发生接触,变送器内径应较接地环内径略大。变送器流向应一致于被测介质流向。当管道试压吹扫结束后,可先行拆下变送器,清洗后再装上。
(4)安装转子流量
按照垂直安装原则安装转子流量计,且用支架固定转子流量计前后管段。如果玻璃管转子流量计对介质进行测量时具有腐蚀性或温度超过70摄氏度的情况下,应考虑加装防护罩。
(5)安装分析仪表与盘上仪表
分析仪表的安装必须满足避免服饰气体、剧烈的温度变化、防止高温、无强磁场干扰、无振动、易于维护操作、干燥、可靠安全、光线充足等安装条件。单独安装预处理装置的同时,应尽量缩短取样管线,并尽可能与传送器贴近。安装盘上仪表时,应注意其边缘光滑度,抽出、推进仪表时避免过于松或过于紧。仪表安装在盘内框架上应方便维护和接线,并且接地良好。须清楚、正确盘上仪表的铭牌、标志牌等。
二、处置施工中常见问题
常见问题与处置方法如下:①未正确显示差压、压力,这是由于变送器选型与安装位置出现差错。处置方法:当变送器取压点较变送器安装位置低时,进行正迁移;变送器安装位置低于变送器取压点时,进行负迁移。②测压、测温不标准,这是由于施工未严格按照图纸要求和规范进行,插入的温度计过浅、或者过于深所致。处置方法:在安装测压、测温部件之前,测压位置应严格按照仪表规范来确定,以管道的50%为基准判定温度计插入深度,建议测压位置远离三通、弯头、以及阀门处。③测定流量缺乏稳定性,在连接差压变送器与取压管时,喷嘴或孔板方向上反,正负错位所致。处置方法:在连接差压送变器与取压管时,应对其正负进行核对、确认后在进行操作。在安装喷嘴或孔板时,必须在对喷嘴或孔板安装方向与关内流向进行确定后进行操作。④二次仪表未显示,连接端子与线头时,端子被绝缘层压住,造成闭合回路不通。处置方法:在结束线缆施工后,绝缘测试线缆,并校对标号线缆,端子中插入线缆头时应防止端子被绝缘层压住,且插入深度适宜。⑤管内堵塞,施工前未清理干净取压管内部。处置方法:进行施工前,应预先用空压机吹扫取压管,待清理干净后,再进行安装。⑥气动、电动薄膜调节阀闭、开不到位,出现闭、开超过极限,或者管内渗漏,顶坏阀体、阀杆或者阀芯。处置方法:对行程开关进行合理的调整。
三、结束语
自控仪表工艺及施工中逐渐运用了集成化、智能化、数字化技术,本文对自控仪表的安装工艺与施工种常见问题进行总结,并针对其问题进行处理。特别在安装自控仪表一节中,详细地介绍了压力表、变送器、流量仪、电子流量、分析仪表与盘上仪表等步骤,最后提出针对性措施。
参考文献
[1]禹扬,余国平,朱雀,文鹏. 石油化工装置中自控仪表工程施工流程的质量控制 [期刊论文].电源技术与应用,2012(9).
本文以微电子专业人才培养为例,针对我校微电子专业教学资源库的建设,从微电子的需要来说明其重要性,通过与企业联合分析职业岗位的工作内容、工作岗位、工作职业技能来合理开设学校的相关课程,来培养专业性技术人才的学生[1]。
现状与背景分析
国家的需求。微电子技术都是高科技、高风险、高投入、高利润的行业,而且是一个国家、地区科技、经济实力的反映,美国就是以集成电路设计、制造为核心的地区,让美国拥有了世界上一流的计算机和IT核心技术,为此,中国于1998年下发了《鼓励软件产业和集成电路产业发展的若干政策》的18号文件,大力支持、鼓励我国微电子产业发展。
企业的需求。从2005年8月的西永微电子园的建立,北大方正FPC等十大项目的建设,200亿资金的投入。到2015年4月8号,东方重庆8.5代新型半导体显示器件及系统项目,在重庆两江新区水土工业开发区举行产品投产暨客户交付活动。该项目总投资328亿,为重庆近年来最大投资项目。如此浩大的产业发展,必将大量需求各阶层微电子技术人才[2]。
高职学院自身的需求。近几年,高职教育在改革和发展中取得许多可喜的成果。但是专业不对口,学生兴趣缺乏,企业抱怨人才不足,应届毕业生的实践技能不够等相关问题也成为我们教学的薄弱环节。基于职业岗位来分析,才能真正让学生毕业更快的适应工作环境,解决专业不对口问题。
高职学生的需求。高职学生都期望通过学校专业课程学习,找到一份合适的工作。学生也在思考如何将专业知识转化成专业能力,如何消化书本内容。学生期望能学习在以后的工作岗位更实用的课程内容。因此基于职业岗位分析构建微电子专业课程,能更好的教学,让学生明确的学习提升自己的能力,同时帮助学生就业,解决专业不对口等问题。
研究内容、目标、要解决的教学问题
研究内容和目标。通过往届毕业学生的就业情况分析对应的岗位,找出专业不对口,或者就业工作不影响的主要问题。通过修改课程教学模式,提高学生兴趣,激发主观能动性。通过调研会邀请重庆44所,24所,西南集成设计有限公司等从事微电子行业的公司,分析高职学生通过学生什么课程能快速适应岗位,达到合理构建微电子课程来使高职学生具有对应的岗位能力,从而有效地培养微电子人才[3]。
要解决的教学问题。激发学生对课程的兴趣,提升主观能动性;学生不仅掌握对应岗位的理论知识,也要有熟练对应岗位的实际动手能力;调研企业岗位,分析微电子集成电路设计课程的建设;调研全国高职微电子课程开设,合理调整集成电路设计课程。
采取的分析方法
文献研究法:利用网络、报刊等媒介,搜集与课堂教学模式相关的专著、论文等文献资料,掌握课堂教学模式研究,掌握相关理论知识和国内外对课堂教学模式研究现状。
企业调研法:派成员组去江苏,上海,成都等微电子发达区域了解微电子产业发展对应的岗位需求。在我校组织的微电子行业专家职业分析研讨会,邀请重庆24所、44所、西南集成有限公司、鹰谷光电等行业专家从微电子高职学生岗位需要来分析,构建微电子专业课程建设[4]。
实验教学法:用微课进行微电子专业课程的建设,利用我校作为西南地区唯一的仿生产工艺线,以及封装测试线,配套生动形象来表达上课内容。“校企合作,工学结合”,让学生直接企业顶岗实习,验证微电子专业课程建设对应岗位的合理性,优化调整。通过微电子相关的职业技能大赛嵌入式比赛等等提升学生兴趣,对应的课程建设学习。
微电子专业课程建设
本校通过与微电子多个企业联合分析,将微电子专业课程分成集成电路制造、集成电路设计、集成电路封装、集成电路测试、半导体行业设备维护、半导体安全生产管理等相关方向,然后转为为A、B、C三类课程,由最基础的理论知识,如计算机使用,英语阅读,电路分析,工具使用到专业性技能的操作和综合职业技能的培养。
A类课程转换分析表提供的职业需求信息为基础,并依据课程的需要可补充相关理论知识信息,使课程具有理论知识的相对系统性和完整性。如分半导体器件物理,半导体集成电路,工程制图,电子材料,SMT工艺等基础课程。
B类课程的目的是培养基本技能。可以通过集成电路版图设计实训,集成电路生产工艺实训,集成电路封装工艺实训,集成电路测试实训,自动化生产线安装与调试实训等课程培养学生的基本技能。
C类课程的目的是培养综合职业能力,也称为综合职业能力课程。通过学习集成电路制造工艺,半导体工厂设计与管理,集成电路封装工艺,半导体工艺设备,集成电路的可靠性等相关课程来培养学生的综合职业能力,从工艺到测试,电路到自动化的职业系统化培养。
关键词:芯片封装;引线键合;小波;焊点定位
中图分类号:TP391文献标识码:ADOI:10.3969/j.issn.10036199.2017.01.028
1引言
芯片封装是在引线框架的外接管脚与芯片焊点之间建立可靠的连接,实现芯片的功能[1]。目前常用的芯片封装技术包括三种方法:引线键合、载带自动焊和倒装芯片技术[2]。在三种方法中由于引线键合技术具有成本低、精度高、可靠性好的优点,因此,90%以上的芯片封装都采用的是引线键合形式。引线键合焊点的视觉定位就是首先通过视觉系统获取芯片和贴片基板的数字图像,从中提取出芯片和基板的实际中心坐标参数。计算出芯片和基板相对于预定义位置的坐标偏差和角度偏差。通过定位偏差参数实时计算芯片和引线框架焊点的实际坐标位置,实现芯片引线键合焊接劈刀定位误差的在线修正[3]。
芯片的封装工艺中需要将芯片粘贴在引线框架的贴片基板上,贴片机吸取芯片后将其放在基板上,由于取片和放片时存在误差,导致芯片在基板上存在位置偏差。这种误差的出现,在引线键合时会导致键合劈刀无法准确定位到芯片焊点的焊接位置。这种情况将导致金属引线的焊球焊接不牢或者定位不准确,导致芯片的可靠性下降甚至失效。为了提高芯片的引线键合精度,本文采用构造多尺度小波变换的方法提取芯片和基座的边缘信息,实时检测芯片和贴片基板的边缘;计算芯片和贴片基板边缘的中心坐标和偏转角度;为焊点实时定位和焊接劈刀的实时调整定位提供参数。
2基于小波变换的边缘提取
通过CCD数字相机采集到的芯片图像经过预处理后,采用基于小波分析的多尺度图像分析的办法提取芯片和引线框架的边缘特征。通常图像特征局部的不连续称为“边缘”。就灰度突变性而言,图像的边缘一般分为两大类,一类是阶跃状边缘,其特征是边缘两边象素的灰度值有显著的不同;另一类是屋顶状边缘,其特点是它位于灰度值由增加到减小的变化转折点。在阶跃边缘点,图像灰度在它两旁的变化规律是灰度变化曲线的一阶导数在该点达到极值,二阶导数在该点近旁呈零交叉,即其左右分别为一正一负两个峰;对于屋顶状边缘的边缘点,其灰度变化曲线的一阶导数在该点近旁呈零交叉,二阶导数在该点达到极值。
5芯片特征识别与测试
本文在MATLAB软件平台上开发芯片引线键合焊点的定位检测程序。首先从数字相机读取芯片图片,在采集芯片照片时设置环境光源,使得芯片处于良好的光照环境下。调整数字相机的镜头取景范围,使芯片及其贴片基座尽量处于最大的取景范围,使芯片图像有较大的分辨率。采集到数字图像后,根据数字相机的畸变校正矩阵[9]修正数字图像误差;然后通过图像预处理技术[10]初步消除图像中的干扰信息;其次采用图像灰度处理[11]将其转化为灰度图像;再采用数字形态学技术消除芯片图像上的微小孔隙,消除边缘检测过程中出现的亢余信息,完成数字图像预处理过程。
将预处理过的图像进行多分辨率分析,由边缘检测算法得到的边缘信息保存到链表结构中,链表的每一行就保存一条边缘。首先,在链表中查找被断开的边缘,并将断开的边缘重新连接起来,形成完成的边缘。其次,将拼接起来的边缘进行平移和旋转不变性处理,使得图像特征中的芯片和基板的边缘特征转化为具有不变性的封闭曲线。第三,在实时提取到的芯片和基板边缘曲线进行不变性处理并提取其小波特征后,将模板的小波特征与实时图像中的边缘特征参数进行对比,从而在采集到的图像中识别出芯片和贴片基板的边缘。最后通过计算边缘曲线的矩特征参数,计算出芯片和基板对应的偏移参数。
以任意两幅图片为例,芯片和贴片基板中心坐标检测实验以芯片和基板周边一定范围为拍摄区域,如图1和图2所示。如前所述,芯片在粘贴在引线框架的贴片基板上时存在贴片误差,在这两个随机选择的芯片贴片图像中芯片相对于基板的位置并不固定。这种误差将导致在引线键合时,焊接劈刀无法与芯片和引线框架的焊点精确对准,这种误差将导致芯片可靠性降低甚至残片。计算出芯片和贴片基板的位置偏移量之后,可以根据偏移量计算出芯片和引线框架上的焊点位置[12]。此时计算出的焊点坐标是采用像素为单位的坐标参数,通过对数字相机的标定,可以计算出焊点的实际位置参数(单位:mm)。
6结论
芯片粘贴在引线框架后,为解决芯片和基座几何中心坐标与设备坐标系中理论坐标偏差和轴向偏角实时测量,以及实时修正芯片的键合焊点的位置提高引线键合质量的问题,文中提出采用基于紧支集双正交小波的方法实现边缘提取和边缘特征识别。通过实验表明,该算法能快速、准确的将芯片边缘和贴片基板的边缘从图像中识别出来;并根据两者的中心位置偏差计算出焊点的实际位置,修正参数反馈给键合头驱动系统。这种算法能够提高引线键合工艺中的焊接质量,简化了特征提取的步骤,缩短了算法的复杂度,提高了算法的精确度。
参考文献
[1]丁汉, 朱利民, 林忠钦.面向芯片封装的高加速度运动系统的精确定位和操作[J].自然科学进展, 2003, 13(6): 568-574.
[2]李可为.集成电路芯片封装技术[M].北京:电子工业出版社,2007:19.
[3]李君兰.面向IC封装的计算机视觉定位系统的研究[D].天津大学T士学位论文,2007.
[4]ALPHA K, 彭嘉雄.小波多尺度方法用于边缘检测[J].华中科技大学学报:自然科学版, 2001,29(5):74-76.
[5]胡敏, 陈强洪.多尺度分析方法中四种典型小波基的选择与比较[J].微机发展, 2002,12(3):41-44.
[6]常辉, 胡荣强.基于B样条小波的图像边缘检测[J].武汉理工大学学报:信息与管理工程版, 2002,24(3):31-33.
[7]刘曙光, 朱少平.B样条正交小波的构造[J].纺织高校基础科学学报,2001,14(2):147-153.
[8]张德干, 高光来.通用双正交小波构造方法的研究[J].内蒙古大学学报:自然科学版, 1999,30(5):662-670.
[9]丁婷婷, 方舟, 刘波,等. 基于机器视觉检测的摄像机快速标定与误差分析[J]. 制造业自动化, 2015,37(1):89-91.
[10]李刚, 范瑞霞.一种改进的图像中值滤波算法[J].北京理工大学学报,2002,22(3):376-378.
[11]吴冰, 秦志远.自动确定图像二值化最佳阈值的新方法[J].测绘学院学报,2001,18(4):283-286
关键词: 柔性显示;组装;引线键合;覆晶;异向导电胶
中图分类号:TN141 文献标识码:B
1 柔性显示背景分析与发展前景
1.1 背景分析
近半个世纪来,电子信息技术的发展对日常生活的影响有诸多案例,但其中显示技术的发展带来的日常生活的变革是最显而易见的。
从首台基于动态散射模式的液晶显示器(liquid crystal display,LCD)(约为上世纪70年代),到目前LCD电视的普及、3D电视的热潮,显示技术的发展颠覆了我们对传统阴极射线管(cathode ray tube,CRT)显示器的认知。2012年1~5月,液晶电视销售额为1,331.9万台,占彩电销售总额(1,470万台)的90.6%(数据来源:视像协会与AVC),可以毫不夸张地说,目前已经是液晶电视的天下。与传统的CRT显示技术相对比,液晶显示技术的显著优点已广为人知,不用赘述。
随着电子技术应用领域的不断扩展,电子产品已经逐步成为日常生活的必须品,而将更多显示元素引入家庭和个人环境是未来显示技术的发展趋势,目前基于此类的研究正在逐步进行(如飞利浦、索尼、通用已经开始相关技术的研发)。但是刚性、矩形、基于玻璃基板的显示器件已经显示出不能满足设计者对外形的需求,设计人员更趋向于选择一种可弯曲、可折叠,甚至可以卷曲的显示器件。
与此同时,对产品品质的要求不断提升,电子产品被要求能承受更多次的“随机跌落试验”。而实验证明基于刚性玻璃基板的显示器件在试验中极易损坏,所以在引入全新设计理念的过程中,具有轻薄、不易碎、非矩形等特性的“概念产品”被普遍认为“具有不一般的对市场的高度适应性”。
在产品外形方面,与传统显示器相比,柔性显示器具有更结实、更轻薄、样式新颖的特点,而这些特点对产品设计师和最终用户都极具吸引力。
在制造商方面,柔性显示器生产时,可以采用新型印刷或者卷绕式工艺进行生产,运输成本相对低廉,使得制造商具有进一步降低生产成本的潜力。
在潜在安全性方面,当柔性显示器破裂时,不会产生可能导致人员受伤的锋利边缘,因此相对刚性显示器而言,柔性显示器无疑更加安全。
1.2 柔性显示的发展前景
由于柔性显示技术具有独特的技术特点,与现有显示技术相比具有一定的先进性,所以普遍认为,在某些市场中,柔性显示具有潜在的替代优势,同时,柔性显示技术更具开拓全新应用领域的潜力(如军方将柔性显示应用于新式迷彩服,而这个领域传统刚性显示器件是很难涉及的)。柔性显示器是一种具备良好的市场前景的新技术,目前用于生产柔性显示器的显示技术有十多种,包括传统的液晶、有机发光显示(organic light-emitting diode,OLED)、电致变色、电泳技术等等,据估计全球约有数百家公司正在或即将开始柔性显示的研发。
可以认为,柔性显示技术的发展将为显示技术领域注入革命性的创新动力。
2 现有组装技术的分析
2.1 组装技术概述
作为柔性显示重要部件之一的驱动芯片,如何与柔性显示器件相连接是一个值得研究的课题。无论何种显示技术,最终的显示画面依赖于驱动芯片给显示介质(例如液晶,发光二极管等)提供其所需的信号(电压信号或电流信号)。已有的芯片组装和封装方式有很多种成熟的方案,但在柔性显示器芯片组装时,最主要考虑的因素有以下几点:
(1)组装制程中的压力和温度;
(2)组装方式的可靠度(包括物理连接可靠度和电性能的可靠度);
(3)组装中能达到的最小管脚距离(Pin pitch)和最高管脚数量。
就目前主流的芯片与目标介质的组装技术宏观上可以分为如下4类(由于TFT-LCD的驱动芯片与目标介质组装技术比较特殊,所以单独归为一类):
第一类,微电子封装技术,是指将晶圆(Wafer)切割后的Chip做成一种标准的封装形式的技术。
第二类,微电子表面组装技术(Surface Mount Technology,简称SMTc),是指将封装后的芯片(IC)成品组装到目标介质上的技术。
第三类,裸芯片组装(Bare Chip Assembly),是指将晶圆切割后的Chip直接组装到目标介质上的技术。
第四类,液晶显示器(TFT-LCD)领域特有的芯片封装和组装技术(COF/TCP封装和ACF bonding技术)。
下面将逐一介绍各类组装技术。
2.2 微电子封装技术
对于电子设备体积、重量、性能的期盼长久以来一直是促进电子技术发展的源动力,而在微电子领域,对芯片面积减小的期望从未停歇(从某种程度上讲,芯片的面积决定芯片的成本价格),在莫尔斯定律的效应下,芯片电路的集成度以10个月为单位成倍提高,因此也对高密度的封装技术不断提出新的挑战。
从早期的DIP封装,到最新的CSP(Chip scale package)封装,封装技术水平不断提高。芯片与封装的面积比可达1:1.14,已经十分接近1:1的理想值。然而,不论封装技术如何发展,归根到底,都是采用某种连接方式把Chip上的接点(Pad)与封装壳上的管脚(Pin)相连。而封装的本质就是规避外界负面因素对芯片电路的影响,当然,也为了使芯片易于使用和运输。
以BGA封装形式为例,通常的工艺流程如图3所示。
通常的工艺流程是首先使用充银环氧粘结剂将Chip粘附于封装壳上,然后使用金属线将Chip的接点与封装壳上相应的管脚连接,然后使用模塑包封或者液态胶灌封,以保护Chip、连接线(Wire bonding)和接点不受外部因素的影响。
另外随着芯片尺寸的不断缩小,I/O数量的不断增加,有时也会使用覆晶方式(Flip Chip)将芯片与封装壳连接。覆晶方式是采用回焊技术,使芯片和封装壳的电性连接和物理连接一次性完成,目前也有在裸芯片与目标介质的组装中使用覆晶方式。
2.3 微电子表面组装技术
微电子表面组装技术(surface mount technolo gy,SMTc,又称表面贴片技术),一般是指用自动化方式将微型化的片式短引脚或无引脚表面组装器件焊接到目标介质上的一种电子组装技术。
表面组装焊接一般采用浸焊或再流焊,插装元器件多采用浸焊方式。
浸焊一般采用波峰焊技术,它首先将焊锡高温熔化成液态,然后用外力使其形成类似水波的液态焊锡波,插装了元器件的印刷电路板以特定角度和浸入深度穿过焊锡波峰,实现浸焊,不需要焊接的地方用钢网保护。波峰焊最早起源于20世纪50年代,由英国Metal公司首创,是20世纪电子产品组装技术中工艺最成熟、影响最广、效率最明显的技术之一。
表面贴片元器件多使用再流焊技术,它首先在PCB上采用“点涂”方式涂布焊锡膏,然后通过再流焊设备熔化焊锡膏进行焊接。再流焊的方法主要以其加热方式不同来区别,最早使用的是气相再流焊,目前在表面组装工艺中使用最为广泛的是红外再流焊,而激光再流焊在大规模生产中暂时无法应用。再流焊中最关键的技术是设定再流曲线,再流曲线是保证焊接质量的关键,调整获得一条高质量的再流焊曲线是一件极其重要但是又是极其繁琐的工作。
2.4 裸芯片组装技术
裸芯片组装是指在芯片与目标介质的连接过程中,芯片为原始的晶圆切片形式(Chip),芯片没有经过预先的封装而直接与目标介质连接。常用的封装形式为COB(Chip On Board)形式。
COB方式一般是将Chip先粘贴在目标介质表面,然后采用金属线键接的方式将Chip的接点与目标介质上相应的连接点相连接。完成后Chip、金属连接线、目标介质上的连接点均用液态胶覆盖,用以隔离外界污染和保护线路。
裸芯片组装还有另一种方式,即覆晶方式。覆晶方式是指在Chip接点上预先做出一定高度的引脚,然后使用高温熔接的方式,使引脚与目标介质相应位置结合,形成电性的连接。与传统方式相比,覆晶方式不需要使用金属线进行连接。TFT-LCD驱动芯片常用的TCP/COF封装使用的即是覆晶方式,但是由于TCP/COF封装应用领域的特殊性,所以没有将其归入裸芯片封装技术中,而是单独划为一类。
2.5 液晶显示器领域特有的芯片封装和组装形式
由于TFT-LCD显示电路的特殊性,要求驱动芯片提供更多的I/O端口,所以一般情况下TFT-LCD驱动芯片封装多采用TCP(Tape Carrier Package)方式,或者COF(Chip On Film)方式,芯片与TFT-LCD显示面板连接多采用ACF(Anisotropic Conductive Film)压合粘接的方式。
TCP/COF多使用高分子聚合材料(PI ,polyimide)为基材,在基材上采用粘接或者溅镀(Spatter)方式使之附着或形成铜箔,然后使用蚀刻方式(Etching)在铜箔上制作出所需要的线路、与Chip连接的内引脚(ILB Lead,ILB:Inner Lead Bonding)、与TFT-LCD显示电路连接的外引脚C(OLB Lead-C,OLB:Outer Lead Bonding)、和外部目标介质(多为PCB板)连接的外引脚P(OLB Lead-P,OLB:Outer Lead Bonding),最后在所有引脚表面附着一层焊锡。
Chip的接点为具有一定高度的金突块(Au Bump),在与Chip连接(Assembly)时,Chip的接点与TCP/COF上的内引脚通过高温高压形成金-锡-铜合金,从而达到电性导通的目的,然后使用液态胶灌封。而在与外部目标介质——TFT-LCD显示电路连接时,则采用另一种组装方式——ACF压合粘接方式(AFC bonding)。
ACF胶结构类似于双面胶,胶体内富含一定密度的导电粒子(Conductive Particle),导电粒子为球状,外部为绝缘材料,内部为导电材料。当导电粒子受到外部压力破裂时,内部导电材料露出,多个破裂的导电粒子连接,可形成电性通路。由于导电粒子破裂时仅受到垂直方向的压力,加之芯片相邻接点距离远大于导电粒子直径,因此,破裂的导电粒子产生的电性链路具有垂直方向导电,水平方向不导电的特性。基于该种特性,ACF胶能使TCP/COF封装形式的芯片每根外引脚在水平方向上互相绝缘,不致形成短路,而在垂直方向又能与目标介质实现电性导通。由于ACF胶加热固化后具有很强的粘合力,所以形成电性导通的同时,可以使COF/TCP与目标介质实现物理连接。
TCP/COF封装形式能支持高达数千的I/O引脚数,因此在TFT-LCD驱动芯片领域得到广泛的应用。
当然,随着成本因素的影响日渐增加,另一种方式COG(Chip On Glass)也应运而生。与TCP/COF方式唯一的不同点在于,COG方式不需要PI基材,而是使用ACF压合粘接方式,直接将Chip与TFT-LCD显示电路连接,因此会更加节省成本。由于在组装中芯片是晶圆切片形式,所以COG技术也可以认为是一种裸芯片组装技术。
3 柔性显示驱动芯片组装方安提出
3.1 柔性显示动芯片组装方案概述
基于上述介绍,可将芯片与目标介质连接的技术做如下归类:
第一类为使用金属线形成电性连接,该种形式多用在常规的芯片和封装壳组装、裸芯片COB封装,可将其归纳为Wire bonding方式。
第二类为芯片和目标介质采用焊接的方式形成电性连接,电子表面组装技术,裸芯片覆晶方式多使用该种技术形式,可将其归纳为焊接方式。
第三类为TFT-LCD芯片组装中经常使用的ACF胶压合连接方式,可将其归纳为ACF bonding方式。
按照上述分类,拟依照不同技术背景,制定不同的芯片与目标介质连接方案,实现驱动芯片与柔性显示基材的电性连接。
具体方案如下:
方案1:采用Wire bonding方式。
方案2:采用Flip Chip方式。
方案3:采用ACF bonding方式。
需要指出,提出方案时,只讨论理论上该方案的可行性,并没有对该种方案是否具有投入实际生产的可行性做出判断和论述。
下面将具体讨论三种方案的优劣。
3.2 Wire bonding方案
目前Wire bonding技术的具体实现步骤如下:
首先,在晶圆制程后期使用电镀方式将Chip的连接点做成金突块;同时,目标介质上的引线(Lead)上也使用镀金技术使其附着一定厚度的金;然后使用Wire bonding设备将金属线的一端熔接(采用超声波或高温熔接方式)在金突块上,另一端采用相同的方式熔接在目标介质的Lead上,从而实现电性的导通。由于金具有良好的延展性和良好的导电性,所以,在Wire bonding的过程中,一般使用高纯度金线(99.99%)。当然,目前在一些极低端应用中出于成本的考虑,或者在SOC(System On Chip)/SOP(System On Package)封装中出于保密的需求,会在某些没有高频信号和大电流信号的连接管脚上使用铝线或者铜线进行Wire bonding。
在柔性显示中使用Wire bonding方案的优势和劣势同样明显。
首先,金是良好的导体,所以在使用金线键接时无需担心传输线RC/RH效应对高频率信号传输造成的影响;同时,也不需过多考虑大电流信号在传输过程中由于传输线本身电阻造成的电压降效应和热效应;其次,采用COB方式可以将芯片直接固定在柔性基材上,省去芯片封装的成本。
但是,Wire bonding的劣势也同样明显,第一,一般只有在金含量较高的连接点上才能实现金线和Lead/Pad的熔接;第二,Wire Bonding要求目标介质能承受一定压力且不能有太大形变;第三,Wire Bonding要求目标介质能承受较高温度;第四,Wire bonding受Wire bonding设备精度的限制,以BGA封装为例,一般I/O数量为500以内的芯片使用Wire bonding的方式,I/O数量增高,势必会使单个芯片连接点的尺寸减小,而在I/O数超过500以上时,芯片接点的尺寸会使Wire bonding的成功率大幅下降,而目前的显示技术恰恰又要求驱动芯片提供更多的I/O数目。
所以,综合分析上述各种因素,只有在低分辨率金属材质(如用金属箔为基材的柔性显示)的柔性显示方案中才有可能采用Wire bonding的方式进行芯片和柔性基材的键接。因此,作为一种连接技术,Wire bonding技术可以使用在柔性显示中,但是受到Wire bonding技术自身的制约,它在柔性显示中的应用会受到不小的限制。
3.3 覆晶方式
覆晶封装方式的应用十分广泛,由于覆晶方式可以节省Wire bonding的金线成本,同时芯片与封装壳的距离更近,可以保证高频信号具有良好的信号品质,所以被大量使用在对信号品质要求较高的CPU芯片封装中。传统封装形式,芯片的最高工作频率为2~3GHz,而采用覆晶方式封装,依照不同的基材,芯片的最高工作频率可达10~40GHz。
覆晶方式的基本做法是在芯片上沉积锡球,然后采用加温的方式使得锡球和基板上预先制作的Lead连接,从而实现电性连接。可以这样认为,覆晶方式是焊接方式的提升。
应用覆晶方式实现柔性基材和驱动芯片的连接有其独特之处。首先,芯片与柔性基材直接连接,从电性上考虑,该方式由于省略了封装中的信号传输线,所以可以降低芯片管脚上杂讯的干扰,而从成本角度考虑,由于使用裸芯片,该方式可以节约芯片的封装成本;其次,当芯片晶背(Chip backside)减薄到一定程度后(例如将Chip晶背研磨至13μm时,Chip可以弯折,如图6所示),Chip会呈现一定程度的柔性,可以在一定程度上实现与显示基材同步的柔性弯曲。
与Wire bonding方式相比,覆晶方式会有其成本上的先天优势(不需使用金属线键接),但是覆晶方式也存在一些问题。
覆晶方式中会使用锡球工艺,目前出于绿色环保考虑,微电子表面焊接技术中大量使用无铅焊锡,无铅焊锡的熔点约在200℃以上。而在柔性显示基材的各种方案中,一般具有良好弯折特性的柔性基材多为有机材料,有机柔性基材所要求的制程温度范围一般在150℃以内,超过200℃的高温会对柔性显示基材造成不可逆的损伤。所以,柔性基材不耐高温的特性与覆晶技术中需要使用的高温制程存在一定的矛盾。因此,我们可以推测,覆晶方式在柔性显示的应用领域会受到其制程温度的限制。
综上所述,覆晶方式多应用于柔性电路板(Flexible Print circuit)与芯片连接或者PCB板直接与芯片连接。当然,在能够耐受高温的柔性基材上使用覆晶方式实现驱动芯片与柔性基材的连接也极为可行。
3.4 ACF bonding方式
ACF bonding是目前TFT-LCD领域驱动芯片和显示基板连接最常用的方式,可以将裸芯片或者TCP/COF封装形式的芯片通过ACF胶与目标介质实现电性连接以及物理连接。
ACF胶连接方式中,ACF胶电阻率变化曲线依赖于导电粒子密度、导电胶厚度、宽度以及导电胶的固化温度。本文没有设计具体实验测量导电胶电阻率的实际曲线,参考相关文献,导电胶的电阻率约为5×10-4Ω×cm。而基于TFT-LCD Array线路本身带给驱动芯片的负载远大于导电胶引入负载的事实,以及驱动芯片输出信号对电容类负载比电阻类负载更为敏感的特性,可以认为,ACF bonding方式的电阻率的非线性变化不会为显示电路引入太多负面因素。而在TFT-LCD中大量使用ACF bonding方式的事实更能说明ACF bonding方式的电性能和可靠度是可以接受的。
其次,由于TFT-LCD分辨率的增加,驱动芯片所需的I/O数量也随之增加。目前主流的Driver IC已可以提供多于1,000 channel的输出I/O。I/O数量的增加直接导致Chip中接点尺寸和管脚间距(Pitch)的减小,而导电胶中导电粒子的直径远小于Chip接点的尺寸,同时,ACF胶能提供的最小Bonding pitch约为10μm,足以满足驱动芯片的需求。所以在支持I/O数量和小管脚间距方面,ACF bonding具有巨大的优势。
再次,由于使用金属箔和薄化玻璃为基材制成的柔性显示器只能实现有限的“柔性”,所以目前柔性显示器基材更倾向于使用柔性更佳的有机材料。以PET/PEN为例,其耐温性与传统刚性显示基材相比较差,仅为120℃左右。而传统的Wire bonding和覆晶方式在组装过程中需要较高的温度,故该两项技术在柔性基材上的应用受到制程温度的极大限制。而ACF bonding方式的组装温度取决于ACF胶本压过程中使用的ACF胶固化温度,固化温度会影响最终成品的物理特性,但对电性的影响较为有限(图7 所示为ACF胶在不同温度/压力下的电阻变化曲线)。
目前,索尼和3M已经有低于150℃的ACF胶出售(约为140℃),而PET/PEN可以短时间耐受150℃的高温,所以,使用低温ACF胶连接驱动芯片和显示基材成为可能。相比上述前两种方式,ACF bonding方式具有工艺简单、适用范围广的特点,所以就目前而言,ACF bonding应该是柔性显示驱动芯片与显示基材连接的最佳方式。
4 结 论
通过比较基于不同技术背景的各种组装技术方案,综合考虑柔性显示基材的物理特性,ACF bonding方式以其在制程温度上的低温特性相比其它两种方案更具优势。客观的说,各种组装技术均有其各自的技术特点和应用领域,而目前柔性显示基材的物理特性限制了组装技术的选择。我们期待新型柔性显示基材的面世,能给柔性显示组装方式带来更大的选择空间。
本文仅在理论层面探讨用于柔性显示屏的驱动芯片连接技术实现,未对用于柔性显示屏的驱动芯片连接技术应用于实际生产中的可行性进行讨论。
参考文献
[1] Nicole Rutherford. Flexible Substrates and Packing for Organic Display and Electronics[J]. Advanced Display, Jan/Feb 2006: 24-29.
[2] 3M. Anisotropic Conductive Film Adhesive 7303. 3M Web.
[3] 3M. Anisotropic Conductive Film 7376-30. 3M Web.
[4] Prof. Jan Vanfleteren (Promotor). Technology Development and Characterization for Interconnecting Driver Electronic Circuitry to Flat-Panel Displays.
[5] Shyh-Ming Chang, Jwo-Huei Jou, et al. Characteristic Study of Anisotropic-conductive Film for Chip-on-Film Packaging. Microelectronics Reliability.
[6] 陈党辉. 微电子组装用导电胶长期可靠性的研究[D]. 西安电子科技大学硕士学位论文.
[7] 肖启明,汪 辉. 焊球植球凸块工艺的可靠性研究[J].封装、测试与设备,第35卷,第12期: 1190-1212.
关键词:运梁车;悬挂;销轴;故障分析;改进
TJ900 type was introduced: the use of the transporting girder vehicle condition, in view of the hydraulic suspension pin failure occur in use process, the bearings appeared repeatedly damaged, seriously affected the production operation. In this paper, the fault analysis and solving method is discussed.
Keywords: transporting girder vehicle, suspension, pin shaft, failure analysis and improvement
中图分类号:TH133.3文献标识码:A文章编号:2095-2104(2013)
TJ900型运梁车可适用于20m、24m、32m整孔混凝土箱梁的运输与喂梁,能够把混凝土箱梁从预制场地通过便道,路基,桥梁(包括钢结构连续梁、钢混结合连续梁等)运至架梁工位,配合架桥机完成相应的架梁作业。
900型运梁车在设计时,为了液压悬挂支撑升降、调平;转向架平衡油缸伸缩选用了GEG80ET--2RS型关节轴承。这种轴承具有有较大的载荷能力和抗冲击能力,并具有抗腐蚀、耐磨损、自调心、好、结构简单、体积小、使用寿命长等特点,运梁车投入使用初期效果很好。然而,在使用一年后,该轴承出现了多次损坏,严重影响了生产作业。本文就故障的分析及解决方法介绍如下:一 故障现象
运梁车在重载变幅动作时,转向架系统发出刺耳的啸叫声音,平衡臂箱体伴随抖动和共鸣。经过公司机备部和生产厂家技术人员的共同检查确认,声音是从臂架关节轴承处发出。经初步分析,大家认为声音是关节轴承不良、剂不合适造成干磨而引起的。
二 原因分析
大多数轴承损坏的原因除不良外,还包括承载能力不足超负荷等外界因素。为此从这几个方面进行了分析: (1)、超负荷:经过了解,该关节轴承部位所承担的最大荷载没有超过该轴承额定承载能力。由此可确定,该轴承的损坏与负载过大无关; (2)、非正常冲击或管理不到位:该运梁车开始使用至轴承损坏过程中,期间没有出现过可能导致轴承损坏的因素,如非正常冲击或长时间不予等情况。由此可以确定,并非意外因素或管理不到位造成轴承损坏; (3)、情况:运梁车的系统采用的是干油系统。 (4)、由于施工环境恶劣,经常在路基桥面运转,灰尘多,液压悬挂轴承处积累很多灰尘,灰尘或即使肉眼看不见的微小灰尘进入轴承,也会增加轴承的磨损,振动和噪声。
从轴承损坏现象和系统、进入灰尘情况分析,可确定主要原因是不良、轴承及其周围环境的不清洁造成的。
三 拆检分析根据上述分析,我们首先对该轴承进行了人工加油。加油后,震动和噪音消失。继续实验一小时左右又再次出现异响。然后对该轴承进行了清洗,清除表面污渍,查看关节轴承表面有无裂纹及碎裂;表面无损伤;然而,在继续使用后仍然出现震动和噪音,而且没有减小迹象。为此,我们决定对该轴承进行拆检分析。
拆检:(1)、拆检后发现,关节轴承外圈内壁面在安装状态时的下端面有圆弧角为30~40度左右的几道划痕;(2)、该轴承的轴下端面(在安装状态时)有圆弧角为180度左右的磨损痕迹,沿轴向形成突肩。磨损区宽度与关节轴承内圈宽度相同,突肩最大高度约为3~4mm。根据以上现象和对轴承进行的分析,初步认为造成磨损的原因有三个: 第一、轴承本身有缺陷,造成脂难以到达承压面;
第二、轴承周围环境的不清洁即使肉眼看不见的微小灰尘进入轴承,会增加轴承的磨损;
第三、在安装时轴体孔道内未做彻底清理,留有加工残留物。根据以上情况,我们采取了如下措施:首先、对轴进行修复和清洗,更换新轴承;其次、要求操作司机作业中每隔一周加一次油,并随时清洁轴承外的灰尘。轴承没有出现了干磨异响现象。通过清洁所有关节轴承表面发现液压悬挂油缸连接平衡臂的轴承已碎裂、出现裂痕;销轴已严重变形、出现销轴跟着油缸转动;悬挂油缸已经跨下来,边缘出现严重磨损,有的销轴转动甚至把悬挂油缸下支座板严重摩损;导致升降点单独升降时反应不灵敏。通过仔细分析我们发现:(1)、关节轴承内外承压面几乎没有脂,轴承承压面脂无法进入轴承;(2)、在非承压面因为轴承两边的间隙却有较多灰尘堵塞。
(3)、轴承部位无法加注脂,使轴承外球面的内圈和内球面的外圈干摩擦。
根据以上情况,我们采取了如下措施:
对悬挂油缸的磨损进行了修复与清洗,对已经磨损的悬挂轴承、悬挂销轴进行了集中更换,经过分析图纸我们还发现,该轴承无加注脂口,脂无法进入关节轴承内油槽。从拆检结果我们断定,损坏过程如下:因承压很大、间隙过小,无加注口,脂无法均匀分布到摩擦面,所以首先造成局部干磨,当温度较高时出现轴承内外圈“抱死”现象。当关节轴承“抱死”后,在滑动过程中造成轴的磨损。当磨损到一定程度时,金属屑进入摩擦面使磨损加剧,产生剧烈震动和噪音。
四解决、预防措施1措施(1)、 增加油道。 鉴于轴承无法加注油,没有油口,对液压油缸耳环内孔增加油槽、油口,即沿耳环内孔表面,在中心点加工出1道宽2mm深2~3mm的油槽与关节轴承外圈油槽相通,使油脂能更加容易地进入承压面区域。(2)、加大轴径公差,增大轴的摩擦阻力。将轴重新加工,使其与轴承内圈之间为过盈配合,公差为+1,使油脂难以进入内圈与轴接触面,增大摩擦阻力;(3)、独立系统。为关节轴承重新安装了一个独立的手动装置,要求每班次作业中由操作司机进行一次加油。
五预防
预防关节轴承早期损坏的原因:
安装不当
安装时使用蛮力,用锤子直接敲击进口轴承对关节轴承伤害最大;是造成变形的主要原因,安装不到位,安装有偏差或未装到轴承位,造成关节轴承游隙过小。内外圈不处于同一旋转中心,造成不同心。
建议:选择适当的或专业的关节轴承安装工具。
不良
不良是造成关节轴承过早损坏的主要原因之一。原因包括:末及时加注油;油未加注到位;油选型不当;方式不正确等。
建议:选择正确的油,使用正确的加注方式。
污染
污染也会导致关节轴承过早损伤,污染是指有沙尘、金属屑等进入关节轴承内部。原因包括使用前过早打开关节轴承的包装,造成污染;安装时工作环境不清洁,造成污染;轴承工作环境不清洁,工作介质污染。
建议:在使用前不要拆开关节轴承的包装;安装时保持安装环境的清洁,对要使用的关节轴承进行清洗;增强关节轴承的密封装置。
疲劳
疲劳破坏是关节轴承常见的损坏方式。疲劳破坏的原因是:关节轴承长期超负荷运行;未及时维修;维修不当等。
建议:选择适当的关节轴承类型,定期及时更换疲劳关节轴承。 六结语通过采取以上措施,运梁车液压悬挂关节轴承、销轴工作正常,转向架系统工作十分平稳,异响和震动全部消失,没有出现任何异常。保证了架桥机安全、可靠、高效的进行箱梁架设。
参考文献
[1]、期刊论文 关节轴承的研究进展 - 机械工程师 - 2008(7)
[2]、期刊论文 国产自关节轴承性能分析 - 科技资讯 - 2010(14)
[3]、期刊论文 大型推力关节轴承结构有限元分析 - 船海工程 - 2004(2)
[4]、期刊论文 关节轴承的工艺改进 - 煤矿机械 - 2000(5)
[5]、期刊论文 工程机械中的大型关节轴承重复使用条件下寿命计算方法 - 黄山学院学报 - 2009, 11(3)
[6]、期刊论文 向心自关节轴承受力分析及当量载荷的确定 - 水力发电 - 2004, 30(5)
[7]、期刊论文 偏斜工况下向心关节轴承应力场分析 - 轴承 - 2010(6)
[8]、期刊论文 关节轴承的边界模型与寿命分析 - 轴承 - 2005(8)姜韶峰;孙立明;杨成启;王卫国 关节轴承摩擦磨损及寿命试验分析1998(03)
关键词:机电设备安装调试技术验收
1主要设备安装
1.1远程处理机的安装
楼宇自动控制系统与各可重构处理单元RPU之间的通信是透明的,可利用同一线路不同的RPU完成同一个控制系统。一般而言,建筑电气设备自动化系统大量监控的是空调机组,所以将RPU布置在机房之中或附近,把空调机组控制系统使用后剩余的输入输出接口用于连接附近的水流量计、水位信号、照明控制等。为了日后的发展,RPU的接口要留出20%~30%为宜。
1.2电气设备自动化系统的布线
在电气设备自动化系统进行布线时,要注意某些线路需要专门的导线,如通信线路、温度湿度传感器线路、水位浮子开关线路、流量计线路等,它们一般需要屏蔽线,或者由制造商提供专门的导线。电源线与信号、控制电缆应分槽、分管敷设;数据显示通道(DDC)、计算机、网络控制器、网关等电子设备的工作接地应连在其他弱电工程共用的单独的接地干线上。智能建筑中安装有大量的电子设备,这些设备分属于不同的系统,由于这些设备工作频率、抗干扰能力和功能等都不相同,对接地的要求也不同。
1.3输入设备的安装
输入设备应安装在能正确反映其性能的位置,便于调试和维护的地方。不同类型的传感器应按设计、产品的要求和现场实际情况确定其位置:水管型温度传感器、蒸汽压力传感器、水流开关、水管流量计不宜安装在管道焊缝及其边缘上开孔焊接;风管型湿度传感器、室内温度传感器、风汽压力传感器、空气质量传感器应避开蒸汽放空口及出风口处。
1.4输出设备的安装
风阀箭头、电动阀门的箭头应与风门、电动阀门的开闭和水流方向一致;安装前宜进行模拟动作;电动阀门的口径与管道口径不一致时,应采取渐缩管件,但阀门口径一般不应低于管道口径二个档次,并应经计算确定满足设计要求;电动与电磁调节阀一般安装在回水管上。
2 机电设备安装中常见几种技术问题
2.1螺栓联接问题。螺栓联接是机电安装中最基本的装配,但操作不当如联接过紧时,螺栓就可能由于电磁力和机械力的长期作用,出现金属疲劳,以至于诱发剪切、螺牙滑丝等部件装配松动的现象,埋下事故隐患。尤其是用于电气工程传导电流的螺栓联接,更应当把握好螺栓、螺母间机械效应与电热效应的处理,要压实压紧,避免因压接不紧造成接触电阻增大,由此引发发热――接触面氧化――电阻增大等一系列连锁反应,最后导致联接处过热、烧熔,出现接地短路、断开事故。
2.2振动问题。振动问题原因通常包含3方面:①泵,主要是由于轴承间隙大,转子与壳体同心度差或转子和定子磨擦过强烈等因素的影响所造成。②电机,其成因包括轴承间隙大,转子不平衡或与定子间的气隙不均匀。③安装操作,工艺操作参数如偏离额定参数过多,极易造成泵运行稳定性失衡,如出口阀流量控制不稳定导致的震动等,这就要求设备安装工艺应尽可能地接近于额定参数来操作。
2.3超电流问题。出现此种情况,可能存在三种原因:泵轴承损坏,设备内部有异物;电机过载电流整定偏低,线路电阻偏高等;工艺操作所用介质由于密度大或粘度高超出泵的设计能力。
2.4电气设备问题:
2.4.1隔离开关安装操作不当导致动、静触头的接触压力与接触面积不足,致使接触面出现电热氧化、电阻增大的情况,最后触头烧蚀酿成事故。
2.4.2断路器弧触指及触头装配不正确,插入行程、接触压力、同期性、分合闸速度达不到要求,将使触头过热、熄弧时间延民,导致绝缘介质分解,压力骤增,引发断路器爆炸事故。
2.4.3调压装置装配存在误差或装配时落入杂物卡住机构,如不及时加以处理,也会出现不同程度的安全事故。
2.4.4主变压器绝缘损坏或被击穿。主变吊芯与高压管安装时落入螺帽等杂物、密封装置安装有误差等都会直接影响到主变绝缘强度的变化,极可能致使局部绝缘遭损毁或击穿,酿成恶性事故。
2.4.5电流互感器因安装检修不慎,使一次绕组开路,将产生很高的过电压,危及人身与设备安全。
3 机电设备安装常见问题的对策
3.1严格施工组织设计及设备、设施选择施工组织设计和设备、设施选择是经有关科技人员共同研究商定的,通过技术计算和验算,既有其使用价值,又可保证良好的经济效益,不要随便更改选用设备,否则会影响基础工作的进展。
3.2按预定计划开展安装工作
每一项机电设备安装工作顺序都有其科学性。一个安装工程的计划排队是经过多方面的考虑,经过技术论证排出的,是有科学根据并有一定指导性的,不要随便改动,以免造成窝工,工程进度连续不上。
3.3对安装工作要总体布置、统一安排对大型安装工程,由于设备多,安装环节多,因此对每项安装都必须有总体布置,做到统一安排,施工队中必须有一个统一指挥的机电队长(或项目副经理)对各项工作进行协调处理,集思广益,多征求职工的工作意见。
3.4安装工作要有主有次一个工程具备开工条件,首先得有电源,其次要有动力源,有提升装备(包括井架、提升绞车)。要想达到短期开工之目的,安装工作必须有主有次,分轻重缓急。只有对安装变电所、压风机,井架、提升绞车工作有一个合理的安排,有计划有目的地进行安装工作,才能达到事半功倍之效果。
3.5严格按设计要求施工每一种设备的安装,都有很严格的技术要求,只有按设计技术要求施工,才能减少不必要的时间流失和材料消耗。
3.6按常规安装方式对设备进行安装每种设备的安装,都有一定的作业方式和工作顺序,不能急于求成,工序颠倒。例如:井架安装,常规作业方法是一层组装起后,进行初操平找正,然后逐层安装。
4 调试阶段
4.1调试过程。大型机电设备在出厂时一般无法进行总装和负荷试验,即使是使用过的设备,由于拆卸、搬运及再次安装,难免改变原始安装状态,所以,对安装好的大型机电设备尽快进行调试就显得非常重要。应该认识到,不仅是解体装运的初次使用的大型筑路设备在安装后需进行调试,实际上所有新增、更新、自制、改造、大(中)修机械设备,在投入使用前,都必须进行调试。调试前,要再次检查设备装配的完整性、合理性、安全性和渗漏痕迹等,以便调试工作安全、顺利进行。调试时,主要试验其工作质量、操作性能、可靠性能、经济性能等。考核时,应在施工现场进行空负荷和负荷试验,以正确检验其性能是否达到工业化生产技术条件要求。调试过程中,参加调试的机械技术人员和随机操作人员须时时到位,以主动了解设备的现实技术状况、调试程序、操作控制方法等。现场必须有机械技术人员笔录调试过程。因为它是原始记录,是日后操作设备、撰写技术报告、解决遗留问题的重要依据。
4.2撰写安装调试技术报告。撰写安装调试技术报告是大型筑路设备初次安装调试后进行技术、资产及财务验收的主要依据之一,是一项必须做好的工作。安装调试报告应以读者能再现其安装、调试过程,并得出与文中相符的结果为准。大型机电设备安装调试技术报告作为一种科技文件,其内容比较专深、具体,有关人员应意识到它的重要性。撰写时注意与论文的区别,应详略得当、主次分明,不要象流水帐一样,把某年某月做了些什么调试统统写入报告,使人不得要领。在安装调试技术报告的结尾,要向曾给安装调试工作以帮助、支持或指导的人及部门致以谢意。这种做法,实际上也是载明安装、调试过程中有关部门及人员所起作用、工作内容或成绩的一种方式。
5 机电设备调试
机电设备安装好之后,后续工作就是尽快地使设备投入生产。要实现这一目标,调试是必不可免的过程。充分细致的设备装配检查是设备调试工作顺利完成的基础与前提,调试前需要再次对设备装配的完整性、安全性以及安装条件等作好检查工作。设备调试的内容主要包括:设备使用性能、工作质量以及运行是否正常等。调试过程中,相应机械技术人员与辅助人员须按时足员到位,在调试过程中进一步熟悉设备的操作要领、基本程序以及各项功能控制方法。调试过程应有专门人员笔录设备调试的各项步骤,通过对设备安装经验的系统总结,可比较客观的归纳出设备的基本运行状态及特征。也可以为将来设备运行中可能出现的各种技术问题解决提供一手资料,对于设备的升级改造也能起到积极的辅助作用。
在设备的调试过程中,必须遵循两项基本原则:其一,“五先五后”原则,即先单机后联调;先就地后遥控;先点动后联动;先空载后负载;先手动后自动。其二,“安全第一”为基本准则。人身安全与设备安全必须放在第一位考虑,不能急于投产或轻忽大意而淡化安全调试的重要性。
6 设备技术验收阶段
大型机电设备安装调试成功的标志是:设备安装调试完成,生产考核合格,经济和技术性能符合定货合同规定指标,具备工业化生产条件。大型机电设备安装调试结束之后,要进行技术验收和总结。经过对安装调试技术报告、设备有关文件、单证、资料的审查及现场的考察,才可决定能否通过技术验收。通过技术验收后,才准予办理资产、财务手续,交付使用。未经技术验收,不得入帐和投入使用,否则会造成责任不清。验收合格后,由总监理工程师签署工程竣工报验单,并向建设单位提出资料评估报告。对一些竣工验收后工程移交前未来得及完成整改的问题,可征得安装单位的同意,做甩项处理,在监理的督促和跟踪下可以在工程移交后继续完善。
【关键词】阻隔;包装;环保;复合
引言
近年来,高阻隔膜材料因阻隔性能优异,且成本低廉、使用方便、透明度好、印刷适应性强、机械性能好等优点,在市场上广泛应用于食品、药品、化学品等产品包装,电子器件封装及燃料电池隔膜等领域,并飞速发展。
优异的阻隔性是高阻隔膜材料的重要特性,包含良好的阻气性、阻湿性、阻油性、保香性等。早期的阻隔膜材料以乙烯-乙烯醇共聚物(EVOH),聚酰胺(PA),聚偏二氯乙烯(PVDC),聚乙烯醇(PVA)等薄膜为代表。随着食品饮料、医疗、化学品等领域产品强劲的需求推动,对包装阻隔性的要求也越来越严格,现已开发出多种性能优异的高阻隔膜材料,包含多层聚合物复合膜,真空蒸镀复合膜,聚合物/层状纳米复合膜等,本文就各种高阻隔膜材料的阻隔性能、生产技术和应用发展等进行总结和分享。
1.多层聚合物复合膜
由于各种聚合物在性能方面各有其优势和弱点,单一聚合物膜材料很难满足众多产品对多功能性的要求,因此利用多层薄膜复合技术,将两种及以上的单一聚合物薄膜进行复合形成多层聚合物复合膜,使各种聚合物性能优势互补,不仅能提高膜材料的阻隔性能,还可改善热封性、耐热性、机械性能、抗紫外线性能等其他性能。目前研究发展的多层膜复合技术主要有共挤出复合、涂布复合、自组装复合等。
1.1共挤出复合膜
共挤出复合膜是利用多台挤出机对各聚合物进行加热熔融,通过一个多流道复合机头共挤出生产的多层复合薄膜。共挤出复合技术主要用于具有相容性的热塑性聚合物复合,不使用溶剂,环境污染小,生产工序少,生产成本低,在薄膜生产企业中得到广泛应用。
目前共挤出复合膜材料取得新的研究进展,汪若冰等[1]以聚乙烯(PE)、聚丙烯(PP)、尼龙6(PA)、乙烯-乙烯醇共聚物(EVOH)四种聚合物作为原料进行熔融共挤,制备五层复合膜材料,其中EVOH和PA6为复合膜的阻隔层,PE为复合膜的热封层。五层共挤复合膜具备高阻隔性和良好的力学性能,是理想的高阻隔包装材料。梁晓红等[2]将EVOH与PE、PA共混改性,制备PE/PA/EVOH/PA强韧性高阻隔复合膜,综合性能优异,具有良好的应用前景。
1.2涂布复合膜
涂布复合膜是将阻隔性聚合物溶解在溶剂中形成涂布液,利用涂布设备将涂布液涂布于基膜表面,干燥熟化后形成的多层复合膜。涂布复合技术可用于难以单独加工成膜的聚合物,如PVDC, PVA等,工艺简单,生产成本低,阻隔性能好,但可能有有机溶剂残留,造成环境污染。
目前涂布复合膜研究取得了很多新进展,桑利军等[3]在PP、PE、CPP(流延聚丙烯)、PET(聚酯)薄膜上涂布2-4um PVDC的复合薄膜,其透气性和透湿性显著降低,应用于制造药品复合包装袋。舒心等[4]以双向拉伸PP、双向拉伸PET、双向拉伸PA或PE等薄膜作为基膜,经电晕处理后,将改性丙烯酸酯类聚合物BARILAYER高阻隔涂布液涂布于基膜电晕面,经5-6小时的室内40-50℃完全干燥熟化后,在涂层面印刷,再复合一层聚烯烃薄膜,最后得到新型高阻氧性塑料软包装薄膜,产品原料易得,价格低廉,阻隔性优于PVDC,且不受相对湿度影响,BARILAYER可降解,燃烧仅产生CO2和H2O,具有环保创新性。
1.3逐层自组装(Layer-by-Layer)复合膜
逐层自组装复合膜是特定聚合物、量子点、纳米粒子、生物分子等,在互补性相互作用下(静电相互作用、氢键结合,配位键和、共价结合等)交替沉积形成的多层复合膜。通过改变沉积周期、PH、温度、分子量、离子强度等条件,获得性能优异的复合膜材料,广泛应用于阻燃、抗菌、气体阻隔等。
当前逐层自组装复合膜也取得了新的研究进展,Fangming Xiang等[5]将聚丙烯酸(PAA)和聚环氧乙烷(PEO)通过氢键结合作用,逐层自组装制备韧性气体阻隔复合膜,当调整PH为3时, PAA/PEO双分子层自组装20层形成高阻隔复合膜,涂覆于1.58mm厚天然橡胶片上,使得天然橡胶片的氧气透过率降低89.6%,阻氧性优异,且氢键结合强度弱于离子键合,制得的高阻隔复合膜具有一定韧性,适合高应变应用。Chungyeon Cho等[6]将聚醚酰亚胺PEI,PAA,PEO进行逐层自组装沉积,通过PEI/PAA离子键合作用和PAA/PEO氢键结合作用,形成PEI/PAA/PEO/PAA复合膜,当调整PH为3,PEI/PAA/PEO/PAA四分子层自组装20层形成高阻隔韧性复合膜,涂覆于1mm厚聚氨酯橡胶片,使得聚氨酯橡胶片的氧气透过率降低93.3%,适用于轮胎等充气用品的气体阻隔。
1.4其他复合膜
除上述多层膜复合技术外,研究还采用逐层浇铸复合、化学接枝复合、共混挤出复合等创新方法,制备阻隔性能优异的多层聚合物复合膜。
董同力嘎等[7]采用逐层浇铸法制备三层可降解左旋聚乳酸PLLA/聚乙烯醇PVA/左旋聚乳酸PLLA复合膜,其中中间层PVA为阻隔层,两侧疏水性的PLLA为保护层。PVA阻隔层显著提高了PLLA的阻隔性,当PVA含量占复合膜比重20%时,阻氧性较PLLA单膜提高了272倍,同时力学性能也有所提升。PLLA/PVA/PLLA复合膜实际应用性更强,且完全符合环境友好型复合膜的开发趋势。
Yuehan Wu等[8]将壳聚糖CS接枝到氧化纤维素OC基体上,化学接枝过程改变了基体微观结构,OC/CS复合膜兼具两种聚合物的性能优势,具有优异的阻水阻氧性、抗菌性、高透明性和良好的机械性能,是安全、可生物降解、性能优异的包装材料。
呼和等[9,10]将EVOH与PA6进行共混挤出后制备丙烯酸乙基己酯EHA薄膜,再与PE膜复合,得到EHA/PE复合膜,研究证明,EHA薄膜阻氧性能很高,EHA/PE复合膜的阻水阻氧性能优于PA膜、EVOH膜和PA6/PE复合膜,适用于冷藏保鲜包装。
2.真空蒸镀复合膜
利用真空镀膜工艺将金属(如铝Al)或者无机氧化物(如氧化硅SiO2,氧化铝Al2O3,氧化钛TiO2)蒸镀在塑料膜表面,制备真空镀铝膜或真空蒸镀陶瓷膜,阻隔性能优异、生产效率高、成本低廉、使用方便,广泛应用于食品包装,甚至电子产品封装领域。陶瓷膜透光率高且绿色环保,是目前高阻隔膜研究热点。
齐小晶等[11]利用等离子体增强化学气相沉积法在聚己内酯(PCL)膜基材表面蒸镀SiOx层,可以提高薄膜的阻隔性能,且不受温度湿度影响,同时符合开发环境友好型材料的需求。
赵子龙等[12]经等离子化学气相沉积法在PLLA薄膜表面上沉积SiOx层,并利用溶液涂布法在SiOx层上涂覆PVA层,制备新型PLLA/SiOx/PVA复合膜,其阻隔性能与PA/PE复合膜相似,柔韧性也得到改善,加上可生物降解的环保优势,可替代PA/PE复合膜应用于食品包装领域,前景十分可观。
朱琳等[13]采用射频磁控共溅射的方法在PP基底膜表面蒸镀TiNx/CFy薄膜,TiNx的体积分数为0.28时,复合薄膜的阻隔性能和柔韧性能最好,解决了传统陶瓷膜的裂纹问题。
3.聚合物/层状无机物纳米复合膜
聚合物/层状无机物纳米复合膜是将能形成纳米尺寸结构微区的层状无机填料分散到聚合物中,形成纳米复合膜。填料的纳米片层结构可以阻挡气体渗入,提高材料气密性,显著改善聚合物的阻透性能。目前层状纳米填料如蒙脱土(MMT)、层状双氢氧化物(LDHs)和石墨烯(GNSs)以其独特结构和优异性能,成为备受关注的研究前沿和热点。
Ray Cook等[14]利用熵增原理制备自组装高度有序有机/无机纳米复合膜,使用喷墨打印机,将0.1-0.2%体积分数的聚乙烯吡咯烷酮(PVP)水溶液打印为聚合物膜层,将0.2wt%体积分数的MMT分散液打印为纳米层,聚合物层和纳米层通过离子键合自组装为PVP/MMT双分子膜层,当在PET基体上打印5层PVP/MMT双分子膜层后,阻氧性能优于高阻隔性金属PET,且具有高透明性,又安全环保,在食品包装领域具有广阔应用前景。
张思维等[15]以氧化解压多壁碳纳米管的方法,制备氧化石墨烯纳米带(GONRs),然后用异氟尔酮二异氰酸酯(IPDI)对GONRs进行化学修饰制得功能氧化石墨烯纳米带(IP-GONRs)。采用溶液成形的方法在涂膜机上制备功能氧化石墨烯纳米带(IP-GONRs)/热塑性聚氨酯(TPU)复合薄膜。当IP-GONRs含量为3.0wt%,TPU氧气透过率降低67%,阻隔性能明显提高,在食品包装和轻量气体存储器领域存在潜在应用。
豆义波等[16]采用简易抽滤成膜法,制备柔性透明聚乙烯醇(PVA)/水滑石(LDH)复合自支撑薄膜,该复合膜良好的二维有序结构有效抑制了氧气扩散,提升了薄膜阻氧性能,在阻隔性要求极高的电子器件封装及原料电池隔膜等领域有较好的前景。
总结
当前,在食品、药品、化学品产品的强劲市场需求推动下,包装膜材料持续快速发展,产品对膜材料的要求更高,要求开发高阻隔性、保鲜性、耐热性、抗菌性等多功能性膜材料,其中高阻隔膜材料发展迅速。同时随着资源越来越紧缺和人们环保意识增强,开发环境友好高阻隔膜材料也成为热点。未来几年,我们应当继续将高阻隔膜材料作为研究开发重点,缩短与国外高阻隔膜技术差距,满足日益增长的市场发展需求。
参考文献
[1]汪若冰,冯乙巳.五层共挤阻隔薄膜的结构、性能、工艺及表征[J].安徽化工,2015, 41(6): 31-35.
[2]梁晓红,呼和,王羽,等.乙烯-乙烯醇共聚物复合膜的力学、热学及阻隔性能研究[J].塑料科技,2015, 43(6): 21-24.
[3]桑利军,王敏,陈强,等.聚乙烯薄膜表面沉积纳米SiOx涂层的阻隔性能[J].中国表面工程, 2015, 28(3): 36-41.
[4]舒心,周海平.新型高阻氧性包装薄膜[J].塑料包装,2015, 25(6): 22-25.
[5]Fangming Xiang, Sarah M Ward, Tara M Givens, et al. Super Stretchy Polymer Multilayer Thin Film with High Gas Barrier[J]. Macro Letters, 2014, 3: 1055-1058.
[6]Chungyeon Cho, Fangming Xiang, Kevin L. et al. Grunlan. Combined Ionic and Hydrogen Bonding in Polymer Multilayer Thin Film for High Gas Barrier and Stretchiness[J]. Macromolecules, 2015, 48: 5723-5729.
[7]董同力嘎,王爽爽,孙文秀,等.多层复合聚乳酸薄膜的阻隔性和力学性能[J].高分子材料科学与工程, 2015, 31(8): 177-181.
[8]Yuehan Wu, Xiaogang Luo, Wei Li, et al. Green and biodegradable composite ?lms with novel antimicrobial performance based on cellulose[J]. Food Chemistry, 2016, 197: 250-256.
[9]呼和,梁晓红,王羽,等. EHA/PE薄膜的阻隔性及其在冷鲜肉包装中的应用[J].塑料工业, 2015, 43(6): 66-69.
[10]王羽,云雪艳,张晓燕,等. EHA/PE高阻隔复合膜对鲜切莴笋保鲜效果的影响[J]. 食品工业科技, 2015, 36(22): 308-312.
[11]齐小晶,宋树鑫,梁敏,等. PCL/SiOx复合膜的热学、力学及阻隔性能[J].塑料工业, 2015, 43(9): 113-116.
[12]赵子龙,王羽,,云雪艳,等.高阻隔性PLLA薄膜的制备及其对冷鲜肉保鲜效果的研究[J].食品科技, 2015, 40(11): 89-95.
[13]朱琳,王金武,刘壮,等. PP基材表面磁控共溅射制备新型阻隔薄膜的研究[J]. 包装工程, 2015, 36(9): 73-76.
[14]Ray Cook, Yihong Chen, Gary W Beall. Highly Ordered Self-Assembling Polymer/Clay Nanocomposite Barrier Film[J]. Applied Materials & Interfaces, 2015, 7: 10915-10919.
[15]张思维,赵文誉,李长,等.功能氧化石墨烯纳米带/热塑性聚氨酯复合材料薄膜的制备及阻隔性能[J].高分子材料科学与工程, 2016, 32(1): 151-157.
[16]豆义波,潘婷,刘晓西,等.聚乙烯醇/水滑石复合薄膜的制备及其氧气阻隔性能研究[C].中国化学会第九届全国无机化学学术会议论文集――D无机材料化学, 2015.
关键词:波峰焊; 印制线路板; 助焊剂; 焊料; 工艺参数
Study on Process of Wave Soldering
XIANFei
(Fiberhome Telecommunication Co., Ltd, Wuhan 430074,China)
Abstract: Although wave soldering is a conventional soldering technology, now it still plays a important role in electronics production. The article introduces theory of wave soldering, at the same time an advanced soldering technology is also mentioned, it allowed through-hole components to be soldered, and protected the SMT components from the wave, unlike in the case of wave soldering. At last the effective way for improving the quality of wave soldering was discussed in terms of the quality control before soldering and the control of manufacturing material and process parameters.
Keywrds: Wave Soldering; Printed Circuit Board; Soldering Flux; Solder; Process Parameters
波峰焊是将熔化的焊料,经电动泵或电磁泵喷流成设计要求的焊料波峰,使预先装有电子元器件的线路板通过焊料波峰,实现元器件焊端或引脚与线路板焊盘之间机械与电气连接的软钎焊。波峰焊用于线路板装联已有20多年的历史,现在已成为一种非常成熟的电子装联工艺技术,目前主要用于通孔插装组件和采用混合组装方式的表面组件的焊接。
1波峰焊工艺技术介绍
波峰焊有单波峰焊和双波峰焊之分。单波峰焊用于SMT时,由于焊料的“遮蔽效应”容易出现较严重的质量问题,如漏焊、桥接和焊缝不充实等缺陷。而双波峰则较好地克服了这个问题,大大减少漏焊、桥接和焊缝不充实等缺陷,因此目前在表面组装中广泛采用双波峰焊工艺和设备。
双波峰焊的结构组成见图1。
波峰锡过程:治具安装喷涂助焊剂系统预热一次波峰二次波峰冷却。下面分别介绍各步内容及作用。
1.1 治具安装
治具安装是指给待焊接的线路板安装夹持的治具,可以限制基板受热形变的程度,防止冒锡现象的发生,从而确保浸锡效果的稳定。
1.2 助焊剂系统
助焊剂系统是保证焊接质量的第一个环节,其主要作用是均匀地涂覆助焊剂,除去线路板和元器件焊接表面的氧化层和防止焊接过程中再氧化。助焊剂的涂覆一定要均匀,尽量不产生堆积,否则将导致焊接短路或开路。
助焊剂系统有多种,包括喷雾式、喷流式和发泡式。目前一般使用喷雾式助焊系统,采用免清洗助焊剂,这是因为免清洗助焊剂中固体含量极少,不挥发物含量只有1/5~1/20。所以必须采用喷雾式助焊系统涂覆助焊剂,同时在焊接系统中加防氧化系统,保证在线路板上得到一层均匀细密很薄的助焊剂涂层,这样才不会因第一个波的擦洗作用和助焊剂的挥发,造成助焊剂量不足,而导致焊料桥接和拉尖。
喷雾式有两种方式:一是采用超声波击打助焊剂,使其颗粒变小,再喷涂到线路板上。二是采用微细喷嘴在一定空气压力下喷雾助焊剂。这种喷涂均匀、粒度小,易于控制,喷雾高度/宽度可自动调节,是今后发展的主流。
1.3预热系统
1.3.1预热系统的作用
1)助焊剂中的溶剂成份在通过预热器时,将会受热挥发。从而避免溶剂成份在经过液面时高温气化造成炸裂的现象发生,最终防止产生锡粒的品质隐患。
2)待浸锡产品搭载的部品在通过预热器时的缓慢升温,可避免过波峰时因骤热产生的物理作用造成部品损伤的情形发生。
3)预热后的部品或端子在经过波峰时不会因自身温度较低的因素大幅度降低焊点的焊接温度,从而确保焊接在规定的时间内达到温度要求。
1.3.2预热方法
波峰焊机中常见的预热方法有三种:空气对流加热、红外加热器加热以及热空气和辐射相结合的方法加热。
1.3.3预热温度
一般预热温度为130~150℃,预热时间为1~3min。预热温度控制得好,可防止虚焊、拉尖和桥接,减小焊料波峰对基板的热冲击,有效地解决焊接过程中线路板翘曲、分层、变形问题。
1.4焊接系统
焊接系统一般采用双波峰。在波峰焊接时,线路板先接触第一个波峰,然后接触第二个波峰。第一个波峰是由窄喷嘴喷流出的“湍流”波峰,流速快,对组件有较高的垂直压力,使焊料对尺寸小、贴装密度高的表面组装元器件的焊端有较好的渗透性;通过湍流的熔融焊料在所有方向擦洗组件表面,从而提高了焊料的润湿性,并克服了由于元器件的复杂形状和取向带来的问题;同时也克服了焊料的“遮蔽效应”湍流波向上的喷射力足以使焊剂气体排出。因此,即使线路板上不设置排气孔也不存在焊剂气体的影响,从而大大减少了漏焊、桥接和焊缝不充实等焊接缺陷,提高了焊接可靠性。经过第一个波峰的产品,因浸锡时间短以及部品自身的散热等因素,浸锡后存在着很多的短路、锡多、焊点光洁度不正常以及焊接强度不足等不良内容。因此,紧接着必须进行浸锡不良的修正,这个动作由喷流面较平较宽阔、波峰较稳定的二级喷流进行。这是一个“平滑”的波峰,流动速度慢,有利于形成充实的焊缝,同时也可有效地去除焊端上过量的焊料,并使所有焊接面上焊料润湿良好,修正了焊接面,消除了可能的拉尖和桥接,获得充实无缺陷的焊缝,最终确保了组件焊接的可靠性。双波峰基本原理如图3。
1.5冷却
浸锡后适当的冷却有助于增强焊点接合强度,同时,冷却后的产品更利于炉后操作人员的作业。因此,浸锡后产品需进行冷却处理。
2使用屏蔽模具波峰焊接工艺技术
由于传统波峰焊接技术无法应对焊接面细间距、高密度贴片元件的焊接,因此一种新方法应运而生:使用屏蔽模具(如图4)遮蔽贴片元件来实现对线路板焊接面插装引线的波峰焊接。
2.1使用屏蔽模具波峰焊接技术的优点
1)实现双面混装PCB波峰焊生产,能大幅提高双面混装PCB生产效率,避免手工焊接存在的质量一致性差的问题。
2)减少粘贴阻焊胶的准备时间,提高生产效率,降低生产成本。
3)产量相当于传统波峰焊。
2.2屏蔽模具材料
1)制作模具必须防静电,常见材料为:铝合金,合成石(国产/进口),纤维板。使用合成石时为避免波峰焊传感器不感应,建议不要使用黑色合成石。
2)制作模具基材厚度。根据机盘反面元件的厚度,选取5~8mm厚度的基材制作模具。
2.3模具工艺尺寸要求
1)模具的外形尺寸:模具的长与宽分别等于PCB的长与宽加上60mm的载具边的宽度且模具宽度必须350mm,具体工艺尺寸如图5。当PCB宽度小于140mm时,可以考虑在一模具同时放置两块PCB焊接。
2)工艺边离边缘8mm,另外两边贴近边缘地方加装10mm宽、10mm高的电木条,以增加模具的强度,减少模具变形。
3)每个加强档条上必须使用螺丝固定,螺丝与螺丝的间隔必需在150mm以下。
4)在模具制作完成后,需在四周且间距100mm以内安装压扣 (固定PCB于模具上),且须注意以下几点:(1)旋转一周不碰触到零件;(2)不影响DIP插件;(3)能将PCB稳固于模具。
5)模具的四个角要开一个R5的倒角。
6)模具上的PCBA在过锡炉时,有些零件受锡波的冲击会产生浮高,因此对一些容易浮高的零件采用压件的方法来解决。目前主要采用的方式:(1)金属铁块压件;(2)模具上安装压扣压件;(3)制作防浮高压件治具。
3提高波峰焊接质量的方法和措施
分别从焊接前的质量控制、生产工艺材料及工艺参数这三个方面探讨了提高波峰焊质量的有 效方法。
3.1 焊接前对线路板质量及元件的控制
3.1.1焊盘设计
1)在设计插件元件焊盘时,焊盘大小尺寸设计应合适。焊盘太大,焊料铺展面积较大,形成的焊点不饱满,而较小的焊盘铜箔表面张力太小,形成的焊点为不浸润焊点。孔径与元件引线的配合间隙太大,容易虚焊,当孔径比引线宽0.05~0.2mm,焊盘直径为孔径的2~2.5倍时,是焊接比较理想的条件。
2)在设计贴片元件焊盘时,应考虑以下几点:
(1)为了尽量去除“阴影效应”,SMD的焊端或引脚应正对着锡流的方向,以利于与锡流的接触,减少虚焊和漏焊。波峰焊时推荐采用的元件布置方向图如图6所示。
(2)波峰焊接不适合于细间距QFP、PLCC、BGA和小间距SOP器件焊接,也就是说在要波峰焊接的这一面尽量不要布置这类元件。
(3)较小的元件不应排在较大元件后,以免较大元件妨碍锡流与较小元件的焊盘接触,造成漏焊。
(4)当采用波峰焊接SOIC等多脚元件时,应于锡流方向最后两个(每边各1)焊脚处设置窃锡焊盘,防止连焊。
(5)类型相似的元件应该以相同的方向排列在板上,使得元件的安装、检查和焊接更容易。例如使所有径向电容的负极朝向板件的右面,使所有双列直插封装(DIP)的缺口标记面向同一方向等等,这样可以加快插装的速度并更易于发现错误。如图7所示,由于A板采用了这种方法,所以能很容易地找到反向电容器,而B板查找则需要用较多时间。实际上一个公司可以对其制造的所有线路板元件方向进行标准化处理,某些板子的布局可能不一定允许这样做,但这应该是一个努力的方向。
3.1.2PCB平整度控制
波峰焊接对线路板的平整度要求很高,一般要求翘曲度要小于0.5mm,如果大于0.5mm要做平整处理。尤其是某些线路板厚度只有1.5mm左右,其翘曲度要求就更高,否则无法保证焊接质量。
3.1.3妥善保存线路板及元件,尽量缩短储存周期
在焊接中,无尘埃、油脂、氧化物的铜箔及元件引线有利于形成合格的焊点,因此线路板及元件应保存在干燥、清洁的环境中,并且尽量缩短储存周期。对于放置时间较长的线路板,其表面一般要做清洁处理,这样可提高可焊性,减少虚焊和桥接,对表面有一定程度氧化的元件引脚,应先除去其表面氧化层。
3.2生产工艺材料的质量控制
在波峰焊接中,使用的生产工艺材料有:助焊剂和焊料,分别讨论如下:
3.2.1助焊剂质量控制
助焊剂在焊接质量的控制上举足轻重,其作用是:
1)除去焊接表面的氧化物;
2)防止焊接时焊料和焊接表面再氧化;
3)降低焊料的表面张力;
4)有助于热量传递到焊接区。目前,波峰焊接所采用的多为免清洗助焊剂。
选择助焊剂时有以下要求:
1)熔点比焊料低;
2)浸润扩散速度比熔化焊料快;
3)粘度和比重比焊料小;
4)在常温下贮存稳定。
3.2.2焊料的质量控制
锡铅焊料在高温下(250℃)不断氧化,使锡锅中锡-铅焊料含锡量不断下降,偏离共晶点,导致流动性差,出现连焊、虚焊、焊点强度不够等质量问题。可采用以下几个方法来解决这个问题:
1) 添加氧化还原剂,使已氧化的SnO还原为Sn,减小锡渣的产生;
2) 不断除去浮渣;
3) 每次焊接前添加一定量的锡;
4) 采用含抗氧化磷的焊料;
5) 采用氮气保护,让氮气把焊料与空气隔绝开来,取代普通气体,这样就避免了浮渣的产生。这种方法要求对设备改型,并提供氮气。
目前最好的方法是在氮气保护的氛围下使用含磷的焊料,可将浮渣率控制在最低程度,焊接缺陷最少、工艺控制最佳。
3.3焊接过程中的工艺参数控制
焊接工艺参数对焊接表面质量的影响比较复杂,并涉及到较多的技术范围。
3.3.1预热温度的控制
预热的作用:
1)使助焊剂中的溶剂充分发挥,以免线路板通过焊锡时,影响线路板的润湿和焊点的形成;
2)使线路板在焊接前达到一定温度,以免受到热冲击产生翘曲变形。一般预热温度控制在180~210℃,预热时间1~3分钟。
3.3.2焊接轨道倾角
轨道倾角对焊接效果的影响较为明显,特别是在焊接高密度SMT器件时更是如此。当倾角太小时,较易出现桥接,特别是焊接中,SMT器件的“遮蔽区”更易出现桥接;而倾角过大,虽然有利于桥接的消除,但焊点吃锡量太小,容易产生虚焊。轨道倾角应控制在5°~8°之间。
3.3.3波峰高度
波峰的高度会因焊接工作时间的推移而有一些变化,应在焊接过程中进行适当的修正,以保证在理想波峰高度进行焊接,以压锡深度为PCB厚度的1/2~1/3为准。
3.3.4焊接温度
焊接温度是影响焊接质量的一个重要的工艺参数。焊接温度过低时,焊料的扩展率、润湿性能变差,使焊盘或元器件焊端由于不能充分的润湿,从而产生虚焊、拉尖、桥接等缺陷;焊接温度过高时,则加速了焊盘、元器件引脚及焊料的氧化,易产生虚焊。焊接温度应控制在250+5℃。
4常见焊接缺陷及排除方法
影响焊接质量的因素是很多的,表1列出的是一些常见缺陷及排除方法,以供参考。
波峰焊接是一项很精细的工作,影响焊接质量的因素也很多,还需要我们更深一步地研究,以期提高波峰焊的焊接质量。
参考文献
[1]吴懿平,鲜飞.电子组装技术[M].武汉:华中科技大学出版社,2006.
[2]张文典.实用表面组装技术(第二版)[M].北京:电子工业出版社,2006.
[3]周德俭.表面组装工艺技术[M].北京:电子工业出版社,2002.
[4]王德贵.迎接21世纪的表面组装技术[J].电子工艺技术,1999(4):169-171.