时间:2023-03-15 15:02:02
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇混凝土结构设计论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
论文摘要:使结构安全适用、经济合理、是结构工程师的任务和责任。根据长期工作体会从概念设计的观点出发,介绍抗震设计中遵循的原则,提高房屋抗震性能的措施。结合工程实际介绍了环境类别和保护层厚度的确定、按简支梁计算构造钢筋的设置等问题。
一、概念设计和结构构造
抗震设计中,影响整个结构抗震能力的因素很多,如:结构构件的承载力和变形能力;非结构构件的材料性能及提供的强度储备;结构的连接构造;结构的稳定性;结构的整体性能在经受第一次地震后多次余震反复作用下的抗破坏能力。目前只对第一种因素作了计算,其它因素尚无法进行计算,靠概念设计和结构构造做到结构体系具备必要的承载力、刚度、稳定性、能力吸收及耗能能力,也就是具有足后的延性。对复杂结构,七分计算三分构造,更重要的是概念设计。
(一)概念设计
材料性能、构件性能、连接构造、结构体系通过实验、实践检验,但还不能计算,称为概念设计,抗震设计中应遵循以下原则:(1)结构的承载力、刚度、质量在平面内和沿高度应均匀、对称和连续分布,避免应力集中:(2)应尽可能设置多道抗震防线,布置超静定结构及延性较高的耗能构件,注意适当加强静定结构部位、关键部位和薄弱环节;(3)注意结构的连接整体性,结果单元应采用牢固连接,不同结构单元应遵守彻底分开的要求;(4)估计和控制塑形铰区出现的范围和部位,有针对性的进行构造布置,掌握结构的屈服过程以及最后形成的屈服机制;(5)做到强柱弱梁、强剪弱弯;(6)采取有效措施防止过早的混凝土剪切破坏,钢筋锚固滑移和混凝土压碎等脆性破坏;(7)构件和节点连接的承载力和刚度要与结构的承载力和刚度相适应,节点连接的承载力不低于构件的承载力;(8)应该避免盲目增加钢筋,某一部分结构设计承载力超强或不足,都可能造成结构的相对薄弱,梁端、柱端及抗震墙的加强部位受弯配筋在满足承载力和抗震构造要求的条件下,应减少钢筋超配;(9)考虑非结构性部件对主体结构抗震产生有利和不利的影响。
(二)结构构造
结构体系靠力学计算保证构件的承载力及变形,又靠构造措施将构件连接在一起,形成结构体系,合理的构造保证构件传力明确;保证在力的多次作用下能力的吸收及耗散;避免因部分构件破坏而使结构体系丧失承载能力及抗震能力;保证在设计使用年限内的耐久性。可以说结构构造是概念设计的具体化。我国通过几十年的实践,特别是唐山地震所总计的经验教训,后来试验研究都有完整的结构构造措施。但是认识在不断提高,概念设计在不断发展,结构设计除正确运用目前的构造措施,同时还需要不断总结、充实、提高。
二、结构计算
(一)荷载要准确
荷载包括结构自重,建筑材料做法,设备荷载(设备自重、管道重),建筑功能需要的活荷载,风、雪荷载、地震力、温度变化产生应力以及其它偶然作用等。有的荷载规范有所规定,可作依据,有的需要各专业提高。建筑专业提高的不仅仅是荷重,而应该是具体的材料做法,设备专业则应提供所选用的样本。由于建筑做法和设备一般要到订货时才能落实,在这以前变换的可能性很大,结构设计人员应该意识到这一点,并要求有相关的知识,准确计算所采用的荷载。
隔墙荷载占总荷载的比例较大,隔墙材料品种繁多,但尚无十分理想的隔墙材料,不是荷重偏大就是隔音差、抗撞击差或板块之间易出现裂缝。当隔墙位置固定且隔墙材料确定时,预留荷载是必要的,但考虑过重的隔墙会使结构用钢量过大。一般可与建筑专业配合,易采用轻质材料并在施工图中说明隔墙材料,允许荷载值及位置。
结构计算最忌讳漏掉荷载,他将使计算白费或使结构存在隐患,应引以为戒。
(二)应分析计算结果
对复杂或重大工程一般需要用两种不同单元模型的程序进行分析和比较,对特殊工程应选择适当的计算程序。建立的模型,边界、支撑条件应尽量符合实际。程序中的输入数据应弄明其缘由,弄清其概念,对提高设计质量是不可缺少的。
(三)环境类别与保护层的确定问题
混凝土设计规范第3.4.1条规定了耐久性设计的原则及构件环境类别的分类标准。规范第9.2.1条给出了各类环境条件下的构件纵向受力筋保护层最小厚度。这是新规范重视耐久性问题的具体体现。由于规范是依据构件所处的环境类别来确定纵向受力筋保护层最小厚度的,对于处在两种环境交界部位的构件,如地下室墙,迎水面侧一般为二类环境,而其室内一侧一般为一类环境,两侧面的受力筋保护层最小厚度也应有所区别。因此笔者认为,对于处在两种环境交界部位的构件,在选用最低混凝土级别、确定混凝土配合比等耐久性基本要求(规范第3.4.2~3.4.8条)时应接交界面上两种环境类别中的最不利环境类别确定,在确定受力筋保护层最小厚度时,则应按构件表面所处的环境类别分别考虑。否则,对于基础地板、地下室外墙,随着保护层厚度的增大,采用商品混凝土时,构件表面出现早期收缩缝的机率也随之增大,而构件表面开裂后,反而影响构件的耐久性。所以保护层厚度不是越大越好,而应构件表面所处的环境类别有针对性地选用。
(四)安简支计算的梁端部上部构造钢筋设置问题
混凝土结构设计规范第10.2.6条对实际受约束的简支梁端上部构造筋作了规定。此时梁端实际受到部分约束,如按梁端的实际约束条件采用弹性理论进行整体内分析,计算所得的实际弯矩除与梁上承受的荷载大小有关外,更与梁端的约束构件即边梁或构件柱的相对刚度有关。将梁端构造钢筋的截面面积与梁跨中下部纵向受力钢筋计算所需截面面积相关联,只体现了梁上承受荷载的大小,而没有考虑梁端实际约束程度,如果梁端实际约束程度很弱,非常接近于简支,即使梁上承受的荷载很大,梁端实际弯矩仍很小,因而没必要配置太多钢筋,这是其一。其二,条文所指部分约束梁端的构件通常是指砖混结构的构造柱、框架和主次梁体系中的边梁,如果梁端实际配筋较大,梁承受的负弯矩也较大,与之平衡的构造柱弯矩或边梁的扭矩也较大,当约束构件是构造柱时,由于构造柱配筋较小,一般为4φ12,很可能造成构造柱的配筋不足;当约束构件是框架或主次梁体系中的边梁时,虽然按弹性理论计算边梁有较大的扭矩,但国外的试验资料表明5,边梁开裂后,其抗扭刚度约相当于弹性抗扭刚度的1/10。塑性内力重分的结果使得边梁扭矩和梁端实际弯矩值都很小,没比要配置太多的钢筋。新的混凝土结构设计规范实施前,我院设计的大部分工程终于边梁相交的梁端实际配筋统一为2φ12(四肢箍为4φ12),20世纪六七十年代设计的部分工程甚至为2φ10或2φ8这些工程已正常使用了30年综上所述,规范所给的这种配筋策略是否合适值得商榷。
参考文献
[1]混凝土结构设计规范(GB50010-2002).2002
[2]中国建筑科学研究院.混凝土结构设计.中国建筑工业出版社.2003
[3]吕西林。高层建筑设计(第二版).武汉理工大学出版社.2003。
【关键词】混凝土;结构设计;耐久性;抗震性
1.前言
从传统的观念来看,钢筋混凝土结构具有很多优点,它有良好的物理力学性能、取材容易和造价可观的优点,但它最为显著的特点主要耐久性,混凝土本身的耐久是毋庸置疑的,虽然钢筋容易发生腐蚀,但是有混凝土的保护层的包裹,钢筋不能和空气接触,钢筋不会发生锈蚀,所以钢筋混凝土结构的使用寿命是相当长的。所以成为了世界工程建筑使用最广泛的结构形式。当然这只是从传统的观念来看的,但从科学的角度来看,这是不符合科学的探索观点的,正是由于人们收传统观念的影响,只片面了考虑的混凝土的耐久性,忽视了混凝土结构的整体耐久性,并且很多地区属于地震多发段,地震对其的危害相当的大,所以抗震性也不容忽视,特别是高层建筑中,抗震性尤为重要,越是楼层高,高楼层的顶部在受到地震作用时侧向位移也越大,就更容易发生坍塌的危险。本文主要从混凝土结构的耐久性和抗震性来分析设计中的一些值得注意的问题。
2.混凝土结构的耐久性
虽然混凝土结构存在的很多的优点,但是也存在一些内部因素和外部因素对混凝土结构的耐久性产生影响。
2.1内部因素。内部因素首先便是混凝土的自身问题,混凝土内部存在碱性的水化物,当大气环境里的CO2侵入混凝土内部时,会使得混凝土中的这些碱性水化物与CO2发生中和反应,也就是使得pH值下降,俗称混凝土的碳化过程。这个过程会让混凝土急剧收缩,导致混凝土开裂,加上碳化也会破坏钢筋外表面的氧化膜,使得钢筋容易锈蚀,发生危险。提高混凝土的强度等级的,使得内部孔隙率降低,混凝土内部更加的密实,提高了抗渗透性能,减缓了外部有害物质的入侵。值得注意的是当混凝土中加有碱活性的骨料的时候,在露天潮湿环境下,碱与骨料里的活性颗粒会产生反应,混凝土表面也会产生裂缝,加速侵蚀性物质的入侵破坏。再者的内部因素便是钢筋本身的影响,当混凝土有裂缝存在且较大的时候,钢筋肯定会受锈蚀,经过锈蚀的钢筋体积会膨胀,将混凝土保护层胀裂,又加快了钢筋的锈蚀。钢筋锈蚀后,钢筋的有效受力面积减小,相对应的强度会降低,致使结构承载力削弱。另一方面,锈蚀后的钢筋抗滑移的能力也会降低,很可能使得结构发生滑移破坏。时间越长,结构出现承载力问题会加大,有时甚至会突然断裂的脆性破坏,十分危险。所以影响混凝土耐久性的根源就是混凝土自身的碳化和钢筋锈蚀。
2.2外部因素
影响混凝土结构耐久性外部重要因素便是外界环境的影响。《混凝土结构设计规范》规定:
“一类:室内干燥环境;永久的无侵蚀性静水浸没环境
二类a:室内潮湿环境;非严寒和非寒冷地区的露天环境;非严寒和非寒冷地区与无侵蚀性的水或土壤直接接触的环境;寒冷和严寒地区的冰冻线以下的无侵蚀性的水或土壤直接接触的环境
二类b:干湿交替环境;水位频繁变动环境,严寒和寒冷地区的露天环境;严寒和寒冷地区的冰冻线以上与无侵蚀性的水或土壤直接接触的环境
三类a:严寒和寒冷地区冬季水位冰冻区环境;受除冰盐影响环境;海风环境
三类b:盐渍土环境;受除冰盐作用环境;海岸环境
四类:海水环境
五类:受人为或自然的侵蚀性物质影响的环境。” [1]
根据混凝土结构耐久性的调查,一类环境中设计使用年限为50年的质量安全基本可以保证。而一类环境中大部分使用年限超过了100年的都是一些纪念性建筑,数量上相对来说很少。一类环境中使用年数在70到80年的混凝土结构基本符合要求,这些构件的混凝土立方体抗压强度在15N/mm2 [2]。所以,在设计时,在一定程度上提高混凝土的强度等级并且定期维护,可以使混凝土结构的使用年限适当增加;
第二、三类的环境情况有些复杂,设计时要规定水灰比并适当提高混凝土的强度等级,提高密实性以降低混凝土的渗透性,设计时要采用环氧涂层钢筋,这种钢筋就是普通的光圆钢筋和带肋钢筋表面喷涂环氧树脂,有很强的耐腐蚀性,注意构造上不能有积水。可以适用于潮湿环境的工业与民用房屋、桥梁、码头等一些钢筋混凝土结构;(下转第505页)
(上接第503页)
第四、五类环境下的混凝土结构的耐久性应该符合有关的标准规定。
3.混凝土结构的抗震性
当地震发生时,作用时间极短,破坏力极大,而建筑本身结构也十分复杂,当其遇到地震力作用的时候,其破坏形式和破坏过程也是相当的复杂,如果仅仅依靠结构的计算设计是片面的,是不能够满足在地震作用时结构的实际受力状态需要的,所以抗震性的问题不能仅仅依赖结构计算设计,还要重视结构抗震的概念设计。概念设计就是在有利于提高结构抗震性的基础上,对结构进行全面合理的宏观控制。对于这样的设计思路我们就应该注意下面几个问题:
3.1合理场地选择。场地是影响结构抗震性的一个重要的因素,如果场地地形复杂,依靠工程措施是很难弥补复杂地形的缺陷的。所以选择场地的时候应该进行详细的勘察,弄清楚地质情况,避开软弱土层,容易滑坡,易液化等这样的不利地段,若不能避开就采取有效的措施,如用桩基础,加强基础的刚度和整体性等。
3.2合理选择建筑体型。在选择建筑体型的时候,不要选择太复杂的建筑体型,复杂的建筑体型没有直接明确的传力途径,不利于分析结构的内力,很难找到薄弱部位,特别是有凸起凹进的地方容易产生应力集中的现象,在地震时最容易产生破坏,所以一般最好采用圆形、方形等对称的建筑体型,受力均匀,布局合理,方便进行内力以及位移分析,美学上也有良好的视觉观。
3.3合理选择结构体系。结构体系应该保证有足够的承载力分布和刚度,并在此基础上还有足够的延性。一般来说结构的承载力和刚度是分不开的,刚度越大,则承载力也越大,结构的延性可以吸收很多地震时产生的能量,可以产生较大的变形不让结构在地震时产生突然的破坏,给人员安全撤出留下了足够时间。为了更好的提高抗震性能结构所用的材料也要符合相关的抗震要求。
4.结语
总之,虽然在进行混凝土结构设计的时候需要考虑的问题很多,但是混凝土结构的耐久性和抗震性是必须要考虑的问题,把握好这两个问题的关键,可以减少很多的工程事故,提高工程质量,提高工程的安全系数,保障人员的生命与财产安全。
【参考文献】
[1]百度百科.[EB.OJ].
根据建筑物投入使用中的需求进行设计,这种理念称为概念设计。先对场地进行考察,得出一个宏观的设计方案,再将方案中的各结构进行探讨,得出优化方案,这种设计方法具有科学合理、节省时间的优点,在现代建筑中得到了广泛使用。高层建筑结构特殊,对抗震性能的要求高于其他建筑,概念设计通过对设计结构中的承载力进行分析计算,对不符合规范的主要承重部位进行加固。混凝土结构在高强度的压力作用下很容易出现裂缝,内部钢筋材料也会出现弯曲情况,促成这种质量问题的因素一方面是材料选取不合理,更重要的是设计方案不够科学,高层结构概念设计中容易出现的问题主要分为以下几方面:
1.1结构不合理、性能缺少验证。在高层建筑设计中同时要考虑多种因素,保证结构承载力的前提下尽量减少造价成本,需要将建筑结构从总体至细节进行优化。优化工作多数是将设计图纸中的一些参数进行计算分析,适当的加固墙体厚度,常出现缺少对地基承载力的实际考察情况。高层建筑的抗震能力规定在中等强度地震时建筑物不会产生高危裂缝,并可通过修补达到预期效果,在发生高强度的地震时建筑物保证结构不出现坍塌。地震发生的几率很小,一旦发生具有极大的毁灭性,高层建筑抗震性能只停留在设计层面,从数据上分析已经达到了国家要求,但各施工地点基层土壤矿物质组成存在差异,松软程度也就不同,缺少验证,真正发生危险时其稳定性很难保证。
1.2结构设计缺少创新。高层建筑结构复杂,设计过程中受多种因素限制,为同时满足多种需求,工程设计师都施行保守方案,缺少创新精神。钢筋混凝土材质的墙体承载能力与结构有很大联系,在剪力墙设计方案中,应充分借鉴国外先进技术,基于传统结构进行创新,解决承载力不足的问题,同时使高层建筑整体结构更符合大众审美,减少造价支出。概念设计在结构优化上的运用还受很多施工技术以及设备使用方面的限制,阻碍建筑工程行业进步。
1.3受力分布不均匀。高层建筑上下层的结构是不同的,为保证自身重力不会对建筑物造成破坏,基层修筑中会应用到大量的钢筋混凝土材料,加固底层的同时削弱上层,可减轻对地基的压力,同时建筑物承受风力和地震破坏的能力更强。进行概念设计过程中,没有充分考虑转换层占据的空间和对受力平衡的影响,承重柱满足了承载上层压力的要求,但墙体产生的剪力不能与内部的应力平衡,作用在水平方向时形成了破坏力。概念设计中缺少优化环节导致这一现象的产生,很难保障整体结构的稳定性。
1.4概念设计中常见问题的解决方案。设计过程中不可脱离实际情况,在前期准备工作中对建筑场地进行详细的测量,将地区可能出现的自然灾害进行模拟实验,根据测试结果对设计结构进行优化。充分考虑建筑物的自重,满足对抗震性能的要求,同时在结构上进行改进,应用力学知识,节省建筑过程中的原材料使用。合理修筑剪力墙,结构在成体建筑中起到承重作用,但不能破坏空间整体性,注重格局的设计,将各单元的楼梯间进行分别设计,根据不同区域的需求,可将方案进行更改,保证整体结构统一又各有特点。在楼体外观的设计中加入符合当地人文特色的元素,使建筑物更具有中国特色。应用概念设计法时加强后期的优化工作,注重从宏观到细致的过渡,设计方案要具有灵动性,应对施工进展过程中的突况工程师要及时进行探讨,对原有结构做出更改,保障施工连续进展。设计测量工作中会涉及到很多变量,对这些数据进行反复测量,确定合理的浮动范围,作为施工开展的有力依据。
2结构选型的问题
2.1结构的超高。在抗震规范与高规中,对结构的总高度都有严格的限制,尤其是新规范中针对以前的超高问题,除了将原来的限制高度设定为A级高度的建筑外,增加了B级高度的建筑。因此,必须对结构的该项控制因素严格注意,一旦结构为B级高度建筑甚至超过了B级高度,其设计方法和处理措施将有较大的变化。在实际工程设计中,出现过由于结构类型的变更而忽略该问题,导致施工图审查时未予通过,必须重新进行设计或需要开专家会议进行论证等工作的情况,对工程工期、造价等整体规划的影响相当巨大。
2.2控制柱的轴压比与短柱问题。在钢筋混凝土高层建筑结构中,往往为了控制柱轴压比而使柱的截面很大,而柱的纵向钢筋却为构造配筋。即使采用高强混凝土,柱断面尺寸也不能明显减小。限制柱的轴压比是为了使柱子处于大偏压状态,防止受拉钢筋未达屈服而混凝土被压碎。柱的塑性变形能力小,则结构延性就差,当遭遇地震时,耗散和吸收地震能量少,结构容易被破坏。但是在结构中若能保证强柱弱梁设计,且梁具有良好延性,则柱子进入屈服的可能性就大大减少,此时可放松轴压比限值。
3结构计算与分析
3.1计算模型的选取。对于常规结构,可采用楼板整体平面内无限刚假定模型;对于多塔或错层结构,可采用楼板分块平面内无限刚模型;对于楼板局部开大洞、塔与塔之间上部相连的多塔结构等可采用楼板分块平面内无限刚,并带弹性连接板带模型;而对于楼板开大洞有中庭等共享空间的特殊楼板结构或要求分析精度高的高层结构则可采用弹性楼板模型。在使用中可根据工程经验和工程实际情况灵活应用,以最少的计算工作量达到预期的分析精度要求,既不能不分情况一概采用刚性楼板模型,造成小墙肢计算值偏小,不安全;也没必要都采用弹性楼板模型,无谓地增大计算工作量。
3.2抗震等级的确定。对常规高层建筑,可按《高层建筑混凝土结构技术规程》(JGJ3-2002,J186-2002)第4.8节规定确定抗震等级,与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级;对于复杂高层建筑还应符合第10章的规定;对于地下室部分,当地下室顶板作为上部结构的嵌固部位时,地下一层的抗震等级应与上部结构相同,地下一层以下的抗震等级可根据具体情况采用三级或更低等级。
3.3非结构构件的计算与设计。在高层建筑中,往往存在一些由于建筑美观或功能要求且非主体承重骨架体系以内的非结构构件。对这部分内容尤其是高层建筑屋顶处的装饰构件进行设计时,由于高层建筑地震作用和风荷载较大,必须严格按照新规范中增加的非结构构件的处理措施进行设计。
4结论
钢筋混凝土水池根据用途、结构、建造位置、形状、施工方法、配筋方式等有多种分类.水池的池壁也有多种结构形式,根据荷载分布情况可分为变厚池壁和等厚池壁,等厚池壁还可分为圆形与矩形,二者区别在于体积大小,前者容量200m3左右,后者200-1000m3,变厚池壁则主要适用于容量>1000m3的水池.根据用途和施工工艺,水池的池底也有诸如倒球壳、倒锥壳等多个复杂形式.水池承受荷载竖向有池顶与池底荷载两种,水平则为池壁荷载,具体示意图见图2.像池顶荷载计算时需要注意活荷载与雪荷载取最大值的筛选准则.池底何在相对整体式地板而言,荷载计算为地下水浮力与地板承受地基反力,效果为底板中产生弯矩与剪力.除去上述荷载之外,对水池结构产生影响的作用力还有诸如温度、湿度与地震作用等.温度与湿度的变化会导致混凝土膨胀或收缩变形,产生附加应力,也称为温度或湿度应力,导致这种应力产生的原因为水池内外温度与湿度的差异.地震作用会破坏水池结构,所以设计时需盐酸水平地震作用,从而达到良好的抗震效果,低于一定烈度下的地震作用.设计时目前多以7度、8度以下地震烈度为考量,多选择地面式或者地下式水池,对于有顶盖的矩形水池着重采取抗震构造措施.在地震烈度>8度时除去考虑水平地震效应外,还必须考虑竖向地震作用影响,通过平方与开平方的方法计算组合获得结果.目前水池的荷载计算主要方式主要依据池内有无满水、池外有无土进行组合计算.
2混凝土水池设计
在分析完混凝土水池荷载情况之后,在水池结构设计时需要考虑这些荷载作用.下面我们以矩形钢筋混凝土水池为例做结构设计分析.首先,完成长高比池壁的计算假定.侧向荷载作用下,水池不同长高比受力情况有所差异,根据池壁单向与双向受力情况做划分。水池结构的布置要符合设计原则,像矩形水池均为长方形,布置时要考虑地形.基础形式为挡土墙水池基础多采用池壁下设置带形基础,地板采用铺砌式结构,地板做成整体式,水池基础为水平框架式和双向板式.伸缩缝的设置上要考虑建造位置,比如土基中矩形水池,伸缩缝间隔情况如下:普通≤20m,温度区间段≤20m,岩基中间隔≤15m;比如建造在土基中的钢筋混凝土矩形地下式水池,伸缩缝间隔情况如下:普通≤30m,岩基中间隔≤20m.水池池壁结构形式的选择情况如下:开敞式水池宜选择变厚池壁,池底厚度为池壁的1.5倍;挡土墙式选择等厚池壁;水平框架式池壁选择变厚池壁.遵照以上设计原则,水池的结构设计将会保持合理性与稳定性,利于施工.
3钢筋混凝土水池施工要点
钢筋混凝土水池施工中要注意施工缝、混凝土浇筑与养护等施工要点.像施工缝,在底板浇筑完成后,池壁与底板的施工缝要在八字以上1.5m与2m处,底板和柱的施工缝在表面.池壁竖向浇筑要一次浇到施工缝处,并对柱身、柱帽等做两次浇筑,以确保稳定性.对施工缝还要做凿毛处理,将不密实表面或者浮浆凿掉,还要避免损及混凝土棱角,避免剔出粗集料.钢筋绑扎时可使用板凳筋做法或者排架法.混凝土浇筑过程中要保持池壁模板的稳定,避免变形或硬化失败.至于施工缝要提前清理,保持合理湿润度,在浇筑前铺与混凝土配比相同的水泥砂浆,浇筑部分分层完成,每层厚度≤4m,间隔时间不宜过长,均匀摊铺.在浇筑顶部时,要暂停1h,在混凝土下沉后做二次震动,消除可能因沉降造成的裂缝,浇筑完成后及时洒水养护.养护根据季节不同有不同注意要点,比如夏季因高温干燥或者多雨等混凝土强度会受影响出现收缩裂缝后,必须在初凝后联系养护两周才能拆模,养护期间还要及时洒水,保证湿润到位.完成养护拆模时表面还要添加超时的覆盖层,及时回填土,保证混凝土水池的施工质量.
4钢筋混凝土水池施工实例分析
我们以某公司社区配套设施工程污水处理厂污水池土建工程为例分析下施工情况.污水池长22.5m、宽13.8m,设计绝对标高24.8m,基础底标高-3.17m,基础垫层砼强度等级C10,池体砼强度等级为C25.S6,抗震等级6度.施工前做好现场技术准备与现场准备,尤其是现场准备,标高点根据现场引测的±0.000测定标高,做好钢筋型号抽样检验,器具提前进场,尤其是雨天施工做好现场准备.下面我们以钢筋施工与模板施工两大要点为例进行分析.钢筋施工是水池施工重点,钢筋要根据施工要求对型号进行选择,对加工尺寸进行核对,所选用钢筋必须保证提前做好清洁,表面无损伤与锈蚀,不使用带颗粒状的老锈钢筋.至于钢筋弯折与弯钩,要根据钢筋等级分类确定弯折标准,比如Ⅰ级钢筋末端180°弯钩,圆弧弯曲半径≥直径2.5倍,平直部分长度≥直径3倍,弯曲加工时φ10以下按配料单尺寸做弯曲点标志.粗钢筋及复杂形状钢筋弯曲时,要标明弯曲点位置,工作台上标明弯曲控制点,做好偏差控制.比如箍筋的内净尺寸允许偏差为±5㎜,弯起钢筋的弯曲位置允许偏差为±20㎜,根据弯曲情况确定允许偏差,确保其合用.柱钢筋安装中要按照给出位置线进行绑扎,控制好间距,根据污水池情况计算好间距与钢筋数量,钢筋箍筋接头绑扣以八字形为主,箍筋与主筋保持垂直,箍筋与柱角筋做双扣绑扎,板钢筋安装前要做好模板清理,按照画线—绑板受力钢筋—绑负弯距钢筋及角筋的顺序完成施工,确定好主筋分布筋间距后按照先受力钢筋后分布筋的顺序进行安装,绑扎时距梁边距为50㎜,绑扎负筋时要中间加Ф8间距1个/㎡的钢筋马凳,以确保上部钢筋的位置.安装完成后要做好质控验收,做成分检验与专项检验确保施工效果,保证钢筋绑扎符合施工要求.模板制作要根据污水池施工现场进行加工配置,从尺寸、型号到数量做好标记,按照放线-搭设支模架-安装墙壁模板-安装板底模-安装柱节点模顺序完成施工.放线时要注意根据垫层、板面和基础情况做好测量标记,方便放线.根据污水池施工要求,支模架搭设间距为800×800,水平杆设置距地分别为300㎜、1500㎜,拧紧纵横杆与剪刀撑;墙壁模板安装中可采用50×100木方子、直径10㎜对拉螺栓做加固,螺栓中间加焊止水环和钢筋顶托,防漏水和混凝土浇筑时截面变小;板底模安装中要确保稳固不下沉,做抄平检查,模板板缝采用胶带粘贴,复核模板面标高和板面平整度、拼缝、预埋件和预留洞的准确性;最后安装柱节点模,做加固密封,防止漏浆.安装完成后要进行自检,再进行后续施工.
【关键词】钢筋混凝土;地基与基础设计;概念设计;问题
前言
结构概念设计是保证结构具有优良抗震性能的一种方法。选择对抗震有利的结构方案和布置,采取减少扭转和加强抗扭刚度的措施,设计延性结构和延性结构构件,分析结构薄弱部位,并采取相应的措施,避免薄弱层过早破坏,防止局部破坏引起连锁效应,避免设计静定结构,采取二道防线措施等每个设计步骤中都贯穿了结构概念设计内容。
一、概念设计
强调结构概念设计的重要性,是要求建筑师和结构师在建筑设计中应特别重视规范、规程中有关结构概念设计的各条规定,设计中不能陷入只凭计算的误区。以下一些问题值得探讨:
1.在结构体系上,应重视结构的选型和平、立面布置的规则性,择优选用抗震和抗风性能好且经济合理的结构体系。结构应具有明确的计算简图和合理的传递地震力途径,结构在两个主轴方向的动力特性宜相近。
2.一般工程都仅进行小震下的弹性设计,而用概念设计和构造措施保证“中震可修,大震不倒”,但没有验算和证实,那么建筑物是否真能做到“中震可修,大震不倒”,无人知晓。对抗震设防烈度较高地区的特别重要建筑和超限建筑,审查专家往往会提出更具体的设计指标:(1)中震或大震不屈服设计;(2)中震或大震弹性设计;要求设计单位确保实现“三水准”的设计目标。
3.建筑物是应当有个性的,不应当千面一物。基于性能的抗震设计理念的特点是,使抗震设计从宏观定性的目标向具体量化的多重目标过渡,允许按照业主的要求选择不同层次的抗震性能目标作为设计者的设计依据。例如业主可以提出更高的抗震设防要求,按中(大)震不屈服设计或中(大)震弹性设计,保证重要的建筑物在大地震作用下不影响正常使用功能,而不仅仅是不坏不倒。
4.水平地震作用是双向的,结构布置应使结构能抵抗任意方向的地震作用,应使结构沿平面上两个主轴方向具有足够的刚度和抗震能力;结构刚度选择时,虽可考虑场地特征,选择结构刚度以减少地震作用效应,但是也要注意控制结构变形的增大,过大的变形将会因P-Δ效应过大而导致结构破坏;结构除需要满足水平方向刚度和抗震能力外,还应具有足够的抗扭刚度和抵抗扭转震动的能力。
5.在一个独立的结构单元内,应避免应力集中的凹角和狭长的缩颈部位;避免在凹角和端部设置楼、电梯间;减少地震作用下的扭转效应。竖向体型尽量避免外挑,内收也不宜过多、过急,结构刚度、承载力沿房屋高度方向不宜均匀、连续分布、避免造成结构的软弱或薄弱的部位。应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载力。根据具体情况,结构单元之间应遵守牢固连接或有效分离的方法。高层建筑的结构单元应采取加强连接的方法。
二、结构选型问题
对于高层结构而言,在工程设计的结构选型阶段,应该注意以下几点:
1、结构的规则性问题
新旧规范在这方面的内容出现了较大的变动,新规范在这方面增添了相当多的限制条件,例如:平面规则性信息、嵌固端上下层刚度比信息等,而且,新规范采用强制性条文明确规定“建筑不应采用严重不规则的设计方案。”因此,结构工程师在遵循新规范的这些限制条件上必须严格注意,以避免后期施工图设计阶段工作的被动。
2、结构的超高问题
在抗震规范与高规中,对结构的总高度都有严格的限制,尤其是新规范中针对以前的超高问题,除了将原来的限制高度设定为A 级高度的建筑外,增加了 B 级高度的建筑,因此,必须对结构的该项控制因素严格注意,一旦结构为B级高度建筑甚或超过了B级高度,其设计方法和处理措施将有较大的变化。在实际工程设计中,出现过由于结构类型的变更而忽略该问题,导致施工图审查时未予通过,必须重新进行设计或需要开专家会议进行论证等工作的情况,对工程工期、造价等整体规划的影响相当巨大。
3、嵌固端的设置问题
由于高层建筑一般都带有二层或二层以上的地下室和人防,嵌固端有可能设置在地下室顶板,也有可能设置在人防顶板等位置,因此,在这个问题上,结构设计工程师往往忽视了由嵌固端的设置带来的一系列需要注意的方面,如:嵌固端楼板的设计、嵌固端上下层刚度比的限制、嵌固端上下层抗震等级的一致性、在结构整体计算时嵌固端的设置、结构抗震缝设置与嵌固端位置的协调等等问题,而忽略其中任何一个方面都有可能导致后期设计工作的大量修改或埋下安全隐患。
4、短肢剪力墙的设置问题
在新规范中,对墙肢截面高厚比为5~8的墙定义为短肢剪力墙,且根据实验数据和实际经验,对短肢剪力墙在高层建筑中的应用增加了相当多的限制,因此,在高层建筑设计中,结构工程师应尽可能少采用或不用短肢剪力墙,以避免给后期设计工作增加不必要的麻烦。
三、地基与基础设计问题
地基与基础设计一直是结构工程师比较重视的方面,不仅仅由于该阶段设计过程的好与坏将直接影响后期设计工作的进行,同时,也是因为地基基础也是整个工程造价的决定性因素,因此,在这一阶段,所出现的问题也有可能更加严重甚至造成无法估量的损失。在地基基础设计中要注意地方性规范的重要性问题。由于我国占地面积较广,地质条件相当复杂,作为国家标准,仅仅一本《地基基础设计规范》无法对全国各地的地基基础都进行详细的描述和规定,因此,作为建立在国家标准之下的地方标准。地方性的“地基基础设计规范”能够将各地方的地基基础类型和设计处理方法等一些成熟的经验描述和规定得更为详细和准确,所以,在进行地基基础设计时,一定要对地方规范进行深入地学习,以避免对整个结构设计或后期设计工作造成较大的影响。
四、结构计算与分析问题
在结构计算与分析阶段,如何准确,高效地对工程进行内力分析并按照规范要求进行设计和处理,是决定工程设计质量好坏的关键。由于新规范的推出对结构整体计算和分析部分相当多的内容进行了调整和改进,因此,结构工程师也应该相当地对这一阶段比较常见的问题有一个清晰的认识。
1、结构整体计算的软件选择。目前比较通用的计算软件有:SATWE、TAT、TBSA或ETABS、SAP等,但是,由于各软件在采用的计算模型上存在着一定的差异,因此导致了各软件的计算结果有或大或小的不同。所以,在进行工程整体结构计算和分析时必须依据结构类型和计算软件模型的特点选择合理的计算软件,并从不同软件相差较大的计算结果中,判断哪个是合理的、哪个是可以作为参考的,哪个又是意义不大的,这将是结构工程师在设计工作中首要的工作。
2、是否需要地震力放大,考虑建筑隔墙等对自振周期的影响。振型数目是否足够。在新规范中增加一个振型参与系数的概念,并明确提出了该参数的限值。由于在旧规范设计中,并未提出振型参与系数的概念,或即使有该概念,该参数的限值也未必一定符合新规范的要求,因此,在计算分析阶段必须对计算结果中该参数的结果进行判断,并决定是否要调整振型数目的取值。多塔之间各地震周期的互相干扰,是否需要分开计算。
3、非结构构件的计算与设计。在高层建筑中,往往存在一些由于建筑美观或功能要求且非主体承重骨架体系以内的非结构构件。对这部分内容,尤其是高层建筑屋顶处的装饰构件进行设计时,由于高层建筑的地震作用和风荷载均较大,因此,必须严格按照新规范中增加的非结构构件的计算处理措施进行设计。
关键词:混凝土;框架;结构设计;问题
Abstract: With economic development and the development of the real estate market, the domestic design market increasingly active around the number of design companies have continued to increase, design quality is also poor missing. This paper introduced in the structural design engineering is often the majority of designers ignores some of the problems and put forward their own opinions, for reference.Key words: concrete; framework; structural design; problem
中图分类号:TU375 文献标识码:A文章编号:
前 言
框架结构是指由梁和柱连接构成承重体系的结构,即由梁和柱组成框架共同抵水平荷载和竖向荷载。墙体仅起到围护和分隔作用,一般用轻质板材等材料砌筑。混凝土框架结构广泛用于住宅、学校、办公楼,有时为了争取较大的跨度,对混凝土梁或板施加预应力,以达到使用要求。比如由于缺乏规范依据及相应的设计规定,加之对结构体系概念设计缺乏了解,有些设计人员往往对结构设计把握不够,在实际工程中出现了不少规则性很差、对结构抗震十分不利的结构。
1、电算参数及结果分析
随着我国计算机技术的飞速发展,我国的设计软件也日趋完善。目前,国内在结构设计中,工程中应用较多的结构分析软件主要有两类: 一类是利用薄壁杆件理论的三维杆系结构有限元分析软件,目前工程中常用的TAT、TBSA属于这一类。第二类是利用壳元理论的三维组合结构有限分析软件,SATWE软件属于这类软件。不同的软件有其不同的控制参数,作为设计人员,应理解规范的前提下合理的选择相应的设计参数。以PKPM为例,其结构控制参数就有几十个,比如在SATWE参数地震信息中有:结构平面规则性判断(见《抗规》表3.4.2-1、《高规》4.3节)、结构竖向规则性判断(见《抗规》表3.4.2-2、《高规》4.4节)、框架抗震等级(见《抗规》表6.1.2)、活载质量折减系数(见《抗规》表5.1.3)等。每个参数对应了规范的不同条款,设计时应认真对照规范,合理选择,在此前提下再对结果认真分析,做到经济、安全。轴压比不满足要求,结构的延性要求无法保证,应增大该墙、柱截面或提高该楼层墙、柱混凝土强度;轴压比过小,则说明结构的经济技术指标较差,宜适当减少相应墙、柱的截面面积。
2、框架短柱
短柱效应则是在设计时易被忽视的一个问题。短柱由于其刚度大,吸收地震作用使其时容易受剪,当混凝土抗剪强度不足时,则产生交叉裂缝及脆性破坏,从而引起建筑物或构筑物的破坏甚至倒塌。
其破坏形态多为剪切破坏,无明显征兆,一般而言以多层建筑中设置构造柱的楼梯间、宽度较大的窗台等部位最为典型。如同鞭梢效应一样,这也是一种与地震效应密切相关的效应。
规范规定,房屋建筑中的短柱一般是指柱净高H与截面高度h之比H/h≤4为短柱,工程界许多工程技术人员也都据此来判定短柱,这是一个值得注意的问题。因为确定是不是短柱的参数是柱的剪跨比λ,只有剪跨比λ=M/Vh≤2的柱才是短柱,而柱净高与截面高度之比H/h≤4的柱其剪跨比λ不一定小于2,亦即不一定是短柱。按H/h≤4来判定的主要依据是:①λ=M/Vh≤2;②考虑到框架柱反弯点大都靠近柱中点,取M=0.5VH,则λ=M/Vh=0.5VH/Vh=0.5H/h≤2,由此即得H/h≤4。但是,对于高层建筑,梁、柱线刚度比较小,特别是底部几层,由于受柱底嵌固的影响且梁对柱的约束弯矩较小,反弯点的高度会比柱高的一半高得多,甚至不出现反弯点,此时不宜按H/h≤4来判定短柱,而应按短柱的力学定义λ=M/Vh≤2来判定才是正确的。目前,在工业与民用建筑的框架、框剪设计中,普遍采用PKPM等设计软件进行设计,但目前的软件设计还不完善,在进行电算时,对短柱不能进行自动判别,因此短柱需要设计人员利用电算结果另行设计。
其实,短柱出现时,可以通过多种方法来提高短柱的承载力或变形能力,使短柱的抗震性能获得提高,从而避免发生脆性破坏,保证结构安全。比如可以加强短柱的构造措施:① 尽量减弱短柱的楼层约束,如降低梁的高度、梁与柱采用铰接等;③合理采用箍筋类型,如螺旋箍筋、复合螺旋箍筋、双螺旋箍筋等②增加箍筋的配置,在短柱范围内箍筋的间距不应大于100 mm,柱的纵向钢筋间距≤150 mm;
3、强柱弱梁
目前一些设计人员却并不重视规范这个概念的精神。多次的地震震害表明:混凝土结构,尤其是框架结构的“强柱弱梁”概念在工程实际中较难实现。其原因主要有:结构计算。现行的一些结构计算软件中,在结构内力分析时考虑了楼板对梁的刚度贡献,然而却在梁的承载力配筋中未考虑,造成梁配筋偏大; 计算梁端截面配筋时,由于考虑了梁的裂缝,由此而控制梁端截面的配筋;梁端配筋采用柱中线处内力,实际上柱中线截面弯矩比柱边截面的弯矩要大些,目前在PKPM中的梁柱结点是否形成刚域对此有控制开关,可供设计人员控制;钢筋归并及人为放大梁支座配筋及跨中配筋。
我们知道框架结构是超静定结构,如在柱上出现塑性铰,结构就有可能成为机构,整个结构就会失稳倒塌,但是如果在梁上出现塑性铰后结构仍为超静定结构,对整个结构的影响较少,也不至于结构整体的失稳;为了使框架结构在地震作用下塑性铰首先在梁中出现,这就必须做到在同一节点柱的抗弯能力大于梁的抗弯能力,即满足“强柱弱梁” 的要求。因此规范提出“强柱弱梁”这一概念设计是十分的重要的,规范中的梁端负弯矩调幅及抗震设计时的柱端弯矩放大系数都体现了“强柱弱梁”这种抗震理念。强柱弱梁只是一种抗震概念,没有人为了体现强柱弱梁这个概念故意把柱截面做大,层高做小来增加其线刚度,也不是说梁的线刚度比柱的线刚度大就没有体现强柱弱梁这个概念,要体现“强柱弱梁”是多方面的原因,除了刚度比之外,配筋及一些构造措施也不能忽视。
规范保证“强柱弱梁”的措施是对柱端弯矩乘以放大系数,强柱弱梁就是要保证在梁上先出现塑性铰而不是在柱子上先出现,因此,要柱子的承载力要大于梁的承载力,规范里就是根据各种抗震等级规定了各种各样的柱端弯矩放大系数来实现它的,与梁柱线刚度比并无直接的关系,我们可以通过加强柱的配筋来做到强柱弱梁的要求,但要适当控制其可能对柱端内力调整造成的影响。
4、关于板面设置温度应力筋
《混凝土结构设计规范》( G B50010-2002)第10.1.9条规定在温度收缩应力较大的现浇板区域内, 钢筋间距宜取为150~200mm,并应在板的未配筋表面布置温度收缩钢筋,板的上下表面沿纵横两个方向的配筋率均不宜小于0.1% ,河北省地方技术措施中也有对于屋面板板面负筋宜通长布置的说法。对于规范中所提“温度收缩应力较大区域”这一条设计人员的理解又会产生出入。工程中什么区域属于温度收缩应力较大的区域,仅是板跨较大还是屋面板等这些外露构件为温度收缩应力较大的区域,这其实是一个难题。不过,根据工程经验来说,一般认为对于一般结构形式规则且较短的建筑,我们可以在各楼面边跨及屋面层设置相应的温度应力钢筋,而对于超长结构,则建议在超长结构的长向均应设置双层钢筋或设后浇带来处理。其余部位则可因人而异但不必过于强调。
5、结束语
对于结构设计人员来说,先应对其设计计算的软件功能有确切的了解,再选取切合实际情况参数和符合现行规范要求的计算方法,通过合理控制各项指标,认真仔细比对结构方案和分析相应计算结果进行正确的判别。
参考文献
[1] 中国建筑科学研究院PKPM CAD工程部《PKPM用户手册及技术条件》及《SATWEE用户手册及技术条件》[CP].
【关键词】钢筋混凝土;框架结构;计算简图
1 前言
20世纪90年代以后,随着我国钢材量的不断提高,钢一混凝土组合结构在建筑行业得到了迅速发展,随着建筑造型和建筑功能要求日趋多样化,无论是工业建筑还是民用建筑,在结构设计中遇到的各种难题也日益增多,因而作为一个结构设计者需要在遵循各种规范下大胆灵活的解决一些结构方案上的难点、重点。
2 框架结构方案构思时应考虑以下几点
2.1 结构的传力路线应简捷明了。在荷载作用下,结构的传力路线越短、越直接,结构的工作效能越高,'所耗费的建材也就越少。
2.2 从力学观点看,在民用和公共建筑的平面布局中,应当尽量使柱网按开间等跨和进深等距(或近似于等距)布置,这样可以相应减少边跨柱距,也可以充分利用连续梁的受力特点以减少结构中的弯距,可以使各跨梁截面趋于一致,而提高结构的整体刚度。
2.3 结构方案还应结合工程地质情况和建筑功能要求综合考虑。
3 应从概念设计上着手注意几个问题
3.1 关于强柱弱梁节点。这是为了实现在罕遇地震作用下,让梁端形成塑形铰,柱端处于非弹性工作状态,而没有屈服,但节点还处于弹性工作阶段。强柱弱梁措施的强弱,也就是相对于梁端截面实际抗弯能力而言柱端截面抗弯能力增强幅度的大小,是决定由强震引起柱端截面屈服后塑性转动能否不超过其塑性转动能力,而且不致形成"层侧移机构",从而使柱不被压溃的关键控制措施。柱强于梁的幅度大小取决于梁端纵筋不可避免的构造超配程度的大小,以及结构在梁、柱端塑性铰逐步形成过程中的塑性内力重分布和动力特征的相应变化。因此,当建筑许可时,尽可能将柱的截面尺寸做得大些,使柱的线刚度与梁的线刚度的比值尽可能大于1,并控制柱的轴压比满足规范要求,以增加延性。验算截面承载力时,人为地将柱的设计弯距按强柱弱梁原则调整放大,加强柱的配筋构造。梁端纵向受拉钢筋的配筋不得过高,以免在罕遇地震中进入屈服阶段不能形成塑性铰或塑性铰转移到立柱上。注意节点构造,让塑性铰向梁跨内移。
3.2 关于"强剪弱弯"措施:强剪弱弯是保证构件延性,防止脆性破坏的重要原则,它要求人为加大各承重构件相对于其抗弯能力的抗剪承载力,使这些部位在结构经历罕遇地震的过程中以足够的保证率不出现脆性剪切失效。对于框架结构中的框架梁应注意抗剪验算和构造,使其满足相关规范要求。
3.3 注意构造措施。
3.3.1 对于大跨度柱网的框架结构,在楼梯间处的框架柱由于楼梯平台梁与其相连,使得楼梯问处的柱可能成为短柱,应对柱箍筋全长加密。这一点,在设计中容易被忽视,应引起重视。
3.3.2 对框架结构外立面为带形窗时,因设置连续的窗过梁,使外框架柱可能成为短柱,应注意加强构造措施。
3.3.3 对于框架结构长度略超过规范限值,建筑功能需要不允许留缝时,为减少有害裂缝(规范规定裂缝宽度小于0.3mm),建议采用补偿混凝土浇筑。采用细而密的双向配筋,构造间距宜小于150mm,对屋面宜设置后浇带,后浇带处按构造措施宜适当加强。
3.3.4其它构造措施限于篇幅,这里不再赘述,请详见新规范。
4 结构计算方面的问题
4.1 计算简图的处理
结构计算中,计算简图选取的正确与否,直接影响到计算结果的准确性,其中比较典型的是基础梁的处理。一般情况下,基础梁设置在基础高度范围内,作为基础的一部分,此时结构的底层计算高度应取基础顶面至一层楼板顶面的高度。基础梁仅考虑承担上部墙体荷载,构造满足普通梁的要求即可。当按规范要求需设置基础拉梁时,其断面和配筋可按构造设计,截面高度取柱中心距的1/12~1/18,纵向受力钢筋取所连接的柱子的最大轴力设计值的10%作为拉力来计算。但是,当基础埋深过大时,为了减少底层的计算高度和底层的位移,设计者往往在±0.000以下的某个适当位置设置基础拉梁。此时,基础拉梁应作为一层输入,底层计算高度应取基础顶面至基础拉梁顶面的高度,二层计算高度应取基础拉梁顶面至一层楼板顶面的高度。拉梁层无楼板,应开洞处理,并采用总刚分析方法进行计算。基础拉梁截面及配筋按实际计算结果采用。若因此造成底层框架柱形成短柱,应采取构造措施予以加强。另一个需要注意的是,当框架结构的电梯井道采用钢筋混凝土井壁时(设计时应尽量避免),计算简图一定要按实际情况输入,否则可能会造成顶部框架柱设计不安全。
4.2 结构计算参数的选取
4.2.1 设计基本地震加速度值
《建筑抗震设计规范》(GB50011一2001)中规定:抗震设防烈度为7度时,设计基本地震加速度值分别为0.1g和0.15g两种,抗震设防烈度为8度时,设计基本地震加速度值分别为0.2g和0.3g两种,这与89规范差别较大。计算中应严格注意地震区的划分,选取正确的设计基本地震加速度值,这一项对地震作用效应的影响极大。
4.2.2 结构周期折减系数
框架结构由于填充墙的存在,使结构的实际刚度大于计算刚度,计算周期大于实际周期,因此,算出的地震作用效应偏小,使结构偏于不安全,因而对结构的计算周期进行折减是必要的。折减系数可根据填充墙的材料及数量选取0.7~0.9。
4.2.3 梁刚度放大系数
SATWE或TAT等计算软件的梁输入模型均为矩形截面,未考虑因存在楼板形成T型截面而引起的刚度增大,造成结构的实际刚度大于计算刚度,算出的地震剪力偏小,使结构偏于不安全。因此计算时应将梁刚度进行放大,放大系数中梁取2.0、边梁取1.5为宜。
4.2.4 活荷载的最不利布置
多层框架,尤其是活荷载较大时,是否进行活荷的最不利布置对计算结果影响较大。即使选用程序中给定的梁设计弯矩放大系数,也不一定能反映出工程的实际受力情况,有可能造成结构不安全或过于保守。考虑目前的计算机计算速度都比较快,作者建议所有工程都应进行活荷载的最不利布置计算。
4.3 独立梁箍筋计算结果需复核
《混凝土结构设计规范》(GB50010-2002)中规定:对集中荷载作用下的独立梁,应按公式进行计算,且集中荷载作用点至支座间的箍筋,应均匀配置。但SATWE软件计算梁箍筋时,未考虑独立梁这一情况,都按公式 进行计算,有时会造成计算结果偏小,设计中若遇到有独立梁存在的情况,应对梁箍筋的计算结果进行手算复核。
5 设计构造方面的问题
5.1 框架节点核芯区箍筋配置应满足要求对于规范中规定的框架柱箍筋加密区的箍筋最小体积配箍率的要求,绝大部分设计人员都能给予足够的重视,但对于《建筑抗震设计规范》(GB50011-2001)中规定的"一、二、三级框架节点核芯区配箍特征值分别不宜小于0.12、0.10、0.08且体积配箍率分别不宜小于0.6%、0.5% ,0.4%。"设计中经常被忽视,尤其是柱轴压比不大时,常常不满足要求。这一规定是保证节点核芯区延性的重要构造措施,应严格遵守。
5.2 底层框架柱箍筋加密区范围应满足要求建筑抗震设计规范》(GB50011-2001)中规定:"底层柱,柱根处箍筋加密区范围为不小于柱净高的1/3"这是新增加的要求,设计中应重点说明
5.3 框架梁的纵向配筋率应注意
《建筑抗震设计规范》(GB50011一2001)中规定:"当框架梁梁端纵向受拉钢筋配筋率大于2%时,梁箍筋最小直径的数值应比表6.3.3中规定的数值增大2mm。"在目前设计中,这一规定常被忽视,造成梁端延性不足。
5.4 框架梁上部纵筋端部水平锚固长度应满足要求
《混凝土结构设计规范》(GB50010-2002)中规定:"框架端节点处,当框架梁上都纵筋水平直线段锚固长度不足时,应伸至柱外边并向下弯折,弯折前的水平投影长度不应小于0.4LaE。" 当框架柱截面尺寸小于400×400mm时,应注意梁上部纵筋直径的选择,否则这一项要求不容易得到保证。
关键词:建筑工程;混凝土结构;问题;对策
中图分类号:TU198文献标识码: A
前言
近年来在我国建筑行业的发展过程中,混凝土结构设计作为其中重要的内容,它的质量问题不仅对建筑结构的稳定性和可靠性有着严重的影响,还使得建筑物的功能无法得到充分的发挥。因此我们在对建筑混凝土结构设计时,就要对设计技术进行严格要求,只有这样才能使得工程施工的质量得到进一步的保障。但从当前我国建筑工程混凝土结构设计的实际情况来看,其中还存在着许多的问题,这就对建筑结构的稳定性有着严重的影响,因此我们就需要采用相应的技术手段,来对其进行处理,从而保障建筑工程的施工质量。
1、关于结构计算与分析阶段中的常见问题及处理对策
混凝土结构设计中计算与分析阶段的常见问题。目前的工程建设中,大都是通过计算机软件进行结构设计等工作,这样不仅使得建筑混凝土结构设计的准确性和可靠性得到进一步的保障,还满足了现代化建筑结构设计的相关要求。但在不同的建筑工程施工项目中,其软件系统的应用效果也就存在着一定的差异,因此我们在建筑设计阶段中,就需要根据工程施工的实际情况,对混凝土结构设计计算和分析方式进行相应的分析,从而保障建筑工程的施工质量。
设计师们在对建筑混凝土结构进行设计的过程中,除了要对计算软件的特点进行相应的比较研究以外,还要对建筑设计的相关内容进行全面了解,从而根据工程施工的实际情况,采用相应的技术手段对其进行处理,以确保工程的施工质量。而且在施工的过程中,设计人员也要根据工程施工的相关要求,对混凝土结构的尺寸大小进行严格的控制,并采用相应的设计技术方法对其进行处理,以确保建筑混凝土结构的质量和强度得到有效的控制。
我们还要对施工材料的质量进行有效的控制,以避免在建筑混凝土结构设计的过程中,其质量无法满足工程设计的相关要求。高层建筑结构设计原则。是高层建筑结构设计过程中需要注意的重要标准和准则。也是高层建筑设计单位提高高层建筑结构设计质量与效益的重要保障。只有在一定的高层建筑结构设计原则支持下。才可以进行建筑结构设计,总体来讲。高层建筑结构设计原则主要包括以下几点。
建筑结构基础方案需要配置完善的施工地质调查报告。最大程度的发挥建筑物地基的潜力。必要的情况下设计人员还需要对地基的变形做好相应的演算。另一方面。设计单位还需要对建筑物进行综合性分析。尤其是对于建筑物负荷以及上部结构类型。通过对这些综合性分析。最终选定最适合的基础方案。从而可以在提高设计质量的基础上提高设计单位经济效益。一条基本原则是设计单位经常忽略的。那就是结构措施完善原则。设计单位在进行建筑物结构的设计时。 需要注意结构组件的延展性。例如建筑物中钢筋的锚固长度等。同时。设计单位还需要注意建筑物薄弱环节以及建筑物本身温度对于建筑物组件的影响。对于这两方面的问题。在实际的设计过程中。需要遵循$强柱弱梁%强剪弱弯以及强压弱拉&的基本原则。只有这样才可以提高高层建筑结构设计的安全性以及牢靠性。
2、关于混凝土结构设计中,地基与基础设计中常见问题及处理对策
在建筑工程施工中,基础结构的设计有着十分重要的意义,这也是保障混凝土结构施工质量的主要内容。但是我们在对其地基基础结构进行施工的过程中。其建筑物时常会出现沉降的现象,这就对建筑结构的稳定性和可靠性有着一定的影响。而且如果其基础结构的稳定性存在着一定的问题,还可能会破坏了建筑基础底板的质量,为此我们就需要采用相应的技术手段来对其进行处理,从而保障建筑结构的稳定性。
针对不同程度的沉降量的工程,地基与基础设计所采取的处理措施也是不同的。对于沉降量相对较小的工程,可以采用褥垫的方法处理,也就是说在地下室与持力层之间建筑一层保护带,在沉降作用发生时,保护层会承受一部分的附加应力,防止地下室地板因受力过度而开裂或沉降。同时,对天然地基也起到了养护的作用。这样,地基保养便从根本上达到了解决。对于有地下室的建筑,地下水的季节性变化也是影响地下室底板的重要因素。当降水期来临,地下水位升高。底板的防水设计得尤为重要。一般的地下室建筑,由于柱下承台的形式比较复杂,其基槽地膜形状也是较为繁复的,建筑复杂的外在轮廓一方面加大了防水设计的难度,另一方面,增加了工程造价。很多设计工程师仅仅考虑到建筑物当时当地的地理状况,忽视对降水这一因素的考虑,而导致在地下室底板设计时对防水工程的不全面。不科学。在室外地坪之下的结构部分,外轮廓形状设计应尽量简洁,这样有利于建筑防水的施工。另外,在具体的设计方略上,采用统一地下室底板和柱下承台的下标高的反承台法。这一方法的具体做法:在地下室内部做滤水层和覆土,同时对柱下承台进行加厚工程的设计。这样一来,基槽地膜形状变得简单,方便施工,缩短了施工时间,从而施工质量也可以得到保证。.
3、关于混凝土上部结构设计中常见问题及处理对策
混凝土上部结构设计中常见的问题解决混凝土上部结构设计中常见问题的对策。由于建筑结构设计过程中难免会需要反复的修改。所以在设计之前很有必要将相应的准备工作做好。进行设计更改的时候。也能有一个调整的余地。一般常用的方法是对结构设计进行建模计算。通过计算机将结构设计中容易出现了问题进行一个周密的预测和估算。在上部结构设计阶段,要考虑建筑物的抗震功能,当遇到中震时,我们应考虑第一级别的剪力墙。在建筑结构设计中。要保障建筑工程的质量。要使得工程造价控制在可接受范围内)这就需要在建筑结构设计上充分考虑投资商的经济效益。
权衡建筑质量和投资回报之间的重要性)所以在设计时。应该尽量的优化结构设计。要始终牢记强柱弱梁强剪弱弯强压弱拉原则。具体来说。设计时要注意测试地基的抗压性%检查支撑架的稳定性%控制钢筋的锚固氏度等方面。只有这样才能使得建筑结构设计的最终效果令人满意。在进行建筑结构的设计之前。必须要和承包商投资商有一个全面和谐的沟通过程。主要是来讨论建筑结构的类型以及施工的具体要求。 这样将会有利于设计人员充分了解本次建筑工程的施工基调。对整个建筑工程的结构设计思路有一个明确的方向。 对于不同的基础形式,所出现的问题和解决办法也各不相同。常见问题如下:对于地下车库中的柱下独立基础,基础埋深的计算方法因各地方基础规范有不同的规定,对基础底面积大小影响较大。当地库底板厚度满足一定要求的情况下,独立基础的埋深可取自室外地面及室内地面计算埋深的平均值。对于平板筏板基础,上部结构刚度、板底地基土的基床系数等都对筏板的计算有一定影响。设计时应将上部结构刚度传给基础,考虑基础与上部结构的共同作用,并合理选取基床系数,有效降低基础工程量。另外,基础底板及地下室的外轮廓应尽量简洁,有利于防水工程的施工和降低造价。
结束语
总而言之,在当前我国建筑混凝土结构设计中存在的问题还有很多,这不仅对混凝土结构的稳定性和可靠性有着严重的影响,还降低了建筑工程的效益,因此我们就需要的采用相应的技术手段来对其进行处理,从而保障建筑工程的施工质量。
参考文献:
[1]混凝土结构设计规范(GB500010-2002北京.中国建筑工业出版社.