时间:2023-03-10 14:53:12
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇电力技术论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
1.变电站技术的自动化变电站是电力系统中的重要部分,变电站中电气自动化技术的应用,主要是将计算机和通讯技术结合在一起,对数据信息进行集中处理和分析,并重组优化变电站设备和电力系统。这种技术对各个系统的互连配置进行了简化,操作起来更加方面快捷,满足了电网自动化建设的要求,另外数据监控的利用时微机保护功能进一步完善,并且还能有效识别处理系统内单元模块的故障,实现电力系统的安全、稳定运行。
2.配电网技术的自动化配电网技术的自动化技术主要运用在改造城乡的配电网上,目的是进一步实现电网的自动化,解决城乡自动化系统中的问题,促进电网的发展,这样才有利于确保电网运行的平稳安全,提高企业的经济效益。通过运用电气自动化技术能对用户计量表进行数据分析,及时排查出故障,减少切点情况的发生,降低用电量损失。另外,利用系统检测能计算出线路线损,保证线路运行更加通畅。
二、电力工程中电力自动化技术的应用
1.现场总线技术几年来,现场总线技术逐渐兴起,并在电力工程中起着不可或缺的作用。现场总线技术,不仅有利于实现智能自动化装置和控制器之间的连接,还有利于解决电气设备与高级控制系统间的信息传递问题。具体来说,这项技术就是将传感器和监测系统所获得的信息参数传递到计算机上,计算机通过分析数据模型,显示出电网的运行状态以及故障,然后利用布线技术将最终指令传送到控制设备上,进而实现电力系统的控制功能。现场总线技术优势是,利用信息技术就能对电力系统的现场设备进行远程操作,这样就大大降低了管理难度,而且有利于技术人员分析不同渠道的供电数据,以此全面掌握用户的用电需求,制定出行之有效的电力营销策略。
2.主动对象数据库技术作为电力自动化关键技术之一,主动对象数据库技术给软件工程造成了非常大的变革,也影响着软件的开发与利用。在电力工程中,主动对象数据库技术是一种监控技术手段,可以主动对电力系统的运行进行监督控制,以提高供电的可靠性,还有利于降低对信息数据的处理和计算速度,这样处理电力数据的成本也就大大减少了。采用对象技术和触发机制,可以实现对数据库的自动监控,而且信息数据在处理之后能够提高准确率和利用价值,这样相关技术人员就能对数据进行恰当处理,操作使也有了更加准确的数据资料可以参考。目前随着计算机信息技术的更新与发展,数据库技术也得到了更加复杂和全面的功能,更多先进的设备进入电力自动化建设,有利于提升电力系统的自动监视与控制功能,进而满足工业生产和生活的需要。
3.光互连技术在继电和自动控制系统中,光互连技术运用得比较广泛,这种技术主要是利用探测器功率限制电力扇出数,提升电力系统的集成度,并且不存在信道对带宽的限制,有利于实现重构互连,另外光互联技术的干扰性比较强,能使数据传输更加便捷。而电子传输和电子交换技术的运用,不仅有利于拓展互联网络,还能促进编程结构的不断改善,让电力系统的灵活性得到增强。除此之外,光互连技术还具备强大的数据处理能力,可以通过搜集和分析电力系统的数据资料,及时找到出现故障的位置,以提高电力故障的处理效率,尽可能避免因故障带来的不必要损失,这样才能提高电力服务的质量。光互连技术还有非常强的数据处理功能,在技术使用方面更具灵活性,产生的画面也更为清晰,为电力调度人员开展电力调度工作提供了参考标准和依据,因此在电力系统中被广泛运用。
三、结束语
1.1发电技术———燃料电池
目前在电力技术中较为新颖的一种技术形式,实际上就是燃料电池,而燃料电池本身在实际使用的过程中,实际上就是通过内部化学物质反应的方式,将释放出的相关化学能,直接转换成为电能。从相关的统计数据来看,燃料电池表现出的发电率极高,如果说单纯的采取联合循环式的燃料电池进行使用,那么其所表现出的发电率能够维持在85%左右。不仅如此,还由于燃料电池表现出的负荷不高,那么负荷变化的情况下,便能够有效的进行跟踪,满足高调峰需求。燃料电池在节能上也只是存在着较低的污染问,在燃料电池技术持续完善的情况下,甚至能够达到零排放以及节水的效果,进而最大限度的促使能源缺乏现象得以解决。
1.2交流输电
交流电技术已经在是如今的电力技术体系中,发展到了一个极为成熟的地步,特别是在电力的分配以及输送上,都呈现出了极大的提升。在实际使用的过程中,完全可以有效的促使电网资源利用效率大幅度提升,这对于电能体系的利用高效性有着极大的促进意义。在这一过程中,交流输电电力技术在大功率之下,表现出的高压开关,一般都是直接使用的大功率电子器件,而FACTS设备实际上还包含了其他形式的电力设备技术,这方面的技术应用,对于电力系统实际运行过程中的调节工作,有着极为良好的改善效果。并且在电力系统运行稳定的功能需求上,交流输电技术在其中发挥出了至关重要的作用。
1.3太阳能电力技术
太阳能技术本身属于大自然中可使用的最多自然资源,并且在这其中也表现出了较高的能量转换率。太阳能辐射本身在实际对地球进行照射的过程中,会由于纬度的差异性,而表现出一定的不同,地球上最大太阳照射率870-3400KWh/m2。根据中国科学院对电力研究的分析,太阳能电池和其他电池有所不同———只可用于小面积地方。每年的供量大概是3500KWh/m2到5500KWh/m2之间。一般来说可以满足我国普通家庭一年的用电量。太阳能发电技术具体包扩了两个方面:①利用太阳能的热动力发电的技术;②利用光伏发电的技术。所谓光伏发电,就是利用太阳能将其转变为电能,的技术。随然太阳能发电具有很多优势,但是因为一些局限性,在全球范围内光伏发电的规模还十分小,但是在未来几十年内,相较于常规电力技术,光伏发电技术肯定会慢慢啤机开来。
1.4城市化的供电技术
随着现代化社会的不断发展,电能的质量和供电的可靠性要求也在提高。在现代化社会里存在着较为复杂供电方式和供电的负荷密度,需要相当大的发展空间和灵活性,并且需要较为稳定可靠的电力技术相辅相成,从而真正意义上的满足电网的升格和不断增加的供电负荷,其电网建设所具备的电力技术也相对复杂。例如:新型的GIS设备、集成技术和配电网的保护等。高压下的直流配电技术,即骨干网架的高压直流电缆,以及自变流的电力技术的一种流向用户工频或者是高频下供电技术在城市供电中普遍应用。
2电力生产安全
2.1继电保护运行管理与技术监督
在电力生产安全方面需要保证电气设备运行的可靠性,因此要求我们能在日常工作中及时发现并排除安全隐患,建立电气设备隐患和缺陷库,减少保护装置动作的机会。如确有故障存在,则需要保护装置可靠正确动作切除故障,将故障设备隔离,避免扩大事故范围,以免造成更大的损失。在此基础上整合计算机的运行维护与管理、保护装置的入网管理,降低电气设备的缺陷发生率,对保护装置严格按规范进行定期校验,并有试验合格可以投入运行的确切结论,对于母差、主变差动及光纤纵差等保护尤其要重点关注,保证各二次回路的正确接线,避免继电保护装置设备产生误动或拒动。
2.2完善电力生产的安全机制
安全机制在一定程度上可以带动工作人员的安全生产积极性,从而实现了安全事故的控制管理和安全生产的良性循环,保证了工作人员生命安全和电网安全。建立相关的安全机制,规范了生产管理的各项工作流程,体现了标准化作业的安全性,保证了电力生产的正常、稳定、安全进行。通过安全保障机构建立,以安全生产为第一要素,重点扶持安全生产,并且建立有效可行的机制;建立责任制度和安全管理制度,规范生产行为,让考核、管理和执行做到有据可依的网络化的机制体系,从根本上落实电力生产安全。
2.3加强电力企业的安全文化的建设
企业中的员工是企业主体部分,无论是企业的内部还是外部都不能脱离人员因素的重要影响作用,所以,调动企业员工的能动性就显得非常重要。因此,从管理角度入手,需加强电力企业生产安全方面的管理,提高员工的生产效率与工作责任心,从而为电力发展创造更大的发展空间和经济效益。逐级签订《安全目标责任书》、《人员互保责任书》、《四不伤害责任书》等,使每一个员工始终绷紧安全这根弦,做到警钟长鸣。其次,建设电力生产的安全文化中心的根本是树立安全意识,让员工从根本上认识到生产安全的利害关系,使安全意识深入人心。
3结论
1.1电力技术的概念我们所说的电力技术就是通过使用电力器件或系统变换来达到控制电能,使电网中的电能能够有效地传输到各生产单位或者居民家中的一项现代化技术。
1.2电力技术对电网调度运行的应用
(1)电力技术是电网运行的关键,只有将电力技术运用到电力调度运行中去才能保证电网的安全有效运行。
(2)电网的调度是对电网输送电能过程中的状态实行实时监控,确保经济调度并对所有的意外情况发生的可能性进行有效地分析和对已经发生的安全事故进行处理。电网的运行的质量和效率直接关乎到整个电网的运行以及电力有关的企业的经济效益。
(3)随着科学技术的发展,多种多样的电力技术被发明创造出来,运用先进的电力技术能够有效的提高电网电力调度的效率,并能对运行的电网进行信息采集、监控、分析运行状态并对所有的数据进行处理工作,诊断出电网的错误点并能快速修复故障,也可以调整整个电网的负荷,对电能进行优化配置,使电网顺利输送电能。综上可见电力技术是电力调度必不可少的技术并能有效地推动电网的安全性,使电网稳定运行。
2电力技术在电力调度运行中的应用
2.1基于广域测量系统(WAMS)的动态EMS系统(AEMS)
2.1.1什么是AEMS所谓的AEMS是建立在WAMS之上的由动态测量系统、通信系统、中央处理系统、和同步定时系统四部分共同组成的一个电力技术系统。这个能够对同步定时的母线电压和发电机电势正序分量的空间矢量族。因此这个系统可以实现对电网的整体状态的动态评估,测量发电机的运行状态和电网输电过程中其他的震荡现象。
2.2为什么要建立AEMS?随着经济对于电力的需求,电网改造工作正在全国范围内进行着改造工作,这也就使得电力的协调工作越来越困难,并且整个电力的运输安全稳定性下降,这种情况在现有的EMS系统下对于电力的运行变得极为不利,因此必须加强整个电网的调度的稳定与安全性的研究与探讨工作。从而使得更为先进的AEMS得以运用。
2.1.1电力电子技术的应用
(1)高压直流输电。高压直流输电是一种可以保证整个电网系统动态的稳定性和电力疏导的两端系统的稳定性能的技术,并且高压直流输电中的核心设备和技术(换流阀和换流技术)正在变革和研究。它主要是在长距离输电的情况不受稳定性的限制。在运用中由于直流电不必要求两端的系统进行同步的工作,因此可以用两个甚至更多个不同频率的交流电网进行链接工作,因此对于这种高压直流输电的运用在经济性和技术两个层面来说的话,未来的发展前途不可估量。
(2)不间断电源。不间断电源是一种紧急的供电系统,这种系统是电力自动化系统能够安全、稳定运行的最基本的要求和基本保障,这种电源对于计算机通信系统和其余的不能断电的场合来说是一种非常可靠并且具有极高性能的电源,在电力调度中得到极大的推广和广泛的应用。
(3)柔流输电。柔流输电主要是采用现行的电力电子技术对交流输电系统进行连续、灵活、重复控制等柔性控制,并对协调控制进行有效地优化工作,这样可以有效提高对于电力疏导能力和它的可控性。对于柔流电控制系统目前有数十种,可以按照它的安装位置分为三大类即发电型、输电型和供电型。他们这三种类型的安装装置都是通过快速有效地控制电力系统中电压、功率等变量,并通过对变量的控制来加强电网交流电的运行稳定性。目前为止已经运用的柔流电控制器有串联补偿器和静止调相机等多种。
2.3安全稳定控制技术
2.2.1安全稳定控制技术的作用安全稳定控制技术就是一种系统保护或者说是一种特殊的保护整个电力系统的稳定和安全运行的控制技术,随着电网的革新和智能化这种系统得到了更大面积的推广和应用。
2.2.2安全稳定控制技术的分类
(1)按照应用分:受端电网侧、送端电网侧、电网解列。
(2)按照范围分:区域电网控制、大区联网控制、局部电网控制。
(3)按照稳定类型分:电压稳定控制、设备过负荷控制、暂态稳定控制、失步控制。
3变电站综合自动化技术
3.1什么是变电站综合自动化技术变电站综合自动化技术是目前正在处于试用阶段的一项新发展起来的技术,它是以计算机技术为基础,用现有的数据通信为手段达到信息共享的目标。能够实现当前电网下对于故障录波、电度采集、四遥、重合闸和对电路的保护,是一种多功能的专家综合系统。
3.2变电站综合自动化技术的特点目前的电网大多是采用分层分布式综合自动化系统,这种系统是一种新型的设计系统,它主要是用面向间隔的设计代替了传统的面相功能的设计。这种系统是通过安装的数据采集装置和我们的变电站系统相连,通过专用的网络实现所有数据的共享工作。这种系统具有实时性、灵活性和可靠性。在很大的程度上实现了专业的电网调度自动化,从而很好的管理了整个电网的运行。
3.3对于调度运行工作的要求随着电力系统的电网的完善和改造,对于县级等小电网设施是一个不小的冲击,这类电网时间较久系统落后,调度等方面比较闭塞,所以必须进行大面积的改造工作来实现新兴技术的应用,以达到更好的调度工作。
4雷电定位技术的应用
4.1为什么要运用雷电定位技术在平时的电力输送过程中,遇到阴雨天气对于电网的损坏程度很大,并且在摸查时候困难较大,不能有效找到出事地点,从而可能引起大面积的停电造成经济损失和人民的生活不便。因此采用雷电定位技术就可以有效解决这种问题的出现,提高了工作的效率。
4.2雷电定位系统的作用在电路被雷电击中之后会出现电路跳闸的情况,及时找到被雷电击中的的位置是一个十分重要的任务,在雷电定位系统没有使用之前往往会消耗大量的人力物力进行查找事故点,这种工作往往浪费时间不容易而没有效果。在采用了雷电定位系统之后可以就跳闸的部位进行有效的定位,在短时间内可以分析出具体的遭受雷击的部位,通过电脑告诉有关人员,然后指挥人员会派出专人进行现场查看工作,这样很大程度上节约了时间,提高了效率,可以有效的避免经济损失。
4.3确定线路跳闸原因与雷击的关联性在没有雷电定位系统之前,出现跳闸的情况我们会认为是出现了雷击,但是在系统出现之后我们可以很容易的确定雷击部位,并通过传回的数据进行有效地分析,准确判断是否跳闸与雷击有关。这个系统的运用有效的提高了工作人员的工作效率。
4.4对雷击的有效防范这个雷击定位系统能够将多处的雷击破坏进行有效地定位工作,并将所有的数据进行汇总反馈工作。在汇总后可以有效地分析出雷击的次数并可以针对这些雷击的次数及地点采取有效的防范措施。
5电力调度运行对电力市场化运营技术的应用
电力是一种特殊的能源,要想在能源市场是取得应有的份额,必须发展电力市场化系统。电力市场化系统是电力大规模化和自动化发展后的必然趋势。
5.1电力市场化运营技术在电力调度上的作用要想实现电力企业市场化必须要提高电力系统的稳定性,并且联合电力市场上的其余成员制定一定的电力运营规则,实现电能安全生产、传输、配送服务上的和谐统一,要想实现这一目标离不开强有力的技术支持,其中EMOS系统深受电力工作者的喜爱。
5.2调度人员对电力市场化运营的意义虽然电力供应的市场运营需要依赖先进的技术,但是调度工作者在这个运营的过程中也有着不可替代的地位,他们是系统的操作者和实行者。在所有的技术支持的条件下他们还必须有自己的判断意识,做到公正、公平、公开。因此所有的工作人员要充分认识电力企业运营市场化,提升自己的业务水平和操作水准,在系统支持和运行安全的基础上掌握电网的调度,从而满足市场和消费者的需求,进而促进企业的市场利益最大化。
6结语
总而言之,现代电力电子技术的发展是从低频技术到高频技术处理问题为主的,从传统电力电子技术向现代电力电子技术方向发展。当下,电力电子技术电力电子技术成为环保、节能、全自动化、智能化、机电一体化的基础,正向着应用技术高频化、产品性能绿色化、硬件结构模块化的方向发展。
2电力电子技术对电力系统的重要作用
电力系统由输配电路器、发电设备和伏在用电设备三大部分组成。电力系统是历史上逐步扩建,直到联网之后才发展起来的,是一个地域分布广、设备众多、运行参数相互影响且瞬变很快的大系统,其对于安全、经济、高效、优质的运行具有重大意义。随着电力电子技术的发展,电力电子设备已经着手进入电力系统,并为解决电能控制提供了技术手段。据不完全估计,发达国家在用户最终使用的电能中,有60%以上的电能不得不经过一次或者更多的电子变流装置的处理。电力系统在面向社会现代化的进程中,电力电子技术就是关键技术之一。可以不放厥词地说,如果脱离了电力电子技术,电力系统在如今的成就将不会如此。
3电力技术在电力系统中的应用
3.1电力系统的智能控制
电力系统的控制应用与研究在先前的40多年内,大体上可分为三个阶段:以传递函数的单输入、单输出基础的控制阶段;以线性最优控制、非线性控制及多台电脑机器系统协调的控制阶段;智能性的控制阶段。智能控制是当今控制理论发展的新阶段,基本上是用来解决和处理那些用传统方法难以解决和解释的复杂系统的控制问题;特别是用于具有强非线性、模型不确定性、需要很强适应性的复杂系统。所以说,智能控制在电力系统工程某些应用方面的前景与路线非常广阔,在对其进行应用时,要由某些人工设置好的神经网络加以协调和控制。
3.2柔流输电系统
在输电系统一些特别重要的地方,采用电力装置对输电系统的主要参数(如相位差、电压、电抗、感抗等)进行调整控制,使输电更加可靠、更加精确,能具有更大的可控性和更高的效率。这是一种将微机处理技术、电力电子技术、控制技术等高新技术,应用于高压输电系统,以提高系统可控性、运行性、可靠性能和电能质量,而且可获取大量节电效益的新型综合技术。
4基于电力电子技术的智能电网在电力系统中的发展和应用
4.1前景
对于电力行业,智能电网是未来的大势所趋,可再生能源是推动传统电网向智能电网转型的重要原动力。传统的集中式、大容量、可计划的发电方式正在受到清洁化、不稳定、灵活可调节、分布式的发电方式冲击。以前的结构是电厂尽可能集中、大容量。这种集中式大容量的电厂发出来的电,通过电网输配电送到千家万户使用,它是单向的。而现在随着风电、光伏等可再生能源的兴起,对电网的稳定性、可调性提高了要求。但可再生能源由于具有清洁、靠近用户侧的优势,未来前景广阔,如何解决其先天的不稳定劣势,这就需要可再生能源发电变得更加智能,比如通过信息化、IT的技术、大数据分析等实现预测功能。因此,可再生能源是推动传统电网向智能电网迁移的重要原动力之一。一旦实现了向智能电网的转型,电价就可以根据未来的天气做出调整,人们的很多生活方式都会受到影响。智能电网影响的是整个产业链,无论是发电端,还是输配电环节,一直到最终的售电用电环节都会有深刻的变化。
4.2实现的手段
要让能源变得更加智慧,自然少不了IT技术的帮助。电力和IT,也就是信息系统深度融合到一起。以前的IT技术对电网来说是起支撑作用,但到了智能电网阶段,IT是真正实现智能电网的驱动力,是深度融合的,不可分割的。IT的信息系统技术架构对整个智能电网的构成是基础性的,这对我们来讲是个很大的机会。更美好的智能电网,是一个将用户、电力、设备紧密联接在一起的电网,是一个无时不在、无瓦不用的全联接电网。而这种美好图景,未来将与移动化、大数据、云计算、物联网等新概念结合在一起,巨大的革新需要众多企业参与其中。
5结束语
智能技术的应用,可以使设备具有自适应和自控制的能力,随着电子计算机和人工智能等理论和技术的不断发展和完善,电力控制系统的智能化进入到了崭新的历史时期。智能化的电力控制系统可以对操作过程中出现的故障进行准确的分析和判断,从而可以全面地提升电力系统的管理水平和服务质量。智能化技术在电力系统中的应用也成为了今后研究的重点内容之一。
二、电力技术的应用对电力系统的意义
电力技术的主要目的是实现对电力系统设备的控制,这种技术主要是通过计算机技术、电子信息技术和半导体技术来实现的,虽然电力技术在我国的电力系统中应用的时间不算长,但其发展速度却十分迅速,我国的电力系统已经有了一套比较完整的体系。电力技术在发电系统中的应用可以有效改善发电机等多种设备的运行特征,从而实现对电力系统功率的调节。主要的表现是:对大型发电机的静止励磁的控制、对水力和风力发电机的变速恒频励磁控制和对发电厂风机水泵的变频调速控制。在火电厂中,风机水泵的发电量占很大的比重,但它的效率也比较低,通过变频调速可以实现提高运行的效率,但是我国目前的企业很少有能够生产高压大容量的变频器,其精确度也有待提高。电力技术的目的是为了实现对电能的有效利用和提升电力行业的服务质量,其主要的特点有以下几个方面:提高电力行业的经济效益,电力技术的广泛应用不仅可以提高资源的利用率,降低人力成本和管理成本,而且还可以促进和完善电力系统的功能,从而使我国的电力行业朝着低耗能和高效率的方向发展。电力技术的应用使我国的电力行业和其他的新兴产业相融合,调整了产业结构,机电一体化的进程促进了电力行业的发展,提升了电力企业的实力。
三、应用到电力系统中的主要电力技术
传统的电力系统是通过电缆进行传输的,而电缆一般是铺在地下的,这也就增加了故障排查的难度。太赫兹波可以穿过泥土、塑料和石灰板等难以移动和清除的物质,可以对铺在地下的电缆进行有效的观察。太赫兹波发达的敏感性可以探测到非常细微的问题和缺陷,因此太赫兹探测器在电力系统中的应用不仅可以大大降低工作人员的劳动强度,维护人员安全,而且可以提高检测的精确度,降低企业的成本。太赫兹检测技术的运用还可以有效的抑制偷电行为,大范围的检测到偷电状况,减少偷电行为发生的概率。在电力系统中应用GPRS技术,可以实现电力系统对通信速度、质量和可靠性的要求。GPRS既可以作为远动通信的备用频道,又可以作为非实时系统的主要通道。它是一种基于GSM无线系统的无线分组交换技术,也就是无线分组业务,可以通过无线IP实现终端和终端或者终端到互联网之间的连接。GPRS技术的引用可以使用户免受断线的阻扰,保证数据传送和语音通话能够同时进行,分组交换技术的优势主要体现在两个方面:一方面提高传输速率,GPRS可以同时利用一个无线频道的全部时隙,可以达到理论上的最大传输速率,但在现实中,运营商不可能把所有的时隙分配给数据服务,但与其他的数据交换服务相比,仍然有很大的优势;另一方面是永不断线,只要在无线频道中,用户发送或者接受的消息就能通过GPRS实现实时连接。因为以上的优点,GPRS技术在电力系统中得到了广泛的应用。
四、电力技术在电力系统中的应用
(一)电力技术在发电环节中的应用
电力技术在发电环节中应用主要体现在对发电机中电磁和频率的控制。在我国大型电厂的发电机中主要采用的是静态电磁系统,随着电力技术的发展,电磁控制枢纽逐渐被取代,实现了对静态电磁的方便控制。不仅对静态电磁的进行了自身调整,也提高了电力系统的运行速度。电力技术在电厂电力系统中的普及,可以有效控制发电时水源头的压强和水力的流速,使水力发电系统随着水流的压强和流速改变而改变,从而保障发电机以稳定的效率运行。
(二)电力技术在输电环节中的应用
轻型直流输电技术(HDVC LIGHT)具有可靠性高、容量大、易调节和灵活性强等优点,这种技术应用到海底电缆或者在远距离输电时有着明显的优势,可以避免出现停运或者闪烁的状况。柔流输电技术(FACTS)最早是在20世纪80年代提出的,是目前发展比较迅速的新型技术,这种技术良好地结合了电子技术和控制技术,实现了对电力系统中电压、相位和功率等参数的控制,不仅改善了电能的输送状况,而且降低了电能在运输过程中出现的损耗,该技术的运用大大增强了电力系统的稳定性。对于电能的输送,高压直流输电技术成为近来关注的焦点,远距离的高压输电可以解决许多问题,与交流电相比,减少在相同条件下电能的损耗,稳定的电流减少了电抗压降,整体压降的减小可以减少对线路的投资,提供输送的稳定性。
(三)电力技术在配电环节中的应用
电力技术在电力系统中的应用不仅可以改善电能的配送质量,还可以增强供电的可靠性,最终实现各个电能用户都能快捷、安全、公平的用电。为了使电力技术在电力系统中的良好运用就需要对功率、电压、谐波等参数进行精确的控制,防止电能在输送的过程中出现波动或者扰动。电力技术是这一环节中应用到的主要技术,它和柔流电输电技术的应用技术原理是一样的。电力技术不仅可以扩展系统的配电能力,而且可以提高配电质量和可靠性。该电力技术的另一个优点是开发的成本比较低,因此其市场前景非常广阔。提高电力技术在电力系统中的应用还要强化我国的智能型电网,建设智能型电网可以实现电力的科学发展,从而更有利的实现电力能源的良好输送和提高使用的效率。建设智能型电网还可以提高其经济效益,促进节能减排,减少污染物的排放数量。实现清洁能源的标准化和电力系统控制运行的智能化。智能化的电网还可以实现电网和用户的双向互动,便于为用户提供优质的服务。智能电网实现的电力跨省交易也加大了对电力资源的调剂,有效避免自然灾害对电力系统的危害,为用户提供安全稳定的电源。
(四)电力技术在节能环保中的应用
1发电环节的规划
在发电环节中,电子技术主要应用于变频调速以及励磁控制方面。在各大应用中,最广泛的就是静止励磁系统,电子技术能够取代传统的励磁机环节,从而使运作的成本更低,但是却能够利用简单的构造得到更高性能的运作。与此同时,正是由于电子技术将励磁机这一环节取代,才使静止励磁迅速的进行自我调节,这就大大的提高了电力系统自身的运作效率。与此同时,在电厂发电机组的变速恒频励磁中,也应用到了电力技术。在水力发电方面,对于水力发电来说,在单位时间内,水流动量的大小以及水流源头的压力大小都会影响其效率的高低。所以,为了使电力技术在电力系统中的应用更加有效率,就需要对励磁电流的频率进行适当的规划以及调整,从而使电流的频率以及转速与电子技术上的要求相同,这样就能够保证发电机组在最高效率的情况下运作,使电力系统更加满足人们的需求以及应用,这个原理在风力发电以及核电中同样适用。为了使电力技术更加有效,还应该对风机水泵以及控制机组进行适当的规划。当电场中的电力系统在工作的时候,发电机组耗电量非常大,但是由于现今要求可持续发展,节约能源,就可以运用风机水泵变频机来将传统的变频器替代下来,这样,在高压电转换为低压电,或者是低压电转换为高压电的时候,就可以降低电能转换过程中的电能损耗的问题。所以,在实际的发电过程中,应该多运用风机水泵变频机,不断地进行探索与研究,进行最有利的电力系统规划。
2输电线路上的规划
由于电子技术在输电线路的应用上主要是高压直流电技术、柔流电技术、还有静止无功补偿技术等等方面,所以,就需要在这些方面进行有力的规划。首先,柔流输电技术在输电线路中,主要是以柔性的交流电设备进行运作。传统的用于控制电力功率的方式过于粗糙,不能够实现一边输电一边调整电能,这就使得传输电力时损耗大量的电力,但却要投入高昂的成本费用。但是现今常用的柔流输电技术能够在输电线路的关键部位应用电子装置进行控制,以便在电力输送的过程中将电能功率进行最合理的分配,大大降低电力输送的成本,减少电能的消耗,从而能够使电力系统的更加稳定、更加可靠。其次,在输电系统中,高压直流输电技术则是以晶闸管作为主要代表。晶闸管作为一项重要的电力技术发明,自被发明之后,就应用在直流电的输电线路中,在电力系统输送的过程中,电流的转换大大而降低了生产的成本,提高了电流交换设备在同等设备方面的竞争力。再者,静止无功补偿器经常被应用到电路输送的补偿以及负荷补偿中,对于大功率的电网,静止无功补偿器用来控制电压,同时也用来提高电力系统的稳定能力。它在运作的过程中,主要是通过电感器来得到无功功率,再通过调控电抗器,来进行平滑转变,它主要适用于中压输电线路以及高压输电线路中。
3配电过程中的规划
为了是配电系统提供更高质量的资源,就需要满足电压、谐波等方面的条件,与此同时,还要考虑到阻止电能配送的一切不够稳定的因素。在整个配电过程中,电力技术是控制着整个程序的质量,通过用户电力技术来实现。这就需要对整个配电过程进行合理的规划,这样才能够保证电力技术与电力系统的运作过程更加融洽、适合。
二结束语
(一)电力技术和能源相结合电力技术可以将风能水能和太阳能等自然能源转化为电能,不仅大大提高了对自然资源的利用率,而且还解决了我国依靠煤炭、石油等不可再生资源的现状。电力资源的使用符合科学发展观,能够实现我国经济的可持续发展,电力技术的主要发展趋势就是利用自然资源进行发电,完善的电力节能技术也能提高我国的能源节约效率,为了促进我国电力技术的发展,国家对其进行了大力的关注和支持。
(二)机电一体化的发展和应用在电力系统方面,我国主流的研究方向是通过电力技术实现对电能的科学控制和管理。在不久的将来,我国几乎全部的电能都是靠电力技术对其进一步处理,然后投入并使用。机电一体化可以有效的将电力技术和使用设备进行统一整合,随着最近几年机电一体化的快速发展,为我国电力技术的深入发展和应用创造了良好的条件。
(三)智能技术的推广智能技术的应用,可以使设备具有自适应和自控制的能力,随着电子计算机和人工智能等理论和技术的不断发展和完善,电力控制系统的智能化进入到了崭新的历史时期。智能化的电力控制系统可以对操作过程中出现的故障进行准确的分析和判断,从而可以全面地提升电力系统的管理水平和服务质量。智能化技术在电力系统中的应用也成为了今后研究的重点内容之一。
二、电力技术的应用
对电力系统的意义电力技术的主要目的是实现对电力系统设备的控制,这种技术主要是通过计算机技术、电子信息技术和半导体技术来实现的,虽然电力技术在我国的电力系统中应用的时间不算长,但其发展速度却十分迅速,我国的电力系统已经有了一套比较完整的体系。电力技术在发电系统中的应用可以有效改善发电机等多种设备的运行特征,从而实现对电力系统功率的调节。主要的表现是:对大型发电机的静止励磁的控制、对水力和风力发电机的变速恒频励磁控制和对发电厂风机水泵的变频调速控制。在火电厂中,风机水泵的发电量占很大的比重,但它的效率也比较低,通过变频调速可以实现提高运行的效率,但是我国目前的企业很少有能够生产高压大容量的变频器,其精确度也有待提高。电力技术的目的是为了实现对电能的有效利用和提升电力行业的服务质量,其主要的特点有以下几个方面:提高电力行业的经济效益,电力技术的广泛应用不仅可以提高资源的利用率,降低人力成本和管理成本,而且还可以促进和完善电力系统的功能,从而使我国的电力行业朝着低耗能和高效率的方向发展。电力技术的应用使我国的电力行业和其他的新兴产业相融合,调整了产业结构,机电一体化的进程促进了电力行业的发展,提升了电力企业的实力。
三、应用到电力系统中的主要电力技术
传统的电力系统是通过电缆进行传输的,而电缆一般是铺在地下的,这也就增加了故障排查的难度。太赫兹波可以穿过泥土、塑料和石灰板等难以移动和清除的物质,可以对铺在地下的电缆进行有效的观察。太赫兹波发达的敏感性可以探测到非常细微的问题和缺陷,因此太赫兹探测器在电力系统中的应用不仅可以大大降低工作人员的劳动强度,维护人员安全,而且可以提高检测的精确度,降低企业的成本。太赫兹检测技术的运用还可以有效的抑制偷电行为,大范围的检测到偷电状况,减少偷电行为发生的概率。在电力系统中应用GPRS技术,可以实现电力系统对通信速度、质量和可靠性的要求。GPRS既可以作为远动通信的备用频道,又可以作为非实时系统的主要通道。它是一种基于GSM无线系统的无线分组交换技术,也就是无线分组业务,可以通过无线IP实现终端和终端或者终端到互联网之间的连接。GPRS技术的引用可以使用户免受断线的阻扰,保证数据传送和语音通话能够同时进行,分组交换技术的优势主要体现在两个方面:一方面提高传输速率,GPRS可以同时利用一个无线频道的全部时隙,可以达到理论上的最大传输速率,但在现实中,运营商不可能把所有的时隙分配给数据服务,但与其他的数据交换服务相比,仍然有很大的优势;另一方面是永不断线,只要在无线频道中,用户发送或者接受的消息就能通过GPRS实现实时连接。因为以上的优点,GPRS技术在电力系统中得到了广泛的应用。
四、电力技术在电力系统中的应用
(一)电力技术在发电环节中的应用电力技术在发电环节中应用主要体现在对发电机中电磁和频率的控制。在我国大型电厂的发电机中主要采用的是静态电磁系统,随着电力技术的发展,电磁控制枢纽逐渐被取代,实现了对静态电磁的方便控制。不仅对静态电磁的进行了自身调整,也提高了电力系统的运行速度。电力技术在电厂电力系统中的普及,可以有效控制发电时水源头的压强和水力的流速,使水力发电系统随着水流的压强和流速改变而改变,从而保障发电机以稳定的效率运行。
(二)电力技术在输电环节中的应用轻型直流输电技术(HDVCLIGHT)具有可靠性高、容量大、易调节和灵活性强等优点,这种技术应用到海底电缆或者在远距离输电时有着明显的优势,可以避免出现停运或者闪烁的状况。柔流输电技术(FACTS)最早是在20世纪80年代提出的,是目前发展比较迅速的新型技术,这种技术良好地结合了电子技术和控制技术,实现了对电力系统中电压、相位和功率等参数的控制,不仅改善了电能的输送状况,而且降低了电能在运输过程中出现的损耗,该技术的运用大大增强了电力系统的稳定性。对于电能的输送,高压直流输电技术成为近来关注的焦点,远距离的高压输电可以解决许多问题,与交流电相比,减少在相同条件下电能的损耗,稳定的电流减少了电抗压降,整体压降的减小可以减少对线路的投资,提供输送的稳定性。
(三)电力技术在配电环节中的应用电力技术在电力系统中的应用不仅可以改善电能的配送质量,还可以增强供电的可靠性,最终实现各个电能用户都能快捷、安全、公平的用电。为了使电力技术在电力系统中的良好运用就需要对功率、电压、谐波等参数进行精确的控制,防止电能在输送的过程中出现波动或者扰动。电力技术是这一环节中应用到的主要技术,它和柔流电输电技术的应用技术原理是一样的。电力技术不仅可以扩展系统的配电能力,而且可以提高配电质量和可靠性。该电力技术的另一个优点是开发的成本比较低,因此其市场前景非常广阔。提高电力技术在电力系统中的应用还要强化我国的智能型电网,建设智能型电网可以实现电力的科学发展,从而更有利的实现电力能源的良好输送和提高使用的效率。建设智能型电网还可以提高其经济效益,促进节能减排,减少污染物的排放数量。实现清洁能源的标准化和电力系统控制运行的智能化。智能化的电网还可以实现电网和用户的双向互动,便于为用户提供优质的服务。智能电网实现的电力跨省交易也加大了对电力资源的调剂,有效避免自然灾害对电力系统的危害,为用户提供安全稳定的电源。
【论文摘要】:电能高效洁净地生产、传输、储存、分配和使用的技术将成为电力技术的重点领域。
“电力技术是通向可持续发展的桥梁”,这个论断已经逐渐成为人们的共识。研究表明,为了实现可持续发展,应尽可能把一次能源转换为电能使用,提高电力在终端能源中的比例。因为,在保证相同的能源服务水平的前提下,使用电力这种优质能源最清洁、方便,易于控制、效率最高。如果能将大量分散燃用的化石燃料都高效洁净地转换为电力使用,人们赖以生存的环境和生活质量就会大大改善。因此,电能高效洁净地生产、传输、储存、分配和使用的技术将成为电力技术的重点领域。以下将对若干电力前沿技术的现状和未来发展前景进行简单评述。
1.分布式电源
当今的分布式电源主要是指用液体或气体燃料的内燃机(IC)、微型燃气轮机(Microtur_bines)和各种工程用的燃料电池(FuelCell)。因其具有良好的环保性能,分布式电源与“小机组”已不是同一概念。
1.1微型燃气轮机
微型燃气轮机(MicroTurbine),是功率为几千瓦至几十千瓦,转速为96000r/min,以天然气、甲烷、汽油、柴油为燃料的超小型燃气轮机,工作温度500℃,其发电效率可达30%。目前国外已进入示范阶段。其技术关键是高速轴承、高温材料、部件加工等。可见,电工技术的突破常常取决于材料科学的进步。
1.2燃料电池
燃料电池是直接把燃料的化学能转换为电能的装置。它是一种很有发展前途的洁净和高效的发电方式,被称为21世纪的分布式电源。
1.2.1燃料电池的工作原理
燃料电池的工作原理颇似电解水的逆过程。氢基燃料送入燃料电池的阳极(电源的负极)转变为氢离子,空气中的氧气送入燃料电池的阴极(电源的正极),负氧离子通过2极间离子导电的电解质到达阳极与氢离子结合成水,外电路则形成电流。
通常,完整的燃料电池发电系统由电池堆、燃料供给系统、空气供给系统、冷却系统、电力电子换流器、保护与控制及仪表系统组成。其中,电池堆是核心。低温燃料电池还应配备燃料改质器(又称为燃料重整器)。高温燃料电池具有内重整功能,无须配备重整器。磷酸型燃料电池(PAFC)是目前技术成熟、已商业化的燃料电池。现在已能生产大容量加压型11MW的设备及便携式250kW等各种设备。第2代燃料电池的溶融碳酸盐电池(MCFC),工作在高温(600~700℃)下,重整反应可以在内部进行,可用于规模发电,现在正在进行兆瓦级的验证试验。固体电解质燃料电池(SOFC)被称为第3代燃料电池。由于电解质是氧化锆等固体电解质,未来可用于煤基燃料发电。质子交换膜燃料电池是最有希望的电动车电源。
1.2.2性能和特点
燃料电池有以下优点:(1)有很高的效率,以氢为燃料的燃料电池,理论发电效率可达100%。熔融碳酸盐燃料电池,实际效率可达58.4%。通过热电联产或联合循环综合利用热能,燃料电池的综合热效率可望达到80%以上。燃料电池发电效率与规模基本无关,小型设备也能得到高效率。(2)处于热备用状态,燃料电池跟随负荷变化的能力非常强,可以在1s内跟随50%的负荷变化。(3)噪音低;可以实现实际上的零排放;省水。(4)安装周期短,安装位置灵活,可省去新建输配电系统
目前燃料电池大规模应用的障碍是造价高,在经济性上要与常规发电方式竞争尚需时日。
1.2.3技术关键和研究课题
燃料电池的技术关键涉及电池性能、寿命、大型化、价格等与商业化有关的项目,主要涉及新的电解质材料和催化剂。熔融碳酸盐电池(MCFC)在高温条件下液体电解质的损失和腐蚀渗漏降低了电池的寿命,使MCFC的大型化及实用化受到限制。需要解决电池构成材料的腐蚀;电极细孔构造变化使电池性能下降等问题。固体氧化物燃料电池(SOFC)使用固体电解质且工作温度很高,对构成材料及其加工有特殊要求。为了得到高温下化学性稳定和致密性(不通过气体)的电解质,在氧化锆中加入Y2O3生成钇稳定氧化锆。为了降低工作温度,应尽可能减少电解质薄膜厚度。通常采用熔射法、烧结法和电化学蒸发涂层法制备电解质薄膜。实用的电解质膜的厚度为0.03~0.05mm。比较先进的已达到0.01mm。这样薄的电解质陶瓷材料除应当有足够的机械强度外,必须具有高度的气体致密性,否则将丧失燃料电池的性能。燃料极使用镍锆等耐热金属陶瓷,镍还用作燃料重整的催化剂,空气极在运行中处在高温氧化中,难以使用一般金属。铂的稳定性好,但费用昂贵,需要寻找替代材料,可用电子导电陶瓷。为了降低工作温度,另外一个重要的研究方向是寻找低温的质子导电的电解质。工作温度倘若能降低到700℃以下,SOFC的造价就可以大幅度降低。2.大功率电力电子技术的应用硅片引起的“第
2.1大功率电力电子器件的重大进展
电力电子学(PowerElectronics)的应用已经有多年的历史。电力电子学器件用于电力拖动、变频调速、大功率换流已经是比较成熟的技术。大功率电子器件(HighPowerElectronics)的快速发展也引起了电力系统的重大变革,通常称为硅片引起的第。
近年来,大功率电子器件已经广泛应用于电力的一次系统。可控硅(晶闸管)用于高压直流输电已经有很长的历史。大功率电子器件应用于灵活的交流输电(FACTS)、定质电力技术(CustomPower)以及新一代直流输电技术则是近10年的事。新的大功率电力电子器件的研究开发和应用,将成为电力研究前沿。
2.2灵活交流输电技术(FACTS)
灵活交流输电技术是指电力电子技术与现代控制技术结合以实现对电力系统电压、参数(如线路阻抗)、相位角、功率潮流的连续调节控制,从而大幅度提高输电线路输送能力和提高电力系统稳定水平,降低输电损耗。
传统的调节电力潮流的措施,如机械控制的移相器、带负荷调变压器抽头、开关投切电容和电感、固定串联补偿装置等,只能实现部分稳态潮流的调节功能,而且,由于机械开关动作时间长、响应慢,无法适应在暂态过程中快速灵活连续调节电力潮流、阻尼系统振荡的要求。因此,电网发展的需求促进了灵活交流输电这项新技术的发展和应用。