欢迎访问爱发表,线上期刊服务咨询

数字信号论文8篇

时间:2023-03-15 15:00:22

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇数字信号论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

数字信号论文

篇1

1载波器的设计

应针对不同的卫星信号系统进行设计,从而保证载波器的兼容性,首先应保证其时钟周期频率的设计,之后通过设置中心频率的范围、调节范围及精度以提高其兼容性。

1.1时钟周期时钟周期是载波的参考基准时间,其保证着载波输出数字信号的精度,这就要求时钟周期能够保证极好的精度,若不能实现则会导致输出频率出现误差。为了在时钟周期上实现兼容全部卫星信号,首先应保证采样频率高于2MHz,而作为最低2MHz的时钟频率则使得时钟周期的范围为0~500ns。

1.2设置中心频率范围中心频率是由卫星输出的中频信号决定的,故设置中心频率的范围应尽最大可能去覆盖全部的中频信号频率。根据计算现有的技术,一般中心频率保证在100MHz之内,故通过32位寄存器即能够实现全部数据的保存要求。

1.3调节范围确定频率调节的范围应首先确定其两个影响因素,包括时钟误差及多普勒频移。时钟误差是由电路中混频过程产生,这就取决于本地振荡器的频率,目前多采用1.2~1.6GHz的本地振荡器,故其对频率的影响范围为±16kHz;而多普勒频移取决于卫星与接收设备的先对运动速度,根据现有技术,其最大速度差异为8000m/s,通过计算可知其频移范围为±42kHz,故整体的频率调节范围应为±58kHz。

1.4调节精度此调节精度应满足其最高精度需求,故调节精度应为1MHz,而通过32位的寄存器进行存储的话则其覆盖范围应为±2MHz。通过上述分析,使用32位寄存器、累加器和频率控制器已经能够满足其最大精度要求。

2扩频码的设计

与载波器的设计相同,为实现跟踪不同导航卫星信号,应保证扩频码具有极好的兼容性,实现中同样以4个方面进行考虑。采用60MHz的时钟频率,32位的控制器、寄存器和累加器即可实现。

3扩频码产生器的设计

设计数字跟踪通道的扩频码产生器主要以低硬件资源和高灵活性为第一目标,故在设计中应坚持由硬件实现其逻辑需求,而通过软件实现其控制需求。

4跟踪控制设计

篇2

另外一类是需要用复杂算法对大量数据进行处理的应用,例如声纳探测和地震探测等,也需要用DSP器件。该类设备的批量一般较小、算法要求苛刻、产品很大而且很复杂。所以设计工程师在选择处理器时会尽量选择性能最佳、易于开发并支持多处理器的DSP器件。有时,设计工程师更喜欢选用现成的开发板来开发系统而不是从零开始硬件和软件设计,同时可以采用现成的功能库文件开发应用软件。

在实际设计时应根据具体的应用选择合适的DSP。不同的DSP有不同的特点,适用于不同的应用,在选择时可以遵循以下要点。

算法格式

DSP的算法有多种。绝大多数的DSP处理器使用定点算法,数字表示为整数或-1.0到+1.0之间的小数形式。有些处理器采用浮点算法,数据表示成尾数加指数的形式:尾数×2指数。

浮点算法是一种较复杂的常规算法,利用浮点数据可以实现大的数据动态范围(这个动态范围可以用最大和最小数的比值来表示)。浮点DSP在应用中,设计工程师不用关心动态范围和精度一类的问题。浮点DSP比定点DSP更容易编程,但是成本和功耗高。

由于成本和功耗的原因,一般批量产品选用定点DSP。编程和算法设计人员通过分析或仿真来确定所需要的动态范围和精度。如果要求易于开发,而且动态范围很宽、精度很高,可以考虑采用浮点DSP。

也可以在采用定点DSP的条件下由软件实现浮点计算,但是这样的软件程序会占用大量处理器时间,因而很少使用。有效的办法是“块浮点”,利用该方法将具有相同指数,而尾数不同的一组数据作为数据块进行处理。“块浮点”处理通常用软件来实现。

数据宽度

所有浮点DSP的字宽为32位,而定点DSP的字宽一般为16位,也有24位和20位的DSP,如摩托罗拉的DSP563XX系列和Zoran公司的ZR3800X系列。由于字宽与DSP的外部尺寸、管脚数量以及需要的存储器的大小等有很大的关系,所以字宽的长短直接影响到器件的成本。字宽越宽则尺寸越大,管脚越多,存储器要求也越大,成本相应地增大。在满足设计要求的条件下,要尽量选用小字宽的DSP以减小成本。

在关于定点和浮点的选择时,可以权衡字宽和开发复杂度之间的关系。例如,通过将指令组合连用,一个16位字宽的DSP器件也可以实现32位字宽双精度算法(当然双精度算法比单精度算法慢得多)。如果单精度能满足绝大多数的计算要求,而仅少量代码需要双精度,这种方法也可行,但如果大多数的计算要求精度很高,则需要选用较大字宽的处理器。

请注意,绝大多数DSP器件的指令字和数据字的宽度一样,也有一些不一样,如ADI(模拟器件公司)的ADSP-21XX系列的数据字为16位而指令字为24位。

DSP的速度

处理器是否符合设计要求,关键在于是否满足速度要求。测试处理器的速度有很多方法,最基本的是测量处理器的指令周期,即处理器执行最快指令所需要的时间。指令周期的倒数除以一百万,再乘以每个周期执行的指令数,结果即为处理器的最高速率,单位为每秒百万条指令MIPS。

但是指令执行时间并不能表明处理器的真正性能,不同的处理器在单个指令完成的任务量不一样,单纯地比较指令执行时间并不能公正地区别性能的差异。现在一些新的DSP采用超长指令字(VLIW)架构,在这种架构中,单个周期时间内可以实现多条指令,而每个指令所实现的任务比传统DSP少,因此相对VLIW和通用DSP器件而言,比较MIPS的大小时会产生误导作用。

即使在传统DSP之间比较MIPS大小也具有一定的片面性。例如,某些处理器允许在单个指令中同时对几位一起进行移位,而有些DSP的一个指令只能对单个数据位移位;有些DSP可以进行与正在执行的ALU指令无关的数据的并行处理(在执行指令的同时加载操作数),而另外有些DSP只能支持与正在执行的ALU指令有关的数据并行处理;有些新的DSP允许在单个指令内定义两个MAC。因此仅仅进行MIPS比较并不能准确得出处理器的性能。

解决上述问题的方法之一是采用一个基本的操作(而不是指令)作为标准来比较处理器的性能。常用到的是MAC操作,但是MAC操作时间不能提供比较DSP性能差异的足够信息,在绝大多数DSP中,MAC操作仅在单个指令周期内实现,其MAC时间等于指令周期时间,如上所述,某些DSP在单个MAC周期内处理的任务比其它DSP多。MAC时间并不能反映诸如循环操作等的性能,而这种操作在所有的应用中都会用到。

最通用的办法是定义一套标准例程,比较在不同DSP上的执行速度。这种例程可能是一个算法的“核心”功能,如FIR或IIR滤波器等,也可以是整个或部分应用程序(如语音编码器)。图1为使用BDTI公司的工具测试的几款DSP器件性能。

在比较DSP处理器的速度时要注意其所标榜的MOPS(百万次操作每秒)和MFLOPS(百万次浮点操作每秒)参数,因为不同的厂商对“操作”的理解不一样,指标的意义也不一样。例如,某些处理器能同时进行浮点乘法操作和浮点加法操作,因而标榜其产品的MFLOPS为MIPS的两倍。

其次,在比较处理器时钟速率时,DSP的输入时钟可能与其指令速率一样,也可能是指令速率的两倍到四倍,不同的处理器可能不一样。另外,许多DSP具有时钟倍频器或锁相环,可以使用外部低频时钟产生片上所需的高频时钟信号。

存储器管理

DSP的性能受其对存储器子系统的管理能力的影响。如前所述,MAC和其它一些信号处理功能是DSP器件信号处理的基本能力,快速MAC执行能力要求在每个指令周期从存储器读取一个指令字和两个数据字。有多种方法实现这种读取,包括多接口存储器(允许在每个指令周期内对存储器多次访问)、分离指令和数据存储器(“哈佛”结构及其派生类)以及指令缓存(允许从缓存读取指令而不是存储器,从而将存储器空闲出来用作数据读取)。图2和图3显示了哈佛存储器结构与很多微控制器采用的“冯·诺曼”结构的差别。

另外要注意所支持的存储器空间的大小。许多定点DSP的主要目标市场是嵌入式应用系统,在这种应用中存储器一般较小,所以这种DSP器件具有小到中等片上存储器(4K到64K字左右),备有窄的外部数据总线。另外,绝大多数定点DSP的地址总线小于或等于16位,因而可外接的存储器空间受到限制。一些浮点DSP的片上存储器很小,甚至没有,但外部数据总线宽。例如TI公司的TMS320C30只有6K片上存储器,外部总线为24位,13位外部地址总线。而ADI的ADSP2-21060具有4Mb的片上存储器,可以多种方式划分为程序存储器和数据存储器。

选择DSP时,需要根据具体应用对存储空间大小以及对外部总线的要求来选择。

开发的简便性

对不同的应用来说,对开发简便性的要求不一样。对于研究和样机的开发,一般要求系统工具能便于开发。而如果公司在开发下一代手机产品,成本是最重要的因素,只要能降低最终产品的成本,一般他们愿意承受很烦琐的开发,采用复杂的开发工具(当然如果大大延迟了产品上市的时间则是另一回事)。

因此选择DSP时需要考虑的因素有软件开发工具(包括汇编、链接、仿真、调试、编译、代码库以及实时操作系统等部分)、硬件工具(开发板和仿真机)和高级工具(例如基于框图的代码生成环境)。利用这些工具的设计过程如图4所示。

选择DSP器件时常有如何实现编程的问题。一般设计工程师选择汇编语言或高级语言(如C或Ada),或两者相结合的办法。现在大部分的DSP程序采用汇编语言,由于编译器产生的汇编代码一般未经最优化,需要手动进行程序优化,降低程序代码大小和使流程更合理,进一步加快程序的执行速度。这样的工作对于消费类电子产品很有意义,因为通过代码的优化能弥补DSP性能的不足。

使用高级语言编译器的设计工程师会发现,浮点DSP编译器的执行效果比定点DSP好,这有几个原因:首先,多数的高级语言本身并不支持小数算法;其次,浮点处理器一般比定点处理器具有更规则的指令,指令限制少,更适合编译器处理;第三,由于浮点处理器支持更大的存储器,能提供足够的空间。编译器产生的代码一般比手动生成的代码更大。

不管是用高级语言还是汇编语言实现编程,都必须注意调试和硬件仿真工具的使用,因为很大一部分的开发时间会花在这里。几乎所有的生产商都提供指令集仿真器,在硬件完成之前,采用指令集仿真器对软件调试很有帮助。如果所用的是高级语言,对高级语言调试器功能进行评估很重要,包括能否与模拟机和/或硬件仿真器一起运行等性能。

大多数DSP销售商提供硬件仿真工具,现在许多处理器具有片上调试/仿真功能,通过采用IEEE1149.1JTAG标准的串行接口访问。该串行接口允许基于扫描的仿真,即程序员通过该接口加载断点,然后通过扫描处理器内部寄存器来查看处理器到达断点后寄存器的内容并进行修改。

很多的生产商都可以提供现成的DSP开发系统板。在硬件没有开发完成之前可用开发板实现软件实时运行调试,这样可以提高最终产品的可制造性。对于一些小批量系统甚至可以用开发板作为最终产品电路板。

支持多处理器

在某些数据计算量很大的应用中,经常要求使用多个DSP处理器。在这种情况下,多处理器互连和互连性能(关于相互间通信流量、开销和时间延迟)成为重要的考虑因素。如ADI的ADSP-2106X系列提供了简化多处理器系统设计的专用硬件。

电源管理和功耗

DSP器件越来越多地应用在便携式产品中,在这些应用中功耗是一个重要的考虑因素,因而DSP生产商尽量在产品内部加入电源管理并降低工作电压以减小系统的功耗。在某些DSP器件中的电源管理功能包括:a.降低工作电压:许多生产商提供低电压DSP版本(3.3V,2.5V,或1.8V),这种处理器在相同的时钟下功耗远远低于5V供电的同类产品。

b.“休眠”或“空闲”模式:绝大多数处理器具有关断处理器部分时钟的功能,降低功耗。在某些情况下,非屏蔽的中断信号可以将处理器从“休眠”模式下恢复,而在另外一些情况下,只有设定的几个外部中断才能唤醒处理器。有些处理器可以提供不同省电功能和时延的多个“休眠”模式。

c.可编程时钟分频器:某些DSP允许在软件控制下改变处理器时钟,以便在某个特定任务时使用最低时钟频率来降低功耗。

d.控制:一些DSP器件允许程序停止系统未用到的电路的工作。

不管电源管理特性怎么样,设计工程师要获得优秀的省电设计很困难,因为DSP的功耗随所执行的指令不同而不同。多数生产商所提供的功耗指标为典型值或最大值,而TI公司给出的指标是一个例外,该公司的应用实例中详细地说明了在执行不同指令和不同配置下的功耗。

成本因素

在满足设计要求条件下要尽量使用低成本DSP,即使这种DSP编程难度很大而且灵活性差。在处理器系列中,越便宜的处理器功能越少,片上存储器也越小,性能也比价格高的处理器差。

封装不同的DSP器件价格也存在差别。例如,PQFP和TQFP封装比PGA封装便宜得多。

在考虑到成本时要切记两点。首先,处理器的价格在持续下跌;第二点,价格还依赖于批量,如10,000片的单价可能会比1,000片的单价便宜很多。

篇3

1光纤模型

对于一些较为复杂的矢量信息的调制,光通信系统当中则一般都是用IQ调制器进行;光纤模型是为了将通信相干系统内处理数字信号进行提高,因此必须要具体研究整个系统内信号进行光纤传输的现象,而该现象则需要从物理以及数学的模型当中入手,对对应的补偿或均衡技术进行研究过程中将数字信号处理技术的作用发挥出来,使得光信号变换成为电磁波的形式,具体的解是在麦克斯韦方程组导出的波动方程中进行的,表达式是:其中X是信号偏振方向的单位向量,是初始振幅的傅立叶表示,是常数,最终将光信号基态模式分布成F(x,y)看成是近似高斯函数。另外在研究接收端过程中,一般都是将光相干接收机作为主要组成进行研究,其能够对接收机进行直接测探,让所检测的信号强度信息得以增强,同时还能够将强度调制信号进行光电转换前对其进行除匹配滤波之外的处理。

2信号处理

研究相干光通信系统内处理数字信号的技术主要是:光纤信道是信号进行传输的通道,而其中所出现的不同形式的失真或者损伤就会在结合过程中出现线性或者非线性的失真。而线性失真的补偿是不存在因果关系,即无需顾虑其顺序问题,不过需要在具体算法当中遵循以下原则:分离所需估计的线性失真为单独形式的变量,并补偿态应该优先估计,对于算法较为简单的变量,然后再补偿随机变量,最后才是对所有变量进行完整补偿。算法流程:每个方框所代表的都是相干接收机内的数字信号处理系统的子系统,且子系统之间所可能出现的反馈线路的具体图表也要进行表示,在预处理算法的研究中,它是指在进行实质的信道均衡、载波恢复之前,对采样后的信号进行一定程度的预先处理,为形成数字信号处理算法做出充分的准备。

3信号补偿

使用数字信号处理算法之后,相干光通信系统对信号补偿是在接收端,具体使用过程当中则会根据情况的不同来使用不同形式的数字信号处理子系统。去偏移系统可以针对偏振之间的采样时刻偏移进行补偿。正交化系统可以补偿因调制器和混频器缺陷造成的欠正交状况。归一化系统能够将信号具备单位的能力和幅度,进而使得信号发生色度色散后可利用静态信道的均衡系统对其进行补偿。即使出现不当采样而导致误差出现时,也能够使用采样时钟来对系统进行相关补偿。即自适应的信道均衡系统能够对于偏振所出现的相关损伤进行补偿,载波相位回复系统是估计载波相位的噪声,进而对所出现的失真进行补偿。载波频率恢复系统则是对发送端和接收端之间载波所出现的频率偏移进行补偿和估计。对于光线非线性造成的信号损伤可以借助非线性补偿系统进行补偿。

4相关耦合

在应用数字信号处理算法过程当中,先在接收端破和所输入的光信号和本振光,进而根据上述的数字信号处理技术子系统来对所耦合的光信号进行模数转化、去偏移以及正交化恢复等处理,然后根据实际的应用环境来选择具体形式的反馈和补偿。即相干光通信系统中有了数字信号处理算法的应用将会对其色散、偏振等造成的信号失真有了非常有效的补偿,进而更好的促进了相干光通信系统的发展。

二、小结

篇4

关键词:二维信号处理

一、随着集成电路的运算速度更快,集成度更高,就有可能耐复杂目益增加均一些多维数字信号处理。

所它在最近才开始出现的一个新领域。尽管如此,多维信号处埋仍然对以下一些间提了解决的办法,这些问题是:计算机辅动断层成术(CAT),即综合来自不同方向的X射线的投影,以重建人体某一部分的三维图,源声纳阵列的设计及通过人造卫星地球资源。多维数字信号处理除具有许多引人注目和浅显易行的应用之外,它还具有坚卖的数学基础,这不仅使我们能了解它的实现情况,而且当新问题出现时,也当及时解决。

典型的信号处理任务就是把信息从一种信号传递到另一种信号上,例如,可将一张照片加以扫描、抽样,并将共存储在计算机的存储器中,在这种情况下,信息是从可变的银粒密度转换戌可见光束,再变成电的波形,最后变戍数字的序列,随后该数字序列用。磁盘上磁畴的排列来表示CAT扫描器是一个比较复杂,经过处理,最后显赤射线管(CRT)的荧光屏上或胶片上。数字处理能增加信息,但可以重新排列信息,使观察者能更方便地理解它.观察者不必观看多个不同测面的投影而可直接观察截面图。

人们感兴趣的是信号所包含的信息,而不管信号本身是什么形式。也许可以概括地说,信号处理涉及两个基本任务一一信息的重新排列和信息的压缩。

二、数字信号处理涉及到用数的序列表示的信号的处理,而多维数字信号处理则涉罚用多维阵列表示的信号的处理,例如对同时从几个传感器所接收的抽样图像和抽样的时间波形的处理。由于信号是因而它可以用数字硬件处理,同时可以将信号处理的运算规定为算法。

促使人们采用数字方法的是不言而喻的。数字方法既有效灵活。我们可以用数字系统使其有自适应性并易于重新组合。可以很方便地把数字算法由一个厂商的设备上转换到另一个厂商的设备上去,或者把专用数字硬件来实现。同样,数字算法也可用来处理作为时间函数或空间信号,数字算法自然地和逻辑算符如模式分类相联系。数字信号能够长时间无差错地存储。对很多种应用而言,数字方法Ⅸ其它方法更为简单,对另外一些应用,则可能根本不存在其他方法。多维信号处理是不同于一维信号处理,想在多维序列上实现的多运算,例如抽样、滤波和交换等,用于一维序列,然而,严格芯说,我们不得不说多终信号处理与一维信弓有很大差别的。

信号处理与一维信号处理还是有很大差别的,这是由三个因素造成的;(l)二维通常比一维问题包含的数据量大得多;(2)处理多维系统在数些上不如处理一维系统那样完备;(3)多维信号处理有更多的自由度,这给系统设计音以一维情况中无法比拟的灵活性。虽然所有递归数字滤波器都是用差分方程实现的,一维情况下差分方程是全有序的,而在多维情况下差分方程仅是部分有序的,冈而就存在着灵活性,在一维情况小,离散传里旰变换CDET)可以用快速傅里叶变换CEPT)算法来计算,而在多维情况下,有多且每一个OFT又可用多种AFT算法来计算。在一维情况下,我们可以调整速率。而且也可以调整抽排列。从另一方面来说,多维多项式不能进行因式分解,而一维多项式是可以进行因式分解的。因而在多维情况下,我们不能论及孤立的极,气、孤立的零点及孤立的根。所以,多维信号处理与一维信号处理有相当大的差别。在20世纪60年代初期,用数字系统来模仿模拟系统的想法,使得一维数字信号处毫的各种方法得到了发展。这样,仿照模拟系统理论,创立了许多离散系统理论。随后,当数字系统可以很好地模仿模拟系统时,人们认识到数字系统同时也可以完成更多的功能。由丁这种认识及数字硬件工艺的有力推动,数字信号处理得到了发展,而且现今很多通用的方法,已成为数字方法所特有的,没有与其等效的模拟方法,在发展多维数字信号处理时,可观察到同一发展趋向。因为没有连续时间的(或模拟的)二维系统理论可以仿效,因而最初的二维系统是以一维系统为基础的,80年代后期,多数二维信号处理都是用可分的二维系统。可分的二维系统与用于二维数据的一维系统几乎没有差别。随后,发展了独特的多维算法,该算法相当于一维算法的逻辑推理。这是一段失败的时期,由干许多二维应用要求数据量很大,且IT缺少二维多项式太分解理论,很多一维方法不能很好地推广到二维上来。我们现在正处于认识的萌芽时代。计算机工业以其部件的小型化和价格日趋低廉而有助于我们解决数据量问题。尽管我们总是受限于数学问题,但仍然认识到,多维系统也给了我们新的自由度。以上这些,使得该领域既富于挑战性又无穷乐趣,电子信息技术的结合之软件结台,传统产业中可用电产信息技术的地方,仍然可以在生产或很低的条件下使用人力或传统机械。电予信息技术应到限制,在不同领域和不同水平有各种原因,但烂有一个共大原因是缺乏认识。没有认识,便没有应层。

事实上,在一维和二维信号处理理论之间有实质性的差别,而在二维和更高维之间,除了计算上的复杂世方耐差异之外,似乎差别较小。

参考文献:

[1]吴云韬,廖桂生,田孝华.一种波达方向、频率联合估计快速算法[J]电波科学学报,2003,(04).

[2]吕铁军,王河,肖先赐.利用改进遗传算法的DOA估计[J]电波科学学报,2000,(04)

[3]刘全,雍玲,魏急波.二维虚拟ESPRIT算法的改进[J]国防科技大学学报,2002,(03).

[4]吕泽均,肖先赐.一种冲击噪声环境中的二维DOA估计新方法[J]电子与信息学报,2004,(03).

[5]金梁,殷勤业,李盈.时频子空间拟合波达方向估计[J]电子学报,2001,(01).

[6]金梁,殷勤业.时空DOA矩阵方法的分析与推广[J]电子学报,2001,(03).

篇5

1.1围绕问题开展教学PBL教学模式先提出问题,以问题为基础和起点,所有的学习均围绕问题展开。

1.2强调学生的团队协作性PBL教学模式以学生小组为单位进行,小组成员要积极配合,既有分工又有协作,通过调查和收集资料,疑难问题讨论和意见综合等协作学习,实现知识的共同建构。

1.3具有师生交互性PBL教学模式实施过程中,教师通过设计问题、并创造合适的学习环境,引导学生对问题开展学习活动,师生之间展开密切的交流、探讨,促进和指导学生有效地学习,寻求问题的解决。因此,对于以培养适应地方经济社会发展需要的应用型本科人才为目标的高校,为促进学生解决实际问题的实践能力和团队合作能力,非常适合在电子信息类实验教学中引进PBL教学模式。

2PBL模式在数字信号处理实验教学中的应用

2.1课程情况概述

笔者所在学院的电子信息工程专业所开设的《数字信号处理》课程,总课时为64学时,包含16学时的课内实验。传统的课内实验均为验证性实验,大部分学生只会简单地照搬实验讲义的详细步骤完成固定的实验内容,而对实验内容及结果所反映的原理并不理解。因此,结合教学改革要求,在新的课程实验设置中显著提高了综合性、设计性实验的比例,这些实验项目以问题为导向,教师主要给出实验的要求和技术指标,要求学生自主选择并综合利用学过的理论知识和实践技能去实现一个比较完整的数字信号处理系统,体现了典型的PBL教学法的应用优势。

2.2PBL模式实验教学的具体实施

2.2.1学生分组与基本培训在实验课之前,首先对学生进行PBL教学模式的基本培训,使学生明确PBL教学的目的、方法、要求及评价手段等。同时,在40人的班级中建立10个学习小组,每组4名学生。各组分别推选一名组织能力和责任心较强的同学担任组长,负责本小组成员的组织协调和分工。

2.2.2问题设置问题设置是PBL教学实施中的核心环节。在这一环节中,教师根据教学大纲和实验教学内容,对实验课题设置若干应用问题。围绕我校应用型人才培养的方针,所设置问题尽量贴近应用开发实际,以培养学生的工程应用开发能力为导向。具体来说,问题设置主要遵循的原则为:(1)问题具备真实的工程背景;(2)问题具备开放性和劣构性;(3)问题具有一定的层次性和复杂度。下面以本实验课程中的一个可选的综合设计性实验为例,介绍相关问题的设置。该实验的基本内容为,设计数字心电采集系统,实现含有噪声的心电信号的采集和滤波。实验前,由教师提供一个包含心电传感器和放大电路的实验板,以及一个包含单片机及A/D转换器的接口板。实验要求分为两个阶段:第一阶段为心电信号的采集,与学生正在同时学习的单片机课程相结合,要求学生通过单片机编程控制A/D转换器,将放大后的模拟心电信号转换为数字信号,并通过串口传送至pc机。在这一阶段,设置的主要问题包括:如何根据信号带宽确定合适的采样率等。通过这些问题,引导学生在实践中深入理解采样定理。第二阶段的工作,则是在PC机上通过Matlab对采集到的数据进行读取和滤波,去除工频干扰、高频肌电、基线漂移等。该阶段设置的主要问题包括:有效信号的主要频率范围、主要干扰源的频率范围、线性相位和非线性相位滤波对波形的影响、IIR和FIR滤波器的特点等。通过这些问题的设置,引导学生在实践中加深对IIR和FIR等滤波器各自特点的认识,并根据不同的工作目标选择合适的滤波器类型。

2.2.3分析问题与自主学习在实验项目相关的问题后,要求各学习小组的学生开展自主学习,认真阅读教材,复习已学过的相关知识,同时,利用图书馆、互联网等渠道查阅相关参考书籍和文献,并通过组内的不断交流和探讨以初步分析问题。

2.2.4集中讨论与问题解决在学生对实验所设置的问题进行初步分析的基础上,教师在实验课上组织学生开展问题的集中讨论,引导各学习小组进一步深入理解问题,研究问题的具体解决方法,并明确各人的任务分工。整个讨论过程以学生为主导,教师以共同讨论者的身份进行引导、启发。在自主学习和集中讨论的基础上,各小组最终形成具体的问题解决方案,并通过编程实现对问题的解决,进而完成相应的实验项目。

2.2.5总结与点评学习小组在编写程序实现问题解决的过程中,教师以实时巡视、检查进度、随机提问、验收成果等方式促进小组的工作。由于实验内容及对应问题的设置具有一定的开放性,学生解决问题的思路和方法也相应具有多样性,教师对各小组的问题解决方法进行归纳总结,并在下次实验课做出点评。

2.3PBL模式下的成绩评价

为了客观地评定学生的学习效果,需要采用多层次多角度的评价方法。最终成绩的评定并不仅仅由期末的实验考核所决定,而是突出过程表现,强调过程性评价。最终的实验成绩由以下几部分组成。

2.3.1自主学习表现该部分占总成绩的30%,主要衡量学生在PBL模式下的学习方法、学习态度和学习能力。具体评价点包括:学生是否阅读了相关教材、参考资料;能否有效利用所学的知识分析问题;在学习小组讨论中是否积极发言,发言内容是否与讨论的问题有关且具有一定的深度;小组成员间的互相评价。

2.3.2实验过程与实验报告该部分占总成绩的35%,主要衡量学生在实验中具体解决问题的能力和总结归纳水平。具体评价依据来自于教师巡视及提问的记录以及学生提交的实验报告。

2.3.3实验考试该部分占总成绩的35%。主要衡量经过一学期的PBL训练后学生个人的综合实验能力。具体评价依据来自于实验考试中对所给实验题的完成速度与质量。

3结语

篇6

1.1充分了解前期课程情况

首先,授课教师应在课前充分了解《数字信号处理》课程的全部教学内容中有哪些涉及前期的预修课程,并将所有涉及的课程和对应的知识点罗列出来。然后,教师应了解学生是否全部学习过所有的预修课程和所包含的知识点。(1)对于已经学过的预修课程,教师逐一查阅相关教材,摘出本课程中涉及到的知识点所对应的应用条件、关键内容、主要结论以及必要的推导过程等。以《高等数学》为例,本课程涉及到的知识点主要有:反函数和复合函数求导、等比级数求和、欧拉公式、傅里叶级数和微分方程求解等。(2)如果有某一门课程没有学过,例如我校没有开设《积分变换》课程,那教师就应从更基础的《高等数学》课程出发,将本课程所涉及的知识推导出来,以便在课堂授课中补充,或作为参考资料提供给学生自学。(3)有些知识点虽然在预修课程中有所涉及,但可能不是重点或不够系统,那教师就应根据前期所学知识,结合本课程需要,进行必要的归纳总结,以便学生根据个人学习情况参阅。例如本课程中数字滤波器设计是授课的重点内容,其中需要掌握模拟滤波器设计的相关知识,但是预修课程中并没有系统讲述,因此教师就应整理各种模拟滤波器的公式、特点和设计方法并将其融合到授课过程中。由于《数字信号处理》本身就是一个严格的理论体系,其中所有的定理和性质都是可推导或可证明的,而且推导和证明过程也是要求学生掌握的,因此教师在授课中就必须保证所有的推导过程都是学生以自身所掌握的知识可以理解和独立完成的。

1.2建立通畅的师生交流渠道

首先,应转变观念,即使在大学高年级,课程教学也应该是以学生良好掌握本课程的知识和技能为标准,而不应仅仅是完成教学任务。这就要求教师和学生之间具有良好、通畅的交流渠道,以便教师能及时了解学生的学习进展情况、学习过程中存在的疑问以及对课程学习的建议和意见等。同时,也便于教师及时通知学生应预先复习的知识和应准备的材料、对学生提问的答复以及对后续课程教学的调整等。因此,建立通畅的师生交流渠道非常必要。我们认为师生的交流渠道应是多方面的,为此我们采用了多种的交流形式。(1)师生见面会:一般在课程开始之前或前期进行,所有参与授课的教师和全体学生面对面座谈,从而实现初步的了解。(2)课代表制:在学生中选择一名同学作为本课程的代表,负责收集学生中的问题、意见等并及时反馈给教师,同时将教师的通知及时传达给所有学生。(3)公布教师的办公室地址、电话和E-mail:让每一名学生都能找到教师,以便提出问题并得到教师的辅导。(4)《数字信号处理》网络课程平台:本课程已经构建了较为完善的网络课程,其中包括课程授课幻灯、教案、典型习题、课程电子公告片率系统(bulletinboardsystem,BBS)、其他参考资料等。(5)最新的即时通讯工具:例如QQ、微信等。(6)晚自习答疑:每周安排一个晚自习由1名授课教师到学生自习的教室进行答疑,学生如有课程学习中的疑问可以自由提问。通过上述措施,在教师和学生之间构建全方位、全覆盖的交流渠道,既包含了传统的见面辅导形式,也引入了学生中流行的即时通信工具,从而可以保证学生面对面或不见面地提出学习中的疑难问题,便于教师了解和掌握学生的学习状态。

1.3在作业批改和实验过程中深层次了解

前面的师生交流,更注重学生主动提出问题,以寻求教师的答复。不过在我们的教学经历中,有些学生不擅长或者不习惯主动提问题,而喜欢等待接受教师讲解的课程内容。这样,教师就不容易把握学生的个人学习情况,也就难以进行个性化教学。《数字信号处理》课程注重理论知识的学习,因此教师每讲授一部分内容都会给学生布置一些习题作业。我们的要求是学生在作业中要写出完整的解题步骤,提倡学生抛弃草稿纸,将所有的中间过程都写到作业本上。通过对作业的批改,教师就能从中发现每个学生对课程内容的掌握情况,及时发现问题。《数字信号处理》课程也强调理论知识的运用,因此安排了接近1/3的学时用于上机编程实验。学生利用课堂所学理论知识在计算机上编程实现,并将结果显示出来。但是这个过程并不一定是一个顺理成章的事情,大部分学生都不能够一次完成。因此,教师应不停地巡视每个学生的编程过程,及时发现问题并给出建议。

2个性化教学方法

开展个性化教学,并不是进行个别教学,也不是要否定传统的课堂授课。我们认为个性化教学是对课堂授课的补充和完善。另外,个性化包含2层含义:一是不同年级的学生之间存在差异,教师需要针对性地调整或强调授课内容;二是不同学生之间知识背景存在差异,教师应进行个别辅导。

2.1课堂上重点讲解共性难点

通过前期多种形式的师生互动,教师对学生的知识背景应该有较全面的了解,特别是要掌握可能缺失的知识点。在课程备课和幻灯制作过程中,教师就应有针对性地对存在的共性问题进行重点准备,例如对涉及前期预修课程中的知识点进行提示或回顾,对学生缺失的知识进行补充,对前期不系统的知识进行归纳和整理。在课堂授课过程中,不断观察学生的学习状态,发现多数人有疑问时应反复讲解,必要时辅以板书推导。同时,鼓励学生在上课过程中主动提问,并在每次课结束前预留3~5min进行简短答疑。另外,对后续课程学习中可能涉及的预修知识应要求学生进行复习。

2.2合理布置作业并认真批改

教师布置给学生课后完成的作业应涵盖主要的授课内容,应有一定的题量,期望学生通过做作业复习重点知识,特别是综合运用已学过的知识分析和解决问题。教师应重视对学生作业的批改,逐步审阅,并明确指出出错或遗漏之处,如有需要可给出修改思路的提示。曾出现过某一道并不难的作业却有很多学生做错的情况,对此种情况,教师要不怕麻烦对每一个学生都给予纠正,避免疏漏。而且《数字信号处理》课程习题的突出特点是一题多问,后面的问题需要前面问题正确的结果作条件,常常出现第一问解题错误,导致后面几问即使方法得当也无法得到正确的结果。对此种情况,教师不仅要指出第一次出错的地方,而且还应对后续求解的方法予以评价,便于学生自己改错。教师对所有学生作业中存在的问题还应及时归纳。由于学生做作业和教师批改作业都需要一定的时间,一般会有2周的延时,因此教师应注意利用后续授课中的点滴空闲时间或少量的课后时间,进行作业情况的分析。这一做法往往颇受学生的喜爱。

2.3利用课间进行个别辅导

一般每次授课是2个学时连在一起上,学时之间有10min的休息时间。教师应注意在课间主动走到学生中间,这样会无形之中鼓励学生主动提问。我们在教学中发现,当教师站在讲台上时,学生要提问可能需要更多的勇气;而如果教师走到学生身边时,学生会感觉与教师的距离缩短了,从而可能较随意地提问。这样,教师才能有针对性地对学生进行个别辅导。同时,几次之后就有助于树立一种主动提问的良好氛围,有利于教师更好地把握教学效果,节省了猜测和估计的时间。

2.4在线响应学生提问

除了鼓励学生在课堂上提问外,教师应接受并适应学生通过他们熟悉和感兴趣的交流方式提问,并及时作出响应。上述2种提问方式类似于实时和非实时的关系,这本就是数字信号处理技术的突出优点,而且新的交流工具实际上也是数字信号处理技术进步的体现。作为教授本课程的教师也应紧跟时代的步伐,让学生感觉与教师之间没有代沟,更重要的是让学生对本课程产生更浓厚的兴趣,激发主动学习的热情。

2.5让学生独立完成编程实验

计算机编程实验是《数字信号处理》课程教学的重要组成部分,我们要求给学生提供单人单机的实验条件,虽然实验内容相同,但强调每个学生独立完成。教师不仅仅应关注最终的实验结果,还应在学生进行实验的过程中不断巡视,及时回答学生提问,或发现学生有疑难主动给予帮助。每个学生对课程教学内容的掌握程度不同,存在的难点也可能有差别,而且实验的进度更是差别明显,因此集中讲解并不必要,个别辅导才是更佳的选择。

2.6确立每周一次晚自习答疑

由于本课程教学内容多,而学时有限,在制定教学进度时无法留出完整的学时进行答疑。为此,我们尝试每周安排1名授课教师在学生晚自习时到教室答疑。通常教师不站在讲台上,而是在教室后面等待学生个别提问并解答。没有问题的学生则正常自习。经过一个学期的试验,这种方法效果较好,我们将其固定为一种辅助的教学手段。

3结语

篇7

房数字电视广播信号的传输方式传输前端机房是各种模拟电视、数字电视等广播信号源汇聚中心。由于公司根据不同用户群体对频道、内容的需求不同,以及不同时期业务过渡等需要,具有几套电视信号广播平台的有线电视网络公司应该不少。通过传输前端机房对各种广播信源信号进行一系列的分配混合之后,形成我们所需要的各种电视广播射频信号。射频信号驱动采用符合ITU标准规定的DWDM特定波长1550nm广播光发射机,前期模拟电视广播信号使用的是ITU28CH波长广播光发射机,企业用户广播信号使用的是ITU30CH波长广播光发射机,我们新搭建的数字电视广播信号使用的是ITU29CH波长广播光发射机,所有射频信号经相应光发射机调制为光信号后,采用DWDM技术使用光复用器,把3路光信号复用到一根光纤上,经过EDFA放大再分配后传输到各分前端机房。按照这种模式再搭建同样一套平台,和主路使用不同的光缆路由也分别传输到各分前端机房,作为各种电视广播信号的备份系统。广播光发射机和复用器一定要选择性能质量较好的产品,选用满足ITU标准规定的DWDM特定波长的广播光发射机,这样才不会造成各个波长信号之间的干扰,对系统信号的指标和稳定性起到很好的保障作用。传输前端数字电视信号平台建设时所使用广播光发射机尽量保持与原模拟信号所使用光发射机同类。由于数字电视整体转换应政策要求要包含少量的模拟频道,因此数字电视广播光发射机输入信号的模拟频道信号电平强度及指标按照设备要求要尽量与原模拟信号光发射机输入信号保持一致,数字电视信号保持比模拟信号低6~10dBμV,这样最终到达终端光节点才能保持与原模拟信号强度一致,不用重新调整光接收机输出电平,保证割接后信号的平稳过渡,如图1所示。

2分前端机房广播与窄播信号的传输

分前端机房在数字电视整体转换前所做的准备工作主要有两部分:分前端机房一级数字电视广播信号平台的搭建工作和为数字电视整体转换备用的CMTS、IPQAM、HFC网管信号等窄播信号系统的搭建工作。分前端一级数字电视广播信号平台的搭建相对简单,当主、备路电视广播光信号传输到分前端后,经过光开关对主备路光信号转换后,输出到光解复用器对光信号进行解复用,相应数字电视的29CH波长光信号被解出来。把解出来的数字电视光信号按照原模拟信号分前端的一级骨干广播光信号建设的结构模式进行复制,复制时尽量保证其在结构上和光功率输出上大体一致,最好能和模拟信号在物理位置上也保持相近,这样在调整电视广播信号时就非常方便。窄播信号的混合以及传输仍保持和原模拟电视系统广播窄播相同的模式,我们采用的是广播窄播1550nm光信号DWDM光合波复用传输方式,把分前端CMTS、IPQAM、HFC网管监控的射频信号进行混合后驱动ITU窄播光发射机,光发射机输出后与分前端一级电视广播光信号通过复用器进行光合波,经EDFA放大分配后或直接传输到线路,覆盖分前端机房区域内有线电视及CableModem用户。由于分前端机房一般带用户比较多,受到成本和机房空间等因素的限制,对窄播系统也全部复制一遍不大可能,另外我们数字电视整转采用的是分区域分批次的方式,可以对窄播系统先行建设能满足5个区域批次数字电视整转的窄播信号,和本地的数字电视一级骨干广播光信号进行合波复用,这样就成为可以满足5个区域批次数字电视整转的广播窄播系统信号,作为数字电视整转初期信号割接使用。当然这备用的5个片区数字电视广播窄播系统信号,只是一个举例,具体要按照分前端实际使用划分的片区数来定备用系统信号片区数,实际使用片区多的可以多建几个备用片区。窄播光发也要选用DWDM特定波长光发射机。在搭建数字电视系统信号平台时,我们要充分考虑到分前端内不同功率光信号的需求:(1)机房直接传输光信号到光接收机的,一般2~3dB的光功率即可;(2)线路上有光分路器的需要5~15dB的光功率;(3)线路上是V-Hub、EDFA的,需要广播窄播合波直接传输到线路上的需要6~8dB的光功率。通过对图2在结构上简单的调整即可满足不同光功率的需求。信号系统搭建时,尽量保证机房光信号传输分配物理结构上的一致性,对个别特殊需求的可以稍做调整即可,这样对机房的运维管理工作会带来很大便利。

3数字电视整体转换广播窄播信号的割接

采用分区域分批次的整转方式,除了线路上覆盖有较多用户的大型节点外,其余光节点模数信号转换割接工作基本都是在分前端来完成,所以分前端机房是模拟电视信号转换为数字电视信号的主要割接点。在数字电视整转前,要对分前端机房覆盖区域内的光节点全景图资料进行详细统计,结合数字电视整换区域批次,提前做好相应的光节点片区规划工作。按照分区域分批次整转方式,我们可以把需要数字电视整转初期的用户,割接到前期已经建好备用的5个片区数字电视的系统信号上来。数字电视整转进行一段时间后,前期备用的5个片区光信号将使用完毕时,我们再对没有数字整转的信号进行调整,把未整转完数字电视信号但已经割接走很多信号的片区进行合并,这样就可以空余出来满足一到两片区数字整转的设备,把该片区的广播信号更换为数字电视信号即可。然后依次类推,逐步完成数字电视信号的割接。在割接信号时,窄播系统的规划也非常重要,尤其是IPQAM和CMTS系统,要根据光节点覆盖双向IPQAM和CableModem的用户数做好下行和回传设备的合理分配,充分考虑IPQAM端口下行流量及CMTS上行端口CableModem数量的负载均衡,这样就保证了用户视频点播的流畅和网络的顺畅,减少了后期的扩容工作,提高了网络运行的稳定性。在割接电视下行信号时,必然会对相应片区CableModem用户也进行割接,把下行割接到新建的数字电视系统信号时,回传也要割接调整到CMTS下行相对应的上行端口。在割接前要做好CMTS端口CableModem数量以及SNR值的统计,主要统计在线的CableModem数量,割接调整后要查看在新端口上线CableModem数量和割接前是否一致,接收发射电平是否正常,端口SNR是否正常。做好与整转现场人员的沟通,信号割接后在现场及时测量信号,如有问题及时处理。同时要做好资料的更新整理工作,保证资料的准确性。

4结束语

篇8

在DTMB标准中,系统数据帧结构是一种4层结构,日帧由1440个分帧构成,分帧包含480个超帧,超帧则定义为一组信号帧,而信号帧是系统帧结构的基本单元,由帧头和帧体两部分组成。信息数据码流依次经过扰码随机化、前向纠错编码后进行从比特流到符号流的星座映射,再进行交织后形成基本数据块。基本数据块与系统信息组合后形成帧体,而帧体与相应的帧头(PN序列)复接为信号帧,经过基带后处理转换为基带输出信号,该信号经正交上变频转换为射频信号。帧头部分由PN序列构成,采用I路和Q路相同的4QAM调制。帧体部分包含36个符号的系统信息和3744个符号的数据,共3780个符号,其中,系统信息符号用4QAM映射为36个复符号,数据长度为3744个nQAM符号。CMMB标准中,来自上层的输入数据流经过前向纠错编码、交织和星座映射后,与离散导频和连续导频复接在一起进行OFDM调制,调制后的信号插入帧头后形成物理层信号帧,再经过基带至射频变换后发射。物理层信号每1s为1帧,划分为40个时隙,每个时隙的长度为25ms,包括1个信标和53个OFDM符号。信标包括发射机标识信号(TxID)以及两个相同的同步信号。OFDM符号由循环前缀(CP)和OFDM数据体构成。OFDM数据体长度(TU)为409.6μs,循环前缀长度(TCP)为51.2μs,OFDM符号长度(TS)为460.8μs。发射机标识信号、同步信号和相邻OFDM符号之间,通过保护间隔(GI)相互交叠,保护间隔的长度(TGI)为2.4μs。

而关于DVB-T,是指利用开路地面传输媒介进行MPEG-2数字电视传输的标准,使用COFDM码分正交频分复用的信道调制技术,同时伴随着强大的纠错码,达到频谱利用效率与传输可靠性的平衡。COFDM信道调制编码技术提供两种子载波数量(2k和8k模式)、3种调制方式、4种保护间隔。DVB-T系统的信号以68个OFDM字符为一帧,每四帧构成一个超帧。每一个OFDM字符在8k模式下有6817个载波,在2k模式下有1705个载波,定义传输时间为TS,它由两部分构成,一部分为有用传输时间TU,另一部分为保护间隔Δ,每一帧中的字符由0〜67按序排列,每一帧中发送有用数字电视数据、导频(离散导频和连续导频)和传输参数信令(TPS)。表1列出了几种制式的OFDM符号的外部射频特征。

2基于OFDM符号特征的数字电视制式识别

在几种地面无线数字电视标准的帧结构中,OFDM符号作为最基本的单元承载着可以区别的一些外部特征。正交多载波调制技术把高速的数据流通过串/并变换,分配到速率相对较低的若干个频率子信道中进行传输,分别调制一路独立的数据信息,调制之后将若干个子载波的信号相加同时发送。每个OFDM符号是多个经过相移键控(PSK)或正交幅度调制(QAM)的子载波信号之和。根据表1列出的几种制式的外部特征,明显地在导频部分区别最大。对不同的数字电视制式,连续导频在OFDM符号中的子载波具有不同的位置,而离散导频则具有不同的子载波间隔特点。如DVB-T标准的OFDM符号中,离散导频等间隔为12,其功率为16/9,而传输数据的功率为1,而且离散导频数目很多,因此还可根据功率特性判断符号制式类型。与此类似,CMMB制式中离散导频间隔则为8等。

另外,由于CMMB标准中用于承载广播系统控制信息的控制逻辑信道采用BPSK进行调制,因此,若OFDM子载波中有BPSK信号,则可归类为CMMB标准。而DTMB标准和DVB-T标准可根据是否存在4QAM调制进行区分,因为在DTMB中信号帧的帧头采用的是4QAM调制,在DVB-T中不存在这种调制。OFDM复等效基带信号可以利用离散傅立叶逆变换(IDFT)的方法来实现。由于在数字调制信号中,星座图与调制类型有一一对应的关系,能同时反映PSK和QAM调制信号及其调制阶数的差别。得到OFDM子载波的调制信息后,可根据3种无线数字电视标准载波的调制特点,结合连续导频和离散导频的位置与幅度信息,对所测信号进行归类。基于OFDM符号的上述基本特征,我们在一个硬件实验平台上把相应的处理算法代码写入FPGA和DSP,成功地实现了对3种地面数字无线电视制式的识别。

3信号接收平台与分选识别实验

推荐期刊