欢迎访问爱发表,线上期刊服务咨询

电化学8篇

时间:2023-03-10 14:50:52

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇电化学,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

电化学

篇1

一、以元素推断等知识为切入点,渗透电化学内容,体现元素化合物与电化学知识的有机融合

为拓展考查知识的宽度,在对电化学知识命题时,常常结合元素推断、物质推断、氧化还原反应、化学反应速率等知识,以提高试题的综合性。

例1 X、Y、Z、L、M五种元素的原子序数依次增大。X、Y、Z、L是组成蛋白质的基础元素,M是地壳中含量最高的金属元素。

回答下列问题:

(1)L的元素符号为______ ;M在元素周期表中的位置为__________________ ;五种元素的原子半径从大到小的顺序是__________________ (用元素符号表示)。

(2)Z、X两元素按原子数目比l∶3和2∶4构成分子A和B,A的电子式为______,B的结构式为______ 。

只要路是对的,就不怕路远。

欲望以提升热忱,毅力以磨平高山。______

(3)硒(se)是人体必需的微量元素,与L同一主族,Se原子比L原子多两个电子层,则Se的原子序数为______ ,其最高价氧化物对应的水化物化学式为______ 。该族2 ~ 5周期元素单质分别与H2反应生成1mol气态氢化物的反应热如下,表示生成1mol硒化氢反应热的是______ (填字母代号)。

a.+99.7mol・L-1

b.+29.7 mol・L-1

c.-20.6mol・L-1

d.-241.8 kJ・mol-1

(4)用M单质作阳极,石墨作阴极,NaHCO3溶液作电解液进行电解,生成难溶物R,R受热分解生成化合物Q 。写出阳极生成R的电极反应式:____________ ;由R生成Q的化学方程式:__________________。

命题立意:本题以元素的推断为背景,综合考查了元素符号的书写、元素位置的判断和原子半径大小的比较;考查了电子式、结构式的书写,元素周期律,和电极反应式、化学方程式的书写,是典型的学科内综合试题。

解析:(1)X、Y、Z、L是组成蛋白质的四种元素且原子序数依次增大,故分别为:H、C、N、O元素;M是地壳中含量最高的元素,为Al,其在周期表的位置为第3周第ⅢA族;再根据五种元素在周期表的位置,可知半径由大到小的顺序是:Al>C>N>O>H。

(2)N和H 1∶3构成的分子为NH3,电子式为;2:4构成的分子为N2H4,其结构式为。

(3)Se比O多两个电子层,共4个电子层,14电子层上的电子数分别为:2、8 、18、6,故其原子序数为34;其最高价氧化物对应的水化物的化学式类似H2SO4,为H2SeO4。

非金属性越强,与氢气反应放出的热量越多,故25周期放出的热量依次是:d、c、b、a,则第四周期的Se对应的是b。

(4)Al作阳极失去电子生成Al3+,Al3++3HCO-3Al(OH)3+3CO2,2Al(OH)3ΔAl2O3+3H2O。

答案:(1)O 第三周第ⅢA族 Al>C>N>O>H

(2)

(3)34 H2SeO4 b

(4) Al-3e-Al3+

Al3++3HCO-3Al(OH)3+3CO2

2Al(OH)3ΔAl2O3+3H2O。

二、以化学实验知识为切入点,渗透电化学知识,体现电化学知识和化学实验的有机融合

由于电化学知识在电极反应分析及电极反应式等知识中,会涉及电极材料、电解液中离子等性质的分析,因而在电化学考查中容易与化学实验融合在一起。如电解质溶液的制备、净化、电极反应产物的检验、电化学装置设计等等,从而提高试题的综合度,利于全面考查学生的基础知识和灵活解答问题的能力。在崇尚知识立意,注重考查能力的命题原则下,相信该类试题会备受推崇。

例2 下图是一个用铂丝作电极,电解稀的MgSO4,电解液中加有中性红指示剂,此时溶液呈红色。(指示剂的PH变色范围:6.8~8.0,酸色―红色,碱色―黄色)

回答下列问题:

(1)下列关于电解过程中电极附近溶液颜色变化的叙述正确的是____________(填编号);

①A管溶液由红变黄; ② B溶液由红变黄 ③ A管溶液不变色 ④B管溶液不变色

(2)写出A管中发生反应的反应式:____________________________________

(3)写出B管中发生反应的反应式:____________________________________

(4)检验a管中气体的方法是______________________________

(5)检验b管中气体的方法是______________________________

(6)电解一段时间后,切断电源,将电解液倒入烧杯内观察到的现象是______ 。

解析:A管中的电极与外电源负极相连,做电解池的阴极,发生还原反应,电极反应式为2H++2e-=H2,A管中溶液的PH增大,碱性增强,溶液由红色变黄色,剩余的OH-与Mg2+结合生成Mg(OH)2:Mg2++2OH-=Mg(OH)2。B管中的电极与外电源正极相连,做电解池的阳极,发生氧化反应,4OH-―4e-=2H2O+O2,溶液中OH-浓度减小,溶液酸性增强,颜色不发生变化。试管a中收集的气体为H2,收集后靠近火焰,会听到有爆鸣声,管口有淡蓝色火焰;试管b中收集的气体为O2,收集后将带火星的木条插入试管中,木条复燃。将电解后的溶液倒入烧杯中,会使阴阳两极的电解液被重新混合均匀。MgSO4是活泼金属的含氧酸盐,电解的实质是电解水,在两电极上分别产生H2和O2,同时两极区分别生成Mg(OH)2和H2SO4,当混合后两者反应重新生成MgSO4和水。

答案:(1)①④

(2)2H++2e-=H2(或2H2O+2e-=2OH-+H2) Mg2++2OH-=Mg(OH)2

(3)4OH-―4e-=2H2O+O2

(4)用拇指按住管口,取出试管,管口靠近火焰,放开拇指,有爆鸣声,管口有淡蓝色火焰。

(5)用拇指按住管口,取出试管正立,放开拇指,将带有火星的木条插入试管内,木条复燃。

(6)溶液呈红色,白色沉淀溶解(或大部分溶解)。

三、以新型化学电源为切入点,考查电化学知识

新型化学电源一般具有电压稳定、比能量高、高能环保、经久耐用等特点,以新型化学电源为载体的化学试题,既能体现化学知识的实用性,又能体现化学命题的时代性、新颖性,使试题在考查化学知识的同时,又能较好的考查学生分析问题、解答问题的能力,这种命题情景趋势将会继续延续。

对电化学知识的考查主要集中在以下基本方面:

1.可充电电池放电时电极极性判断及充电时与电源的连接

(1)放电时新型电池中负极材料元素化合价升高的物质发生氧化反应的物质物质

正极材料元素化合价降低的物质发生还原反应的物质物质

(2)可充电电池用完后充电时,原电池的负极与电源负极相连,原电池正极与电源正极相连。

2.可充电电池电极反应式的书写

含泪播种的人一定能含笑收获。

不是境况造就人,而是人造就境况。______

书写可充电电池的电极反应式,一般都是先书写放电的电极反应式。书写放电的电极反应式时,可遵循三步:①标出总式中电子转移的数目和方向,找出参与负极反应的物质;②写出一个较容易书写的电极反应式(书写时注意溶液对电极产物的影响,即电极产物在该溶液中能否稳定存在);③在电子守恒的基础上,用总式减去写出的电极反应式即可得另一电极反应式。

充电时电极反应式与放电时相反,充电的阳极反应式分为放电正极反应式,充电的阴极反应式分为放电负极反应式。

3.溶液中离子定向移动的判断

放电时,阴离子移向负极,阳离子移向正极;充电时,阴离子移向阳极,阳离子移向阴极。

例3研究人员最近发现了一种“水”电池,这种电池能利用淡水与海水之间含盐量差别进行发电,在海水中电池总反应可表示为:5MnO2+2Ag+2NaCl=Na2Mn5O10+2AgCl,下列“水”电池在海水中放电时的有关说法正确的是( )

A.正极反应式:Ag+Cl--e-=AgCl

B.每生成1molNa2Mn5O10转移2mol电子

C.Na+不断向“水”电池的负极移动

D.AgCl是还原产物

考点:电极反应和电池反应方程式;原电池和电解池的工作原理。

解析:根据电池总反应可判断出反应中Ag的化合价升高,被氧化,Ag应为原电池的负极,AgCl是氧化产物;方程式中5MnO2生成1Na2Mn5O10,化合价共降低了2价,所以每生成1molNa2Mn5O10转移2mol电子;在原电池中阴离子向负极移动,阳离子向正极移动,以形成闭合电路。

A项,根据电池总反应:5MnO2+2Ag+2NaCl=Na2Mn5O10+2AgCl,可判断出Ag应为原电池的负极,负极发生反应的电极方程式为:Ag+Cl--e-=AgCl,故A错;B项,根据方程式中5MnO2生成1Na2Mn5O10,化合价共降低了2价,所以每生成1molNa2Mn5O10转移2mol电子,故B正确;C项,在原电池中阴离子向负极移动,阳离子向正极移动,故C错;D项,反应中Ag的化合价升高,被氧化,Ag应为原电池的负极,AgCl是氧化产物,故D错。

篇2

一、知识体系构建

1.原电池、电解池、电镀池的比较

原电池电解池电镀池

定义把化学能转化为电能的装置把电能转化为化学能的装置应用电解原理在某些金属表面镀上一薄层其他金属或合金的装置

装置举例

形成条件①有两个活泼性不同的电极。

②有电解质溶液。

③电极间形成闭合回路(或在溶液中接触)

①有外加电源及与之相连的两个电极。

②有电解质溶液(或熔化的电解质)。

③形成闭合回路

①镀层金属接电源正极,待镀金属接电源负极。

②电镀液必须含有镀层金属离子(电镀过程中浓度不变)

电极名称负极:较活泼的金属(电子流出的极)

正极:较不活泼的金属(或能导电的非金属)(电子流入的极)

阳极:与电源正极相连的电极

阴极:与电源负极相连的电极名称与电解池相同,但有限制条件:阳极――镀层金属,阴极――待镀金属

电极反应负极:氧化反应

正极:还原反应

阳极:氧化反应

阴极:还原反应

阳极:金属电极失电子溶解

阴极:电镀液中的金属阳离子得电子

电子流向

负极导线正极

电源负极导线阴极

电源正极导线阳极

与电解池相同

(1)同一原电池的正、负极的电极反应中得、失电子数相等;(2)同一电解池的阴、阳极的电极反应中得、失电子数相等;(3)串联电路中的各个电极反应得、失电子数相等。这三个相等,既是写电极反应式的依据之一,也是进行电化学计算的依据之一。

2.原电池的常见类型

根据电极材料活泼性和反应情况的不同,可将原电池分成不同类型。

(1)在金属―金属构成的原电池中,相对活泼的金属一般作负极,被氧化,生成金属阳离子;相对不活泼的金属一般作正极,溶液中的阳离子被还原(一般被还原为单质)。

例如,电池ZnH2SO4Cu的反应式:

负极 Zn-2e-Zn2+

正极 2H++2e-H2

总反应 Zn+2H+Zn2++H2

(2)在金属―非金属构成的原电池中,非金属电极(如石墨),一般只起导电作用,故作正极;金属电极作负极。

例如,电池FeH2SO4C的反应式:

负极 Fe-2e-Fe2+

正极 2H++2e-H2

总反应 Fe+2H+Fe2++H2

(3)在金属―金属氧化物构成的原电池中,金属氧化物中的金属元素已是最高(或较高)价态,难被氧化,故作正极,并直接参与还原反应;金属电极作负极。

例如,电池ZnKOHAg2O(银锌纽扣电池)的反应式:

负极 Zn+2OH--2e-ZnO+H2O

正极 Ag2O+H2O+2e-2Ag+2OH-

总反应 Zn+Ag2OZnO+2Ag

(4)用两个惰性电极作为电极的燃料电池,通有还原性气体的电极为负极,通有氧化性气体的电极为正极。如氢氧燃料电池,其电极为可吸附气体的惰性电极,如铂电极、活性炭等,两极分别通入H2和O2,以40%的KOH溶液为电解质溶液,反应式为:

负极 2H2+4OH--4e-4H2O

正极 O2+2H2O+4e-4OH-

总反应 2H2+O22H2O

3.金属的腐蚀和防护

(1)金属的腐蚀

金属的腐蚀分化学腐蚀和电化学腐蚀两种。

化学腐蚀电化学腐蚀

定义金属与接触到的物质直接发生化学反应而引起的腐蚀不纯的金属与电解质溶液接触时发生原电池反应而引起的腐蚀

条件金属与非电解质等直接接触不纯的金属或合金与电解质溶液接触

电子得失金属直接把电子转移给有氧化性的物质其中的活泼金属将电子间接转移给氧化性较强的物质

现象无电流产生有微弱的电流产生

本质金属被氧化的过程较活泼金属被氧化的过程

实例金属与O2、Cl2等物质直接反应钢铁在潮湿的空气中被腐蚀

相互关系化学腐蚀与电化学腐蚀往往同时发生,但电化学腐蚀更为普遍,危害也更严重

(2)钢铁的电化学腐蚀原理

钢铁长时间在干燥空气中不易腐蚀,但在潮湿的空气里易被腐蚀。原因是钢铁表面会吸附一层水膜,这层水膜中含有少量的H+、OH-,还溶解了少量的CO2、O2等,即在钢铁表面形成了一层电解质溶液,铁和碳构成了微原电池。

①吸氧腐蚀:此时电解质溶液酸性较弱,呈中性或碱性。

负极 2Fe-4e-2Fe2+

正极 2H2O+O2+4e-4OH-

总反应 2H2O+O2+2Fe2Fe(OH)2

在空气中,4Fe(OH)2+2H2O+O24Fe(OH)3,Fe(OH)3失水而成铁锈Fe2O3•xH2O。

②析氢腐蚀:此时电解质溶液的酸性较强。

负极 Fe-2e-Fe2+

正极 2H++2e-H2

总反应 Fe+2H+Fe2++H2

一般情况下,钢铁的腐蚀以吸氧腐蚀为主,吸氧腐蚀和析氢腐蚀的主要区别在于正极反应。

(3)金属的防护

金属的腐蚀主要是电化学腐蚀中的吸氧腐蚀,只要减少形成原电池三个条件中的一个,就可防止原电池反应的发生。

①内因:改变金属内部结构。

②外因:采用适当方法将金属与介质(主要指电解质溶液)隔离,如喷漆、涂油、电镀、表面钝化等。

③电化学保护法:如船体外壳嵌锌,将钢铁外壳与锌人为的构成原电池,腐蚀锌,保护船体。或外加电源,使被保护的金属与电源的负极相连,成为阴极而被保护。

二、复习方法指导

通过氧化还原反应,实现化学能和电能的相互转化,这就是电化学的基本原理。要复习好这部分内容,应注意以下问题。

1.联系氧化还原反应

能自发进行的氧化还原反应在理论上都能设计成原电池,电解是非自发的氧化还原反应;将氧化还原反应方程式拆成氧化反应和还原反应的两个半反应就是电极反应,原电池的负极和电解池的阳极都发生氧化反应(负阳氧:谐音“沸羊羊”);离子氧化性和还原性的强弱决定了电解时溶液中离子的放电顺序;电子得失守恒规律是进行电化学计算的基本依据。

2.对比容易混淆的知识

准确理解概念是学好化学的基础,本章有很多容易混淆的概念,需要对比复习。除了前面对比过的“三池”(原电池、电解池和电镀池)、化学腐蚀和电化学腐蚀、析氢腐蚀和吸氧腐蚀外,还有很多可以进行对比的知识点。例如,氢氧燃料电池在不同性质的电解质条件下电极方程式的写法,电解池在惰性电极下和非惰性电极下的放电规律,原电池和电解池的电极判断和电极反应类型,等等。只有不断进行对比,才可以澄清学习中的模糊认知,加深对知识的理解。

3.归纳重要规律或方法

善于总结一些实用的解题规律或方法,对于提高复习的效率至关重要。

(1)原电池、电解池和电镀池的判断规律

①若无外接电源,则可能是原电池,然后依据原电池的形成条件判定,主要思路是“三看”:

先看电极,两种活泼性不同的金属(或其中一种是非金属导体)作电极。

再看溶液,在电解质溶液中能自发地发生氧化还原反应。

后看回路,用导线连接的两电极与电解质溶液接触并形成闭合回路。

②若有外接电源,两极插入电解质溶液中,则可能是电解池或电镀池,若阳极金属与电解质溶液中的金属离子相同则为电镀池。

③若为无明显外接电源的串联电路,则利用题中信息,能找出发生自发氧化还原反应的装置为原电池。

(2)酸、碱、盐溶液的电解规律

用惰性电极电解酸、碱、盐的溶液时,可按下列步骤进行分析。

通电之前找离子:分析电解质溶液中有关物质的电离过程(包括电解质和水的电离),找出溶液中存在的所有离子。

通电之后四判断:

①判断离子的移动方向,阴离子移向阳极,阳离子移向阴极。

②判断离子的放电能力。

阳极――金属阳极>S2->I->Br->Cl->OH->含氧酸根>F-;

阴极――Ag+>Hg2+>Fe3+>Cu2+>H+>Pb2+>…。

③判断电极反应,书写电极反应式和总反应式。

④判断电解结果,两极现象、水的电离平衡结果、离子浓度、溶液的酸碱性、pH变化等。

酸、碱、盐溶液的电解规律

类型电极反应特点实例电解对象电解质浓度 pH电解质溶液复原

电解水型阴极:2H++2e-H2

阳极:4OH--4e-2H2O+O2NaOH水增大增大加水

H2SO4水增大减小加水

Na2SO4水增大不变加水

分解电解质型电解质电离出的阴、阳离子分别在两极放电HCl电解质减小增大通HCl

CuCl2电解质减小-加CuCl2

放氢生碱型阴极:H2O电离出的H+得电子,放出H2生成碱

阳极:电解质的阴离子放电NaCl电解质和水 生成新电解质增大通入HCl

放氧生酸型阴极:电解质的阳离子放电

阳极:H2O电离出的OH-失电子,放出O2生成酸CuSO4电解质和水 生成新电解质减小加CuO

(3)原电池电极反应式的书写方法

①列物质,标得失:按照负极发生氧化反应、正极发生还原反应,判断出电极反应产物,标出得失电子的数量。

②看环境,配守恒:电极产物在电解质溶液的环境中,应能稳定存在,如碱性介质中生成的H+应让其结合OH-生成水。电极反应式要根据电荷守恒、质量守恒、电子守恒等加以配平。

③两式加,验总式:将两电极反应式相加,与总反应的离子方程式对照验证。

(4)可充电电池的判断方法

二次电池放电时相当于原电池,负极发生氧化反应,正极发生还原反应;充电时相当于电解池,放电时的正极变为电解池的阳极,与外电源正极相连,负极变为阴极,与外电源负极相连。

(5)金属腐蚀的快慢规律

①在同一电解质溶液中,金属腐蚀的快慢顺序:电解原理引起的腐蚀>原电池原理引起的腐蚀>化学腐蚀>有防腐措施的腐蚀。

②同一金属在不同介质中腐蚀由快到慢的顺序:强电解质溶液>弱电解质溶液>非电解质溶液。

③对于活动性不同的两种金属,活动性差别越大,氧化还原反应速率越快,活泼金属腐蚀速率越快。

④对于同一电解质溶液,电解质溶液浓度越大,金属腐蚀越快(钝化除外)。

⑤纯度越高的金属,腐蚀的速率越慢(纯金属几乎不被腐蚀)。

⑥不纯的金属或合金,在潮湿的空气中腐蚀的速率远大于在干燥、隔绝空气条件下的腐蚀。

(6)电解计算的方法

有关电解的计算通常是求电解后某产物的质量、气体的体积、某元素的化合价以及溶液的pH、物质的量浓度等。解答此类题的方法有两种:一是根据电解方程式或电极反应式列比例式求解;二是利用各电极、线路中转移的电子数目守恒列等式求解。利用电子守恒较为简便,但需注意灵活运用。

三、易错知识辨析

1.原电池的电极和电极反应

(1)从不同的角度分析,对原电池的电极类型可以有不同的理解:负极是较活泼的金属,发生氧化反应的一极,电子丰富的一极,电子流出的一极,电流流入的一极,被腐蚀的一极;正极相应是较不活泼的金属,发生还原反应的一极,电子贫乏的一极,电子流入的一极,电流流出的一极,被保护的一极。

(2)原电池正、负极的判断基础是自发进行的氧化还原反应,如果给出一个方程式判断正、负极,可以直接根据化合价的升降来判断。不管原电池的类型如何,不管电极是否参与反应,发生氧化反应的一极总是负极,发生还原反应的一极总是正极。把握了这一点,便可以做到以不变应万变。

(3)判断电极时,不能简单地依据金属的活泼性来判断,要看反应的具体情况。例如,Al在强碱性溶液中比Mg更易失电子,Al作负极,Mg作正极;Fe、Al在浓硝酸中钝化后,比Cu等金属更难失电子,Cu等金属作负极,Fe、Al作正极。

(4)燃料电池和普通电池不同,必须使用辅助电极,电极本身不参与反应,所采用的燃料一般为H2、CH4、CH3OH、CO等,助燃剂一般为O2(或空气)。

(5)原电池中正、负极的电极反应式作为一种特殊的离子方程式,对于强、弱电解质的书写形式,没有严格的规定,但必须遵循原子守恒和电荷守恒规律。

2.电解原理及其应用

(1)用惰性电极电解饱和食盐水时,Na+和水电离出的H+移向阴极,H+发生还原反应生成H2:2H++2e-H2,破坏了水的电离平衡(H2OH++OH-),导致阴极附近溶液中的c(OH-)>c(H+),溶液显碱性。由此可见,电解前如果向溶液中滴入酚酞试液,电解时阴极附近的溶液先变红。

(2)电解后要恢复原电解质溶液的浓度,需加适量的某物质。该物质可以是阴极与阳极产物的化合物,如用惰性电极电解CuSO4溶液,要恢复原溶液的浓度,可向电解后的溶液中加入CuO,也可以加入CuCO3,但不能加入Cu(OH)2,因为Cu(OH)2与生成的H2SO4反应后使水量增加。

(3)粗铜中往往含有锌、铁、镍、银、金等多种金属杂质,当含杂质的铜在阳极不断溶解时,金属活动性位于铜之前的金属杂质,如锌、铁、镍等也会同时失去电子,但是它们的阳离子比铜离子难以还原,所以它们并不能在阴极析出,而只能以离子的形式留在电解液里;金属活动性位于铜之后的银、金等杂质,因为失去电子的能力比铜弱,难以在阳极失去电子变成阳离子而溶解,所以当阳极的铜失去电子变成阳离子溶解之后,它们便以金属单质的形式沉积在电解槽底,形成阳极泥。由此可知,电解精炼时,阳极溶解铜的量大于阴极析出铜的量。

(4)可充电电池放电时作原电池,充电时作电解池,两池的电极反应式正好相反,即电解池的阴极反应式对应于原电池的负极反应的逆反应式,电解池的阳极反应式对应于原电池正极反应的逆反应式,但电解池反应与原电池反应并不是相应的可逆反应。

四、考情分析预测

高考对电化学知识的考查,常见题型是选择和填空。这部分的考点主要集中在如下几个方面:(1)原电池、电解池、电镀池的电极名称及电极反应式;(2)新型电池的电极反应以及工作原理;(3)根据电解时的电极变化,判断电极材料、电解质的种类或如何使电解质溶液复原;(4)有关电解产物的判断和计算;(5)金属的电化学腐蚀原理与防护;(6)电化学知识在能源、环保、物质制备等方面的综合应用。

受试卷含量的限制,化学考试越来越重视试题的综合性。电化学内容是进行综合命题的重要素材,与之相关的综合题预计在今后的高考中会有更多的体现。其常见综合形式有:将原电池和电解池结合在一起,综合考查化学反应中的能量变化和氧化还原反应等知识;将电化学内容与无机推断或化学实验等进行综合;以环境问题、物质制备、新能源、新科技等为载体,考查电化学知识在生产、生活中的应用。

五、考试热点例析

1.判断装置的类型

例1.某化学兴趣小组的同学用下图所示装置研究电化学的问题。当闭合该装置中的电键时,观察到电流计的指针发生了偏转。下列有关说法不正确的是( )

A.甲装置是原电池,乙装置是电解池

B.当甲中产生0.1mol气体时,乙中析出固体的质量为6.4g

C.实验一段时间后,甲溶液的pH增大,乙溶液的pH减小

D.将乙中的C电极换成铜电极,则乙装置可变成电镀装置

解析:Zn、Cu电极和稀硫酸溶液可构成原电池,其中Zn是负极,Cu是正极;乙装置是电解池,C为阴极,Pt为阳极。当甲中产生0.1molH2时,电路中通过0.2mol电子,乙中电解得到0.1molCu,质量为6.4g。实验一段时间后,甲溶液中的c(H+)减小,pH增大;乙溶液中的c(H+)增大,pH减小。乙中的C电极是阴极,将其换成铜电极,该装置不是电镀装置。

答案:D

2.判断电极和电极反应

例2.如图,E为沾有Na2SO4溶液的滤纸,并加入几滴酚酞。A、B分别为Pt片,压在滤纸两端,R、S为电池的电极。M、N是多微孔Ni的电极材料,它在碱溶液中可以视为惰性电极。G为电流计,K为开关。C、D和电解池中都充满浓KOH溶液。若在滤纸中央点上一滴紫色的KMnO4溶液,K打开,接通电源一段时间后,C、D中有气体产生。

(1)R为 (填“正”或“负”)极。

(2)A附近溶液的现象是 ,B附近发生的电极反应式为 。

(3)滤纸上的紫色点向哪方移动: (填“A”或“B”)。

(4)当C、D里的气体产生到一定量时,切断外电源并接通开关K,经过一段时间,C、D中气体逐渐减少,C中的电极为 (填“正”或“负”)极,电极反应式为 。

解析:电解KOH溶液就是电解水,两极分别产生H2和O2,因为相同条件下产生H2的体积是O2体积的两倍,所以C管中收集到的是H2,D管中收集到的是O2。

(1)H2是在阴极产生的,所以M是阴极,与之相连的R是电源的负极。

(2)B是电解池的阳极,A是电解池的阴极。电解Na2SO4溶液也是电解水,电解时H+移动到A极得电子被还原为H2,破坏了A极附近水的电离平衡,导致A极附近溶液显碱性,使酚酞试液变红。B极OH-被氧化,放出O2。

(3)KMnO4中,紫红色的MnO-4向阳极移动。

(4)当C、D里的气体产生到一定量时,切断外电源并接通开关K,此时装置变为燃料电池。经过一段时间,C、D中气体逐渐减少,H2和O2反应生成水,在碱性条件下,C中H2发生氧化反应。

答案:(1)负 (2)溶液变红 4OH--4e-2H2O+O2 (3)B (4)负 2H2+4OH--4e-4H2O

3.书写电极方程式

例3.燃料电池是一种效率高的新型电池,请根据要求回答下列问题。

(1)某种氢氧燃料电池的电解液为KOH溶液,该电池的正极反应式为 。

(2)一种燃料电池中发生化学反应:在酸性溶液中甲醇与氧作用生成水和二氧化碳。该电池负极发生的电极方程式为 。

(3)某燃料电池以CO为燃料,以空气为氧化剂,以熔融态K2CO3为电解质。写出该燃料电池的总反应式、正极和负极的电极反应式: 。

(4)最近,科学家制造出一种使用固体电解质的燃料电池,其效率很高。一个电极通入空气,另一个电极通入汽油蒸汽。其中固体电解质是掺杂了Y2O3(Y:钇)的ZrO2(Zr:锆)固体,它在高温下能传导O2-(其中氧化反应发生完全)。

①以丁烷代表汽油,这类电池放电时,发生反应的化学方程式是 。

②这类电池正极的电极反应式是 ,负极的电极反应式是 ,向外电路输出电子的电极是 。

③放电时,固体电解质里的O2-向 (填“正”或“负”)极移动。

解析:燃料电池的电极只起导电作用,一般不参与电极反应。在负极上发生反应的气体一定是可燃性气体(H2、CH4、CO、CH3OH等),失电子发生氧化反应;在正极上发生反应的气体是O2或空气,得电子发生还原反应。书写电极反应式时,一定要注意电解质的性质:电解质溶液的酸碱性、固体电解质能传导的离子的种类等。

(1)因为该电池的电解液为KOH溶液,所以在正极O2被还原应生成OH-。

(2)原电池的负极发生氧化反应,该燃料电池负极通入的气体应是CH3OH,电池的总反应式为2CH3OH+3O24H2O+2CO2;酸性条件下的正极反应式为O2+4e-+4H+2H2O,即3O2+12e-+12H+6H2O,将总反应式减去正极反应式消去O2即得负极反应式。

(3)该电池的总反应式为CO+12O2CO2,因为电解质为熔融态K2CO3,所以电池中是K+和CO2-3导电,正极反应式为CO2+12O2+2e-CO2-3,用总反应式减去正极的电极反应式得到负极的电极反应式:CO+CO2-3-2e-2CO2。

(4)在固体电解质燃料电池中,电解质在高温下能传导O2-,所以O2被还原的产物为O2-,正极反应式为13O2+52e-26O2-;用总反应式减去正极反应式即得负极反应式。不管是哪种电池,负极总是向外电路输出电子的一极,阴离子向负极移动。

答案:(1)O2+2H2O+4e-4OH- (2)CH3OH+H2O-6e-CO2+6H+ (3)正极:CO2+12O2+2e-CO2-3 负极:CO+CO2-3-2e-2CO2 总反应式:CO+12O2CO2 (4)①2C4H10+13O28CO2+10H2O ②13O2+52e-26O2- 2C4H10+26O2--52e-8CO2+10H2O 负 ③负

4.分析新型电池

例4.研究人员最近发现了一种“水”电池,这种电池能利用淡水与海水之间含盐量的差别进行发电,在海水中电池的总反应可表示为5MnO2+2Ag+2NaClNa2Mn5O10+2AgCl。下列“水”电池在海水中放电时的有关说法正确的是( )

A.正极反应式:Ag+Cl--e-AgCl

B.每生成1molNa2Mn5O10转移2mol电子

C.Na+不断向“水”电池的负极移动

D.AgCl是还原产物

解析:由电池的总反应式可知,放电时银失去电子,被氧化得到氧化产物,即银作负极,产物AgCl是氧化产物,A、D都不正确;在原电池中,阳离子在正极得电子发生还原反应,所以阳离子向电池的正极移动,C错误;每生成1molNa2Mn5O10时消耗2molAg,转移2mol电子,B项正确。

答案:B

5.二次电池的充放电

例5.Li―SO2电池具有输出功率高和低温性能好等特点。其电解质是LiBr,溶剂是碳酸丙烯酯和乙腈,电池反应式为2Li+2SO2放电充电Li2S2O4,下列说法正确的是( )

A.该电池反应为可逆反应

B.放电时,Li+向负极移动

C.充电时,阴极反应式为Li++e-Li

D.该电池的电解质溶液可以换成LiBr的水溶液

解析:该电池的放电反应和充电反应分别是在不同条件下发生的反应,不是可逆反应;放电时是原电池,Li+向正极移动;充电时是电解池,阴极发生还原反应,反应式为Li++e-Li;Li是较活泼金属,能与水发生反应,因此电池的电解质溶液不能换成LiBr的水溶液。

答案:C

6.电镀和电冶原理

例6.以KCl和ZnCl2的混合液为电镀液,在铁制品上镀锌,下列说法正确的是( )

A.未通电前上述镀锌装置可构成原电池,电镀过程是该原电池的充电过程

B.因部分电能转化为热能,电镀时通过的电量与锌的析出量无确定关系

C.电镀时保持电流恒定,升高温度不改变电解反应速率

D.镀锌层破损后对铁制品会失去保护作用

解析:在铁上镀锌时,铁作阴极,锌作阳极;未通电前可构成原电池,此时锌作负极失去电子,铁作正极,而电镀时锌仍然失电子,A项错误。在氧化还原反应中必须满足得失电子守恒规律,因此电镀时通过的电量与锌的析出量有确定关系,B项错误。电镀时保持电流恒定,则导线中通过的电子速率是不变的,升高温度不能改变电解反应速率,C项正确。镀锌层破损后,由于锌比铁活泼,所以即使发生电化学腐蚀也是锌失去电子而保护了铁,D项错误。

答案:C

7.电化学实验探究

例7.某实验小组利用饱和食盐水、导线、直流电源(用“”或“”表示)、烧杯、灵敏电流计(用“”表示)和两个电极棒(分别是M、N)进行电化学实验设计和探究。

甲同学安装好仪器,接好直流电源通电几分钟,发现M处溶液逐渐变浅绿色,过一段时间,溶液变得浑浊且逐渐出现红棕色。

乙同学所用的仪器和甲同学的看上去相同,但接好直流电源通电几秒钟,却闻到一股刺鼻的气味,马上停止通电。

丙同学安装好仪器,线路闭合几秒钟后,却没有明显现象产生,他又很快接入灵敏电流计,发现电流计的指针发生了偏转。

请根据上述同学的实验现象回答以下问题。

(1)M电极棒材料是 ,N电极棒材料是 (写化学式)。

(2)在下列虚框内完成对应三位同学的装置图。

(3)按下表要求写出乙、丙两位同学实验过程中涉及的反应方程式。

要求乙丙

M电极方程式①④

N电极方程式②⑤

总反应方程式离子方程式③:化学方程式⑥:

(4)用化学方程式解释,甲同学实验时M处溶液出现浑浊后转为红棕色的原因: 。

(5)丙同学为了保护M电极不被腐蚀,他可以将N电极棒更换为 (写化学式)。为验证该防护方法有效,他又做下列对比实验:接通电路2分钟后,分别在M电极区滴入几滴NaOH溶液,发现没有更换N电极棒的烧杯中的现象是 。他还可选用的检验试剂是 。

解析:本题综合考查原电池、电解池、金属的腐蚀与防护等知识,根据实验现象正确判断电极类型和电极反应是解题的关键。

(1)从甲同学的实验现象看,M电极是铁,电解时铁被氧化,即M电极是阳极;乙同学的实验中得到的气体是Cl2,被氧化的是Cl-,则阳极N是惰性电极。

(2)甲实验中M电极作阳极,连在直流电源的正极上;乙实验中M电极作阴极,连在直流电源的负极上;丙实验不是电解,但实验中产生了电流,所以丙装置是原电池,接入电流表即可。

(3)乙实验是用惰性电极电解饱和食盐水,丙实验的反应原理相当于是铁的吸氧腐蚀。

(4)甲实验中发生电极反应:Fe-2e-Fe2+(阳极),2H++2e-H2(阴极),总反应式为Fe+2H2O电解Fe(OH)2+H2。Fe(OH)2很不稳定,易被空气中的氧气氧化为红褐色的Fe(OH)3:4Fe(OH)2+O2+2H2O4Fe(OH)3。

(5)要使M电极不被腐蚀,应将N电极换成比铁活泼的金属。没有更换N电极棒的烧杯中,Fe被氧化为Fe2+,只要加入能与Fe2+反应且产生明显实验现象的物质,都能达到检验出Fe2+的要求。

答案:(1)Fe C(或Pt等惰性电极) (2) (3)①2H++2e-H2 ②2Cl--2e-Cl2 ③2Cl-+2H2O电解Cl2+H2+2OH- ④Fe-2e-Fe2+ ⑤O2+2H2O+4e-4OH- ⑥2Fe+O2+2H2O2Fe(OH)2 (4)4Fe(OH)2+O2+2H2O4Fe(OH)3 (5)Zn(合理即可) 溶液中产生白色沉淀,沉淀随即变成灰绿色,最后变成红褐色 酸性KMnO4溶液(或KSCN溶液和氯水)

8.电化学知识综合运用

例8.电浮选凝聚法是工业上采用的一种污水处理方法:保持污水的pH在5.0~6.0之间,通过电解生成Fe(OH)3沉淀。Fe(OH)3有吸附性,可吸附污物而沉积下来,具有净化水的作用。阴极产生的气泡把污水中的悬浮物带到水面形成浮渣层,刮去(或撇掉)浮渣层,即起到浮选净化的作用。某科研小组用电浮选凝聚法处理污水,设计装置图如下:

(1)实验时若污水中离子浓度较小,导电能力较差,产生气泡速率缓慢,无法使悬浮物形成浮渣。此时,应向污水中加入适量的 。

a.H2SO4b.BaSO4

c.Na2SO4d.NaOH

e.CH3CH2OH

(2)电解池阳极的电极反应分别是① ,②4OH--4e-2H2O+O2。

(3)电极反应①和②的生成物反应得到Fe(OH)3沉淀的离子方程式是 。

(4)熔融盐燃料电池是以熔融碳酸盐为电解质,以CH4为燃料,空气为氧化剂,稀土金属材料为电极。已知负极的电极反应式是CH4+4CO2-3-8e-5CO2+2H2O。

①正极的电极反应式是 。

②为了使该燃料电池长时间稳定运行,电池的电解质组成应保持稳定。为此,电池工作时必须有部分A物质参加循环。则A物质是 (用化学式表示)。

(5)实验过程中,若在阴极产生了44.8L(标准状况)气体,则熔融盐燃料电池消耗CH4(标准状况) L。

解析:(1)酸与电极发生反应,NaOH溶液与电极铝发生反应,BaSO4难溶于水,乙醇是非电解质,都不宜加入。加入Na2SO4可增强溶液的导电能力,电解Na2SO4溶液即是电解水。

(2)阳极是铁,电解时铁被氧化为Fe2+;阴极水电离产生的H+放电生成H2和OH-。

(3)Fe2+与OH-反应生成的Fe(OH)2沉淀被氧气氧化为Fe(OH)3。

(4)此燃料电池的总反应式为CH4+2O2CO2+2H2O,用总反应式减去负极反应式即得正极反应式。参加循环的A物质是CO2。

篇3

[关键词] 电化学 氧化还原反应 判断

在高二接触电化学的时候,老师都是通过氧化还原结合电学来帮助学生理解电化学,而后将其归纳为各种各样的口诀帮助学生运用。虽然这样可以帮助不少学生在没有完全理解电化学的基础上运用最基础的知识,但是到了高三就不行了。高考是能力和知识的结合考察,光靠背口诀来解题是不够的,我们还是要回归知识点本身,理解后才能更好地运用。特别是2009年的高考题(全国卷Ⅱ)还考察了15分的大题。所以,一定要帮助学生尽快真正理解电化学。

在这方面我试验了很多种方法,最后从学生反馈来看最好的方法还是从电学的基础来。因为学生从初中开始就接触电学,他们对电学的电路中最基本的知识有很深的记忆和理解。所以我,采取了以下的方式。

一、学生都非常清楚电流是从正极流到负极,电子是从负极流到正极,所以,先让学生将电子的流向明确。如下题:

10.(2007年全国理综卷Ⅱ在盛有稀H2SO4的烧杯中放入用导线连接的锌片和铜片,下列叙述正确的是()

(A)正极附近的SO42-离子浓度逐渐增大

(B)电子通过导线由铜片流向锌片

(C)正极有O2逸出

(D)铜片上有H2逸出

[答案]D

分析:这是一道原电池的题,对于这种题首先找到总反应,因为原电池的反应是自发的氧化还原反应。电子从负极流出,回到正极,所以从得失电子的角度将总反应分成失电子的负极反应和得电子的正极反应。

总反应:H2SO4+Zn==ZnSO4+H2

负极反应:Zn-2e-=Zn2+

正极反应:2H++2e-=H2

所以锌做负极,铜做正极,电子从锌片流向铜片,正极有氢气逸出,氢离子靠向正极,硫酸根靠向负极。

二、在学生的氧化还原反应的基础上,判断反应物,并结合电子流向写出方程式。如下题:

11.(2005年全国一卷)关于电解NaCl水溶液,下列叙述正确的是

A、若在阴极附近的溶液中滴入酚酞试液,溶液呈无色

B、若在阳极附近的溶液中滴入KI溶液,溶液呈棕色

C、电解时在阳极得到氯气,在阴极得到金属钠

D、电解一段时间后,将全部电解液转移到烧杯中,充分搅拌后溶液呈中性

[答案]B

分析:这是电解池的题。同样的分析方式:电子从负极出发,到达阴极,电子从阳极出发回到正极;在溶液中没有电子存在,阳离子在阴极得电子,活泼电极或阴离子在阳极失电子代替电子在溶液中定向移动形成电流。

如果更形象的比喻就是,电子通过导线到了阴极,没路了,这时阳离子就出现了,它很热情的接走了电子,同时活泼电极或阴离子在阳极,同样积极地拿出电子,让电子沿导线回正极,形成闭合回路。这样在电学的思维中,溶液中阴阳离子在两极发生氧化还原反应代替电子进行定向移动形成电流。而且电子的得失也就非常容易理解了。阳离子在阴极得电子发生还原反应;活泼电极或阴离子在阳极失电子发生氧化反应。

这题是电解NaCl水溶液的,阳离子是Na+和H+阴离子是 Cl-和OH-,通过氧化还原的知识分析可知放电顺序是H+Na+

Cl-OH-,所以在阴极得电子的是H+,在阳极失电子的是Cl-

阴极反应:2H++2e-=H2

阳极反应:2Cl―-2e-=Cl2

总反应:2NaCl+ 2H2O电解H2+ Cl2+2NaOH

在阴极因为H+得电子参加反应,不断减少从而打破了水的电离平衡,促进水电离,产生更多的OH-,使阴极附近的溶液呈碱性,所以在阴极附近滴加酚酞试液,溶液呈红色,同时逸出氢气;而阳极逸出氯气。

三、如果是要求进行计算,就在相应的方程式基础上进行就好。如下题

9.(2006年全国卷Ⅰ)把分别盛有熔融的氯化钾、氯化镁、氯化铝的三个电解槽串联,在一定条件下通电一段时间后,析出钾、镁、铝的物质的量之比为

A.1∶2∶3 B.3∶2∶1 C.6∶3∶1 D.6∶3∶2

[答案]D

分析:物理上的串联指通过每一个电解槽的电子总数是一样多的。所以基于这一点将电子总数设为1mol,设析出钾Xmol,析出镁Ymol,析出铝Zmol.

反应: K+ + e-=K

11

Xmol1mol

X= 1mol

Mg2++ 2e- =Mg

12

Ymol1mol

Y = 1/2mol

Al3++ 3e- =Al

13

Zmol1mol

Z = 1/3mol

析出钾,镁,铝的物质的量之比为1∶1/2∶1/3

即6∶3∶2

篇4

关键词:原电池 电解池 可能 自发 强制

在高中原电池和电解池的电化学教学中,应根据教材原理将电化学知识讲解透彻,否则会给学生造成错误的观点。

一、电解池中的可能性

1.惰性电极可能反应

在电解池中一般认为惰性电极不参加反应,但工业上用石墨电极电解熔化的Al2O3制取铝时的电极反应

阳极:6O2--12e = 3O2

阴极:4Al3+ + 12e = 4Al

在高温下C能与O2反应:C+ O2 = CO2,故惰性电极石墨的惰性是相对的。

2.阳极可能参加反应

一般认为反应 Cu+H2SO4 = CuSO4+ H2是不能完成的,但在电解池中可以进行。以Cu作阳极,其它电极作阴极电解稀硫酸溶液,其电极反应为

阳极:Cu - 2e = Cu2+

阴极:2H+ + 2e = H2

但要注意的是,随着电解的进行 C(H+) 逐渐减小,C(Cu2+)逐渐增大,电解的后阶段变为电镀。电极反应变为:

阳极:Cu - 2e = Cu2+

阴极:Cu2+ + 2e = Cu

故活性电极作阳极时要参加电极与电解反应。

3. 原子团可能放电

惰性电极电解溶液时,原子能团一般是OH-放电,但电解Na2SO3溶液时由于SO32-的还原性远强于OH-,其电极反应是:

阳极:SO32--2e +H2O= SO42- +2H+

阴极:2H++2e = H2

总反应是:Na2SO3+ H2O = Na2SO4 + H2

4. 同一电极可能放出两种气体:

惰性电极电解NH4Cl溶液时,其电极反应是:

阳极:2Cl--2e = Cl2

阴极:2 H2O +2e = H2+2OH-

在阴极,随着电解的进行会发生:NH4++ OH- = NH3+ H2O 总反应:2 NH4Cl = Cl2+2NH3+ H2

在阳极,随着C(Cl-)的减小也可能发生2H2O -4e= O2+4H+

故阴极放出H2和NH3;阳极放出的Cl2中可能有O2。实际上惰性电极长时间电解溶液的最后阶段都是电解水。

二、原电池的可能性

1. 不活泼电极可能作负极

在一般情况下,对于活性不同的两个电极来说,由于活泼的一极比不活泼的一极更容易失去电子,从而活泼的一极的电势往往要低于不活泼的一极,因此在原电池中一般情况下都做负极,但这种情况却并不绝对,我们看下列两组原电池

(1)镁、铝电极与NaOH溶液构成的原电池

总反应:2Al+2HO-+2 H2O =2AlO2-+3H2

负极:2Al-6e+8OH- = 2AlO2-+4H2O

正极:6 H2O +6e=3H2+6OH-

(2) 铜、铝电极与浓硝酸构成的原电池由于铝在浓硝酸中钝化,总反应是:Cu+4HNO3= Cu(NO3)2 +2NO2+2H2O

负极:Cu-2e = Cu2+

正极:NO3-+2e-+4H+=NO2+2H2O

但要注意的是,随着反应 (2) 的进行,总反应变为

2Al+3Cu(NO3)2 = 3Cu + 2Al(NO3)2

电极反应是负极:2Al- 6e = 2Al3+ 正极:3Cu2+ + 6e = 3Cu

从上两例中我们可以看出原电池电极的确定还与电解质溶液有关,由于电解质溶液的不同可能使电极性质也不同,如上述装置改用酸性稀溶液做介质,则活性强的镁、铝分别做负极。

2. 两个电极可能相同

在一般情况下,对于只有活性不同的两个电极来说,才能形成电势差,也才能形成稳定的电流进而组成原电池,然而是否所有的原电池的电极的活性都要不同呢? 我们看下列一组原电池:

总反应:2H2+O2=2H2O

负极:2H2-4e = 4H+

正极:O2+4e+4H=2H2O

从上例中我们可以看出燃料电池的正、负极应由其通入的

气体的性质来决定,其电极本身的活性不能作为其电极正负的判据,如在燃料电池中两个电极的活性却是可以相同的。

3. 两个电极可能浸入不同电解质溶液中

在中学教材中出现的原电池装置一般都是两个电极浸入同一电解质溶液中形成原电池,致使很多同学都误认为原电池装置中的两个电极一定要浸入同一电解质溶液中,然而在新教材仅出现了一次的丹尼尔电池(盐桥)却有力的说明了上述观点的局限性。

总反应:Zn+Cu2+=Zn2++Cu

负极:Zn-2e=Zn2+

正极:Cu2+ + 2e=Cu

4. 氧化还原反应只可能设计成原电池

原电池的实质是把一个氧化还原反应的氧化反应和还原反应分别在两个电极上进行,那么是否所有的氧化还原反应都能设计成原电池呢? 我们一起来看例题: 下列反应能设计成原电池的有( )

A. C+CO2=2CO

B. HCl + KOH = KCl + H2O

C. Cu + 2FeCl3 =2FeCl2 + CuCl2

D. 2NaOH + CO2 = Na2CO3 + H2O

教学反馈发现很多同学都选择了 A 和 C,他们的理由是这两个反应都是氧化还原反应,然而并非所有的氧化还原都能设计成原电池,因为原电池的反应是化学能自发的转化为电能的过程,因此原电池中进行的反应必须满足如下条件即: 反应必须是氧化还原反应而且该反应必须是自发的氧化还原反应,因此本题的答案只有 C 。

三、教学反思

经过以上原电池和电解池的分析,我们在电化学教学中,老师应明确告诉学生:

1. 原电池反应是自发的氧化还原反应。在满足形成原电池的条件(两电极、电解质溶液、闭合)下,先正确的写出自发的氧化还原反应方程式(原电池反应)并确定氧化剂和还原剂。 还原剂一定在负极上反应,氧化剂一定在正极上反应。如果还原剂是金属,则该金属是原电池的负极,且正极与该金属不同,如果还原剂不是金属,则正负电极由其它电极代替且可相同。这样,既可以根据原电池反应判断正负极和书写电极反应,也可以将自发的氧化还原反应设计成原电池。

例(1)将自发的反应3Cu+8HNO3=3Cu(NO3)2+2NO+4H2O设计成原电池并写出电极反应。

电池构成:Cu 作负极、Ag作正极、稀HNO3作电解质溶液。电极反应:负极 ( Cu-2e=Cu2+ );

正极(NO3-+3e+4H+=NO+2 H2O)

2.电解池反应是强制的氧化还原反应。在满足形成电解池的条件(电解质溶液导电)下,根据阳离子的氧化性顺序、阳极活性及阴离子的还原性顺序,正确的写出电解池反应并确定氧化剂和还原剂。还原剂一定在阳极上反应,氧化剂一定在阴极上反应。如果还原剂是金属,则该金属是电解池的阳极(阴极任选); 如果还原剂不是金属,则阳极是惰性的(阴极任选)。这样,既可以根据电解池反应判断阴、阳极和书写电极反应,也可以将溶液中或离子晶体熔化时不能自发的氧化还原反应设计成电解池反应。但要注意的是,惰性电极电解溶液时最后阶段可能是电解水。

例(2)在溶液中实现 Fe+2H2O =Fe(OH)2+ H2的反应。

电解池构成:直流电源、Fe 作电极、 Na2SO4 作电解质溶液, 电极反应 :

篇5

关键词:两电极 电化学 CO传感器

0 引言

CO作为大气污染物的主要物质之一,是环境监测控制的重点。随着城市能源结构的调整及变化,城市煤气已进入千家万户,以其清洁、方便的特点迅速普及。但由于使用不当或器具不合格,或其他因素造成泄漏,使得CO泄出后造成人员中毒事故时有发生;燃煤及燃气热水器不充分燃烧造成CO的聚集而导致居家人员中毒伤亡也不少见;在工业领域,CO气体的生产、制造、应用等也需控制其浓度范围;在采矿行业,地下矿井的CO气体也需要检测报警。在环保方面汽车尾气检测CO也日益重视起来。两电极电化学式CO传感器功耗低、体积小、灵敏度高、线性范围宽,并具有抗干扰能力强、重现性好、稳定可靠等优点,是一种广泛适合工业及民用领域的电化学式传感器。

1 传感器的结构

电化学传感器有两电极和三电极结构,主要区别在于有无参比电极。两电极CO传感器没有参比电极,结构简单,易于设计和制造,成本较低适用于低浓度CO的检测和报警;三电极CO传感器引入参比电极,使传感器具有较大的量程和良好的精度,但参比电极的引入增加了制造工序和材料成本,所以三电极CO传感器的价格远高于两电极CO传感器,主要用于工业领域。针对当前我国对廉价民用CO报警器的迫切需求,我们选择了两电极CO传感器的整体设计方案。两电极电化学CO传感器主要由电极、电解液、电解液的保持材料、除去干涉气体的过滤材料、管脚等零部件组成。电化学式传感器的代表性构造

2 主要材料的选择

2.1 电解质 电解质是电化学传感器电极间的导体,是构成电池的重要成分。电化学CO传感器按照电解质状态可分为液体电解质型、半固态电解质型和固体电解质型。由于液体电解质易于泄漏和挥发,严重影响了传感器的使用寿命,所以目前很少使用。半固态电解质是介于液态和固态电解质之间的电解质,是将一种亲水性的多孔材料(或称为灯芯材料)浸泡在硫酸中来形成的,这就要求该材料有很好的耐酸腐蚀性质,如聚苯乙烯磺酸膜、玻璃纤维膜等。而固体电解质型电解质代表了传感器的发展的方向。电化学固态聚合物电解质型CO传感器以聚合物中的官能基来传导离子,由于能在室温下工作,并且聚合物可按照设计需要通过化学反应进行改性,便于加工。经比较,固态聚合物电解质型结构性能更好,更易于制得高性能特别是高寿命的传感器。通过试验研究,我们最终选择了Nafion固态聚合物电解质作为两电极电化学CO传感器的电解质。为了克服Nafion固体电解质电化学传感器在使用时易受外界湿度干扰、影响使用寿命的缺点,在传感器中设计了主要用玻璃纤维作为吸收材料填充少量液体电解质的储存室,使液体电解质不易流动并提供充分的溶胀空间,该结构使传感器内部形成稳定的氛围,可以缓冲外界的变化,从而保证Nafion膜传感器相对稳定的工作状态,这样克服了纯固体电解质易受环境影响的缺点,大大提高了传感器的可靠性。

2.2 过滤材料 传感器的过滤材料能够滤除对电极有毒害作用的污染物,其过滤能力对传感器的使用寿命有重要影响。传统的做法是使用活性炭粉末材料,但是由于活性炭的粗装密度小,少量的活性炭难以起到作用,这也是传统的电化学传感器使用寿命短的主要原因;但是增加活性炭用量,又会使传感器的体积变得臃肿,不利于安装在探测器中。针对这个问题,我们采用了近年来新兴的活性碳纤维材料。因为活性炭纤维其表面遍布微孔,以及可经二次加工,成为不同形态的毡及布状的材料,与传统的颗粒炭相比,具有较快的吸附、脱附的速度和更便利的操作维护等优点,该材料对有机气体及恶臭物质(如正丁基硫醇等)吸附量比粒状活性炭(GAC)大几倍至几十倍,对无机气体也有很好的吸附能力,减小了过滤材料的用量,并且易于集成于传感器中。 转贴于

2.3 电极材料 CO传感器的电极主要材料包括催化剂和基体材料。催化剂能加速气体的反应,电极上载有对CO催化反应活性高的由铂、钌、镍等金属微粒组成的催化剂,这些金属作为电化学反应的催化剂可加速化学反应而本身无变化。在常见国外的CO传感器中,铂由于催化活性高而被广泛使用,本项目也用铂作为指示电极和对电极的催化剂。电极基体材料的选择主要考虑材料的化学惰性,不与电解质和实际应用中可能接触的化学物质反应;同时本传感器中的电极是气体扩散电极,基体材料要制备成多孔结构,所选材料应易于制备多孔薄膜;此外基体材料最好具备憎水性以防止水蒸气在孔洞中凝结影响传感器的正常工作。在上述条件限定下我们最终选择化学惰性极佳、且具憎水性的聚四氟乙烯(PTFE)作为电极的基体材料。

3 内封装工艺

铂丝与电极插脚结合的部位是电解液泄漏的一个原因,该部位易受电解质溶液的腐蚀导致漏液和在传感器内引入其它金属离子而影响使用性能。一般的方法是在电极插脚上用电镀或化学镀方法制备惰性薄膜,或使用导电塑料进行连接,这些方法增加了制备工艺的难度,我们通过简单的内封装工艺解决了这个问题。内封装工艺就是通过在铂丝与电极插脚结合的部位浇注一薄层耐酸树脂,该树脂封装至少6mm的铂丝,实验表明这样的处理能使电解质液无法到达电极插脚端头,有效防止漏液。

4 两电极电化学CO传感器浓度特性曲线

研制的CO传感器灵敏度高,线性好,其输出特性完全能够满足检测仪器的设计要求

篇6

摘要:

本综述首先简单介绍了扫描电化学显微镜的基本概况,尤其是不同的工作模式.其次,有针对性地介绍了SECM的不同工作模式在氧还原和水解析氧反应相关研究中的应用.最后,对扫描电化学显微镜未来在新能源转换存储系统研究领域的应用进行了展望.

关键词:

扫描电化学显微镜;氧还原;水解析氧;燃料电池;金属空气电池;水解

氧还原反应和水解析氧反应是许多新型绿色能源转换存储系统,如燃料电池(质子交换膜燃料电池、直接甲醇燃料电池和碱性燃料电池等)、一体式可再生燃料电池、金属空气电池(锌空气电池、铝空气电池、锂空气电池等)和水解系统中重要的电化学反应.由于氧气极化电极的引入,氧还原反应也是近些年工业氯气大规模生产中的重要反应[1].提高氧反应的催化活性以及降低催化剂的成本是电催化研究人员关注的重点之一[2-3].然而,由于各类氧反应催化材料的快速发展,分析比较各类含有不同组分和含量的不同样品的催化性能需要一个便捷高效的分析筛选方法.另一方面,循环伏安法、线性扫描法或计时电流法与旋转环盘电极连用是基础分析电催化动力学、活性和稳定性的有效方法[4],但这些手段都是检测样品作为一个整体的催化性能.从微观角度理解和探究催化材料的微区电化学性能并明确其与材料物理形貌结构之间的构效关系对进一步构筑高性能氧反应电极催化材料尤为关键[5-6].高分辨率的扫描探针技术中的扫描电化学显微镜可以实现这两个目的.本综述将主要针对作者及过去十年作者所在的德国波鸿鲁尔大学Schuhmann教授研究组利用SECM开展的各类氧反应(即氧还原和水解析氧反应)电催化材料的研究工作进行系统的回顾,力求使读者对于SECM在电催化氧反应研究中的应用有一个更广泛的了解.

1扫描电化学显微镜简介

扫描电化学显微镜是上世纪八十年代末美国著名化学家Bard和其合作者研究发展而来[7],与扫描隧道显微镜[8]、近场扫描光学显微镜[9]和原子力显微镜[10]同属于扫描探针技术家族的一员,1999年开始在美国商业化.由于超微电极作为扫描探针的引入,它可以极近地接近样品表面,不仅可以用于检测样品局部微区的二维物理形貌,而且可以研究样品与电解液界面之间发生的电化学过程,表征样品表面的电化学性能.UME的引入在电分析化学领域有着重要的意义,由于UME微小的尺寸(直径大小为几个至几十个微米)具有极低的电压欧姆降,可以快速达到法拉第过程的电流平衡、提高法拉第电流与电容电流的比率以及电流信号与噪音比.制备它的电极材料可以是金属铂、金或碳纤维,电极头的形状可以是环型、半圆型、针型,而应用最广泛的通常为平面盘型[11].随着时间的推移,SECM也开始使用直径只有几十个纳米的纳米电极作为扫描探针[12].根据不同研究的需要,SECM有不同的工作模式,主要包括直接模式、反馈模式、产生-收集模式和氧化还原竞争模式等(图1).

1)直接模式通常用于样品表面的改性,例如样品表面局域的金属电沉积或腐蚀等.在该工作模式中,样品通常作为工作电极,而扫描探针作为对电极,溶液中的金属盐在一定的样品极化电压条件下可以发生还原反应电沉积在离扫描探针头非常接近的样品局域表面(图1A).或者金属样品在一定极化电压条件下发生氧化反应,在接近探针的局部区域被改性刻蚀(图1B).2)反馈模式通常用于反应物可以进行可逆氧化还原的过程,如电子转移动力学和催化性能研究.在反馈区域,溶液中原有的介质A在探针表面发生氧化或还原反应生成介质B,当样品为导电性较好的材料时,随着探针极近地接近样品表面,介质B会在样品本身的开路电压或一个给定电压作用下重新在样品表面发生还原或氧化反应生成介质A,介质A很快扩散到扫描探针并再次被氧化或还原生成介质B,使得扫描探针测得的电化学信号增加,称为正反馈模式(图1C).若样品导电性很差,样品的开路电压不足以使扫描探针上生成的介质B重新还原或氧化生成介质A,与此同时,由于探针极近地接近样品表面,使介质A扩散到探针表面的速率受到极大限制,最终扫描探针测得的电化学信号减少,称为负反馈模式(图1D).由于电化学信号对介于扫描探针和样品之间距离的敏感性,这种工作模式也经常被用于SECM扫描之前测定渐近曲线用以寻找样品表面,以及样品的二维表面物理形貌的表征.3)产生-收集模式经常可以被用于电化学反应动力学、样品微区活性及反应起始电压的研究.与反馈模式的不同之处在于其不受制于溶液中原有介质浓度的影响,可以根据研究需要在探针或样品局域产生反应所需的介质,用以进一步探究催化样品的性能.在工作过程中,反应物A会在扫描探针或者样品表面发生电化学反应生成产物B,而产生的产物B会扩散到样品表面或扫描探针,被其收集并在一定电压条件下再次发生电化学反应生成产物C.通过对于产物C的检测可以了解反应物A生成产物B的电化学过程.前者称为探针产生-样品收集模式,而后者被称作样品产生-探针收集模式.相比于后种工作模式,前者对于信号的测量更为敏感,这是由于产物B在微探针表面生成,有着更小的背景电流.如果利用后种工作模式,产物B在相对巨大的整个样品表面产生,由于大背景电流的影响,扫描微探针很难通过收集其周边样品位域产生的产物B而真正区分样品局域的不同电催化活性.另一方面,由于产物B在大表面积的样品上的大量生成,造成溶液中的产物B的浓度随着时间的流逝而大幅度增加,使得扫描微探针的背景电流也不断变化增加.4)氧化还原竞争模式是扫描探针和样品表面会竞争性的对介于二者之间的同一反应物发生电催化反应(图1G),根据扫描探针测得的电化学信息可以了解对方样品对于反应物的电催化性能(具体信息见后).由于不同工作模式的多元化发展,SECM在电子转移动力学[13-15]、生物工程[16-18]、防腐领域[19-21]、多相催化和光催化[22-24]以及液/液和液/气界面[25-28]研究领域都找到了自己的应用.

2扫描电化学显微镜在氧还原反应研究中的应用

氧化还原竞争模式是2006年Schuhmann课题组为研究各类金属催化剂的氧还原活性和起始电压而发展的[29],其最初发展目的是最大程度地降低由于样品的大背景电流对扫描结果敏感性带来的影响.其工作原理是给扫描探针一个脉冲电压,使反应物的产生和生成物的收集都发生在扫描探针上(图2A).脉冲电压主要包括:1)在基础电压条件下,任何电解液中的背景过氧化氢可以发生氧化生成水;2)之后给扫描探针一个可以水解的极化电压,在这个电压下水可以电解在扫描探针和样品之间的局部区域生成氧气,目的是为了增加溶解氧的浓度,防止溶液中的溶解氧很快在样品的高极化电压条件下被还原用尽,致使由于氧浓度的限制无法正确比较各类不同催化剂的氧还原催化性能;3)最后给探针一个可以发生氧还原的极化电压,而在这个步骤,扫描探针和样品可能产生竞争,对溶解氧同时进行催化还原反应.当样品的极化电压较小的时候,样品对氧还原不显示催化活性,因此原来溶解在电解液中的溶解氧和前一步探针脉冲条件下水解生成的氧气就只在探针表面发生还原反应,而当样品的极化电压负增长的时候,样品开始对氧还原反应显示出催化活性,因此,在氧浓度一定的条件下,一部分氧被样品催化还原,而更少量的氧在扫描探针表面发生还原反应.根据扫描探针检测的氧还原电流,可以评估样品氧还原催化性能的好坏.探针测得的氧还原电流越低,说明样品的氧还原能力越强.尽管施加在扫描探针上的脉冲电压可以局域水解析氧,但在随后给定的脉冲电压下,溶解氧在被样品和探针消耗还原的同时,也很容易快速地向外扩散,氧气也会在很短的时间内消失殆尽.因此,在什么时刻确定最优电流的选取以确保最优图像的生成就极为重要.基于这个考虑,该工作模式区别于其它工作模式的另外一个特点即为不只是在脉冲电压的最后时刻检测电流,而是在整个氧还原的最后脉冲电压过程中不同时段即时检测100个电流值(比如0.3s的脉冲电压过程中,均匀检测100个电流值,即为每0.003s检测一个电流).检测软件的提高,使得SECM可以更敏感的比较不同时段测得的样品氧还原性能,区分不同催化材料或同一催化材料的不同区域在催化氧还原过程中的细微不同.该工作模式最初应用在检测通过脉冲电化学沉积法制备的贵重金属铂和金的催化剂的氧还原性能研究中.燃料电池中的氧还原反应可以经过4个电子的转移生成水(I)或是2个电子的转移生成过氧化氢(II),而形成的过氧化氢可能继续发生2个电子的还原生成水(III)或者化学分解生成水和氧气(IV),甚至是单纯吸附于样品表面.这直接影响了氧还原过程的电子转移数以及燃料电池的整体操作效率.因此,催化剂的选择性是表征氧还原催化材料性能的一个重要指标.为此,Eckhard等进一步提高了氧化还原竞争工作模式,在扫描探针原有的用于检测氧还原电催化性能的脉冲后又添加了一个脉冲电压(图2B).前两步的脉冲与检测氧还原性能之前的电压一致,目的是为了保持相同的电解质溶解氧背景,之后跟随的为可以氧化过氧化氢的电压.在这一步骤,如果样品在催化氧还原的过程中生成了过氧化氢,将会很快地扩散到扫描探针并被探针收集发生再次氧化反应.实际上这个步骤的工作模式为传统的样品产生-探针收集模式.通过合理地把氧化还原竞争模式和产生-收集模式相结合,有效地探究了各类催化材料在电催化氧还原过程中的选择性[。作者利用电泳法在传统的SECM扫描用玻璃炭载体上施加正电压,通过引入含有电负性的碳纳米管进一步提高了催化剂载体的比表面积,之后再利用SECM的步进系统固定水珠电解池(Droplet-Cell),在碳纳米管改性的玻璃炭上利用电化学法沉积了各类金属(铂、金、铑、钌)及其共沉积金属催化剂,利用氧化还原竞争和产生-收集二者相结合的工作模式研究了各类催化材料在中性溶液中的氧还原反应的起始电压、催化性能和选择性.同时在金属沉积的过程中记录了库仑电荷转移量,通过计算知道金属的沉积量,之后半定量地比较了催化剂在不同担载量的情况下的不同的氧还原性能,结果显示催化剂的担载量对于催化活性有着重要的影响[31].

图3代表性地展示了SECM的氧化还原竞争模式和样品产生-探针收集模式共用以探究不同贵重金属催化剂对于氧还原反应的活性和选择性的检测[31].在不考虑担载量的情况下,贵重金属金相比于其它贵重金属催化剂显示了更好的氧还原电催化活性,但选择性相对较差,更易在氧还原过程中发生2个电子的转移生成过氧化氢.Okunola等利用脉冲法在玻璃炭载体上电沉积了各类金属卟啉(锰、铁、钴卟啉)并利用氧化还原竞争和产生-收集双工作模式对其在中性溶液中的氧还原的催化性能和选择性作了比较,结果显示锰卟啉有着更好的氧还原性能[32].Guadagnini等把氧化还原竞争工作模式应用到了普鲁士蓝的催化还原过氧化氢的检测中[33].Nagaiah等利用循环伏安法在玻璃炭载体上电化学沉积了铂、银及在不同金属盐溶液浓度条件下电沉积了铂和银共沉积金属,通过利用氧化还原竞争的工作模式研究了其对于氧还原的电催化性能,并与旋转圆盘电极的检测结果进行了比较,发现以铂和银金属离子溶液摩尔浓度比为2:1条件下共沉积的金属催化剂有着最优的氧还原催化活性[34].之后,又利用常电压法在石墨电极上共沉积了钯和铂以及钯和金,探究了不同摩尔比溶液组成的共沉积金属在中性溶液中的氧还原电催化活性及生成过氧化氢的选择性,结论指出含钯盐的溶液摩尔比浓度越高,越有利于氧还原在之后的共沉积金属上发生4电子的转移过程.由于部分共沉积金属催化剂的优良的氧还原选择性,可以被用作检测过氧化氢的生物传感器,敏感性可达102nA•(μmol•L-1)-1[35].Maljusch等随后利用氧化还原竞争工作模式研究了单质金属铂在盐酸溶液下的氧还原性能,通过研究发现金属铂并没有显示任何氧还原的性能,这是由于氯离子的存在使得金属铂在扫描探针脉冲电压的施加过程中被刻蚀发生氧化反应,溶解在电解质里.为进一步提高性能,利用脉冲法电化学共沉积了铂和银金属,探针在一定脉冲电压下,可使银发生氧化在共沉积金属表面形成一层氯化银沉淀,虽然反复的脉冲电压可以使得氯化银再次部分被氧化,但是不溶银盐的反复沉积存在大大提高了共沉积金属在盐酸溶液中的氧还原性能[36].Kulp等首先利用化学还原法制备了贵重金属金与商业炭黑(VulcanXC72)共混的催化剂,之后直接滴涂在干净的玻璃炭表面,再利用水珠电解池脉冲法电化学沉积贵重金属铂,对样品局部区域进行了改性,制备了铂壳-金核催化剂,之后利用氧化还原竞争,工作模式一次性地探究了金/炭黑、铂壳-金核/炭黑和金属铂在中性条件下对于氧还原的催化活性,结果显示铂壳-金核/炭黑有着最优的氧还原催化性能[37].Schwamborn等利用SECM的直接工作模式,在玻璃炭表面电化学沉积了铁金属颗粒,通过化学气相沉积法在玻璃炭表面局域直接催化生长出碳纳米管,改性了玻璃炭微区的表面性能.之后利用水珠电解池电沉积金属铂进一步局域改性了碳纳米管/玻璃炭,通过氧化还原竞争工作模式研究显示在中性溶液中铂/纳米管比碳纳米管有更好的电催化氧还原的活性[38].Kundu等在碳布上利用化学气相沉积法首先在较高温度下催化生长碳微米管,之后在较低温度下二次催化生长碳纳米管,最后利用电化学沉积方法电镀沉积了铂金属纳米颗粒.利用氧化还原竞争工作模式考察了铂/碳布与铂/碳纳米管/碳微米管/碳布在中性条件下的氧还原反应的不同催化性能,明确指出了经过两次改性催化生长碳纳米管和微米管的碳布可以更均匀的分散金属催化剂颗粒,并在同样电沉积参数的条件下负载更多的金属催化剂颗粒,因此有着更优越的氧还原催化性能[39].Dobrzeniecka等利用氧化还原竞争的工作模式研究了诸如多壁碳纳米管、钴原卟啉以及钴原卟啉与多壁碳纳米管复合的催化材料在中性条件下的氧还原电催化性能,同时与样品产生-探针收集工作模式共用研究了这些样品氧还原过程中过氧化氢的生成情况,结果表明,过氧化氢为多壁碳纳米管催化氧还原过程中的终极产物,而钴原卟啉的存在有助于过氧化氢进一步化学分解为氧气和水[40].Maljusch等把扫描开尔文探针技术与SECM集成联用,其优点在于一方面可以在任意大气条件下等距离检测样品的局域接触电位差,另一方面可以之后随时添加任意电解液,并对样品的电化学性能开展研究.文章里主要以固定在氧化硅表面的铂和钨薄膜作为研究对象,在对其局域接触电位差进行研究的同时,利用SECM的氧化还原竞争模式探究了两类薄膜对于氧还原的电催化活性,验证了SKP与SECM技术集成连用的可行性[41].之后又以铜原子改性的铂(111)薄膜作为研究对象,再次肯定了SKP与SECM技术集成连用可以更有效地探究样品表面性能与电化学行为之间的构效关系。Schaefer等进一步提高了SECM的基础仪器,使其可以在不同操作温度条件下(0oC~100oC)研究各类催化样品的不同催化活性,其中包括碳载铂催化剂在酸性条件下对于氧还原的催化活性和选择性,结论指出,随着操作温度的增加,催化剂的活性有所增强[43].此外,随着对于扫描分辨率要求的不断提高以及排除样品的物理形貌对于电催化性能的影响,SECM剪切力恒定距离模式也被应用于粉末状的氧还原催化剂的研究中[44].

3扫描电化学显微镜在水解析氧反应研究中的应用

水电解析出氧气是工业氢气大生产中的一个非常重要的电化学过程,在高电压的水解析氧过程中可能同时发生一些副氧化反应.因此,研究水解析氧的电催化过程要比氧还原反应更为复杂.如果利用传统电化学方法(如线性扫描法等)直接在样品上施加电压并对氧化电流进行监测,很难排除在高电压条件下可能产生的副氧化反应(可能来自于样品本身的自氧化或其它电化学氧化过程)对于水解析氧反应起始电压的研究造成的干扰.Maljusch等利用SECM的扫描探针作为探测器,采用了SECM的样品产生-探针收集模式,在给样品施加不同的阶跃式恒压水解析氧的同时,给扫描探针施加一个可以氧还原的恒电压,通过选择性的检测扩散到扫描探针表面的氧气量,排除了其它副氧化反应可能带来的干扰,探测了样品电极的水解析氧的真正起始电压[45].Botz等利用SECM的剪切力恒定距离模式更精准地排除了样品的物理形貌对于起始电压检测所带来的影响,更高分辨率地探究了粉末状的氧化钌和钙钛矿催化样品的水解析氧起始电压[46].由于非导电性的气泡在催化电极表面的连续产生和生长,使得电极的催化活性表面定期的、不定期的或永久性的被气泡覆盖,阻碍了催化电极活性位点的暴露,进而抑制了宏观动力学,在无形之中降低了整个能源转换存储系统的操作效率,并增加了所需能源消耗.与此同时,由于氧气泡的大量生成,也可使催化电极的物理形貌和化学组成随着时间的推移发生变化.因此,研究氧气泡的成核、生长及脱附释放过程,是考察水解析氧催化材料性能的重要因素.Zeradjanin等在研究工业电解氯气的过程中开发了SECM的一种新的工作模式,即噪音模式,利用扫描探针作为传感器,极近地固定在氯气电解电极上表面的某一点,之后采用样品的产生-探针收集工作模式,在扫描探针施加一个可还原氯气的恒电压,收集样品产生的氯气、记录氯气的还原电流.然后对测得的氯气还原电流进行数学的快速傅里叶变换,计算出介于扫描探针和参比电极之间的氯气泡在释放过程中对于溶液电阻的扰动变化频率[47].

此工作模式很快被应用到水解析氧电极的研究中.通过对有裂痕和无裂痕工业电极样品的研究,发现有裂痕的水解析氧电极更易在水解析氧过程中产生气泡且有规律地从样品表面脱附.这是因为拥有窄小微孔和缝隙的水解析氧电极可以抑制氧气泡在孔缝中的进一步长大,从而使小氧气泡在形成的过程中更快脱附,有助于水解析氧反应活性位域的及时暴露.研究结果明确指出了电极的形貌结构对于水解析氧电催化过程的重要影响[48].初始的噪音工作模式是把扫描探针固定于样品表面的某一点,并且控制参比电极尽量远离扫描探针,以求获得介于扫描探针和参比电极之间的工业样品的宏观的水解析氧动态过程信息.为更加微观地探究样品表面的不同位域的水解析氧性能,尤其是氧气泡释放对于电极催化性能带来的影响,同时体现SECM的高分辨率扫描特性,作者等在进一步提高此工作模式的基础上提出了一个全新的利用SECM研究气体逸出电极的新概念,即把气泡释放的频率与振幅信息相结合,明确气体真正的氧气泡释放的催化活性位域分布以及更加准确的探究气体形成和释放过程中的动态性能.实验首先把微小的参比电极与扫描探针非常靠近地并排固定在SECM的步进器上,以确保二者之间的距离在扫描过程中保持恒定,排除溶液阻抗因二者距离的改变而产生变化.与此同时,利用穴电极固定了商业购买的氧化钌粉末作为研究样品,并对其施加不同的水解析氧极化恒电压.通过采用SECM的样品产生-探针收集模式对样品进行二维扫描,在扫描探针表面测得的氧还原电流可以说明样品局域微区的水解析氧的电化学活性.而通过对每一检测点的扫描探针的氧还原电流进行数学的快速傅里叶变换,不仅可以获得准确的氧气泡释放的活性位域分布,而且可以明确氧气泡的释放频率、释放强度以及可能的释放周期(定期释放、不定期释放、永久性吸附在样品表面).通过同时分析比较传统的SECM的样品产生-探针收集模式测得的样品水解析氧性能的图像与数学处理过的氧气泡释放分布图,可以明确样品的真正水解析氧活性位域(图4).通过对同一样品连续地进行二维扫描,也可以了解样品的水解析氧的稳定性.而最终对工业水解析氧电极的扫描,更进一步证明了利用SECM研究气体逸出电极新概念的有效性[49].

4扫描电化学显微镜在双功能氧还原和水解析氧反应研究中的应用

随着一体式可再生燃料电池和可充放电金属空气电池的出现,制备可具备催化氧还原和水解析氧反应性能的双功能催化剂以及研究其双功能电催化性能成为近年研究的重要内容.通过对SECM不同工作模式的联用,作者近期研究了氧化钴、氧化镍分别与氮掺杂炭黑复合的双功能催化材料以及商业氧化镍样品的氧还原和水解析氧的性能.通过氧化还原竞争工作模式研究了各类催化剂的氧还原催化过程中的起始电压和催化活性,通过与样品的产生-探针收集工作模式共用探究了双功能催化剂的氧还原催化过程中生成过氧化氢的选择性,利用样品产生-探针收集工作模式探究了水解析氧过程的起始电压和催化活性.在利用样品产生-探针收集工作模式与样品的线性扫描电位分析法联用的同时,排除了水解过程中可能产生的副氧化反应,利用扫描探针作为探测器选择性的探究了样品水解析氧过程产生的氧,确定了水解析氧的真正起始电压.而通过对扫描探针氧还原电流的实时监测,更观察到了在水解析氧反应发生之前扫描探针和样品之间的氧浓度的变化,进一步推测了样品可能发生的过渡氧化过程.值得一提的是,通过对SECM软件的提高,相关性能表征可以一系列地先后连续进行[50].

5结语与展望

篇7

“化合价升高被氧化,是还原剂;化合价降低被还原,是氧化剂。”这是解析氧化还原反应的总则,亦是总要求。化合价升高,说明该元素失去电子,被氧化,发生了氧化反应,该反应的产物为氧化产物,反应物是还原剂。化合价降低,说明该元素得到电子,被还原,发生了还原反应,该反应的产物为还原产物,反应物是氧化剂。

一、氧化还原反应的“热”和电化学的“冷”

在高中化学阶段,大多数学生对氧化还原反应比较熟悉,化学老师一般把其作为难点和重点,详细讲解,反复纠正练习,直到学生熟练掌握为止。同时,对于高考这个指挥棒,学生和老师不得不听从指挥,不管无机还是有机,牵扯到氧化还原反应的较多,所以氧化还原反应是化学高考的热门话题。

作为电化学,在书本中介绍的不多,篇幅较少,并且只讲原理和部分应用,内容艰涩难懂。在做题过程中容易以偏代全、断章取义,稍不注意细节问题就容易出错,造成学生认为电化学难,成为化学学习中的冷门。

近观化学高考,越来越接近生活,涉及电化学知识的也颇多。例如,日常生活的干电池,电动车和手机的可充电电池,以及将来保护环境的燃烧电池等等。这类题的特点是题型新颖、起点不高、内容难度不大,但学生却失分较多,令人痛惜。结果成考试是热点,成绩是冷门。针对氧化还原反应的“热”和电化学的“冷”,可把二者有机结合起来,进行系统整理和归纳,达到他山之石可以攻玉的目的,造成双赢的局面。

二、电化学本身就属于氧化还原反应的范畴

电化学是氧化还原反应的一个比较特殊的分支。电化学分两大部分,原电池和电解池(电镀池属于电解池)。原电池是把化学能转化为电能的装置,怎么把化学能转化为电能呢?通过电子转移(电子由负极流向正极)。而电子转移就是氧化还原的本质,所以说原电池属于氧化还原反应。

电解就是在电流通过电解质溶液而在阴阳两极引起的氧化还原过程,借助于电流引起氧化还原反应的装置叫电解池。从定义上就可看出,电解池也属于氧化还原反应。

电化学属于氧化还原反应的范畴,又具有一定的特殊性。首先,原电池和电解池都有电流通过,原电池基本上是自发的,电解池是人为的,并且必须有电源,这是二者的重要区别;同时,原电池的电极有正极、负极之分,而电解池的电极有阴极、阳极之说,包括电源亦有正极、负极之称。这些都是氧化还原所没有的,这就加大了解析电化学的难度。

电极的判断正确与否,是解析电化学的关键,所以运用氧化还原反应解析电化学,必须把电极判断联系上,否则会前功尽弃、满盘皆输,因此电化学是特殊的氧化还原反应。

三、利用氧化还原反应解析原电池

“活性为负被氧化,惰性为正被还原。”这是利用氧化还原反应解析原电池的总则。

一般情况下是比较原电池的两个电极的金属活动性,活泼的电极作为负极,发生了氧化反应;不活泼的电极作为正极,发生了还原反应。例如,铜锌原电池,稀硫酸作为电解质溶液:

电极材料 电极名称 电极反应式 反应类型

锌棒 负极 Zn-2e-=Zn2+氧化反应

铜棒 正极 2H++2e-=H2还原反应

这个例子充分证明总则的正确性,但亦不尽然。如燃料电池,全部是惰性电极(任何情况下都不参与反应的电极叫惰性电极),电极本身不参加反应,但它肯定有燃料和助燃剂,燃料中某一元素的化合价一定升高,化合价升高,发生了氧化反应,该电极就是负极,照样可以把两个惰性电极分清正极和负极,只不过倒过来使用罢了。

还有一些特殊的原电池,也符合这个原则。例如,铜铁原电池,浓硝酸作为电解质溶液。铁虽然比铜活泼,但是铁遇到冷的浓硝酸发生了钝化,很难参加反应;铜反而在常温下,能与浓硝酸发生氧化还原反应。在这种情况下,铜棒作为负极,发生氧化反应,铁棒作为正极,发生还原反应。可见,电极的判断不但与电极的金属活动性有关,还与电解质溶液有关,是两者共同决定的。但不论哪种原电池,负极被氧化、正极被还原这个总则是不变的。

四、利用氧化还原反应解析电解池

作为电解池,肯定有电源,电源分正极和负极。“正极为阳被氧化,负极为阴被还原”,这是利用氧化还原反应解析电解池的总则。

跟电源正极相连的电极称为阳极,阳极吸引阴离子,阴离子失去电子,发生氧化反应;若阳极本身是活性电极,则失去电子,发生氧化反应。与电源负极相连的电极叫阴极,阴极吸引阳离子,阳离子得到电子,发生还原反应。

电源的正极和负极、电解池的阳极和阴极、反应类型的氧化反应(失电子反应)和还原反应(得电子反应),这三个方面六个要点相辅相成,只要抓住其中一点,其他五点就迎刃而解了。例如,知道电解池中一个电极上有金属析出,推出金属是由金属阳离子得到电子而产生的,是还原反应,该电极是阴极,连接的电源为负极,同一电解池的另一电极恰恰相反,一目了然。

篇8

1无掩膜电化学微/纳米加工技术无掩膜电化学微/纳米加工技术是基于微/纳米电极针尖或针尖阵列的扫描探针显微镜(SPM)技术,包括电化学扫描隧道显微镜(EC-STM)和电化学原子力显微镜(EC-AFM)、超短电压脉冲技术(US-VP)、扫描电化学显微镜(SECM)、扫描微电解池(SMEC)等,加工的精度由针尖电极的尺寸决定。无掩膜技术的优点在于所加工的三维结构的尺度和精度可以达到微/纳米级别,缺点是材料去除率低以及加工效率低。

1.1电化学扫描探针显微镜(EC-SPM)电化学扫描隧道显微镜由Kolb课题组于1997年提出。与“蘸水笔”技术很类似,首先在STM探针上沾上带有Cu2+的溶液,再移到金基片上通过电沉积形成铜纳米团簇。此方法的加工精度非常高,团簇的直径一般在亚纳米级别,高度可以控制在几个纳米[7]。然而,由于很多金属的还原电位低于氢析出电位,很难在水溶液中通过电沉积的方法得到纳米团簇或微/纳米结构。最近,厦门大学毛秉伟教授课题组在室温离子液体环境中电沉积得到了活泼金属锌和铁的纳米团簇图案[8-10]。原子力显微镜与电化学联用可以达到类似的结果。虽然单点加工作业效率低,但是由于金属的电沉积速度很快,如果采用阵列SPM探针,可以大幅度提高加工效率。EC-SPM最大的不足在于SPM的扫描行程非常有限,因此加工的尺度范围很小。目前本课题组正在研发大行程(100mm×100mm)的EC-SPM技术。

1.2超短电压脉冲技术Schuster发展了超短电压脉冲技术(USVP),将微/纳米电极、电极阵列或者带有三维微结构的模板(工具)逼近待加工的导电基底(工件),然后在针尖与基底之间施以纳秒级电压脉冲。由于电极/溶液界面的时间常数为双电层电容和工具与工件之间溶液的电阻的乘积(τ=RCd),而后两者与工具和工件之间的距离有关,所以在工件与工具之间施加纳秒级的电势脉冲时,只有距离工具最近的工件部位发生阳极溶解,从而得到尺度可控的微型结构[11]。本质上讲,这种技术具有距离敏感性,加工的精度较高。我国已有研究人员正在开展这种技术的研究[12]。

1.3扫描电化学显微镜扫描电化学显微镜(SECM)是一种以超微电极或纳米电极为探针的扫描探针技术,由一个三维精密定位系统来控制探针电极与被加工基底之间的距离,通过在针尖与基底之间局部区域激发电化学反应,可以获得各种微结构图案。该技术通过电流反馈原理定位微/纳米电极针尖,与STM和AFM相比,虽然空间分辨率有所降低,但是化学反应性能得到增强,大大拓展了微/纳米加工的对象,成为一种重要的微/纳米加工技术。SECM在微/纳米加工中的应用详见文献[13]。

1.4扫描微电解池扫描微电解池(SMEC)是利用毛细管尖端的微液滴与导电工件形成接触,对电极插入到毛细管中与导电的加工基底构成微电解池,并以该微电解池作为扫描探针。由于电化学反应被限制在微液滴中,因此微液滴的尺寸决定了加工的精度[14]。近期的研究结果表明,通过该方法可以制作形状可控的铜纳米线,在微电子元器件的焊接技术中表现出显著的优势[15]。我们课题组采用该方法合成了各种微/纳米晶体或聚合物功能材料,用于构筑电化学功能微器件[16-17]。

2掩膜电化学微/纳米加工技术掩膜微/纳米加工技术包括LIGA技术、EFAB技术、电化学湿印章技术(EC-WETS)和电化学纳米印刷技术。这些加工技术的主要原理都是将电化学反应控制在具有预设微/纳米结构的掩模内。工件通常是导电的,同时也作为电极。LIGA和EFAB技术需要通过光刻在工件上形成微结构,然后通过电沉积方法在其间得到金属微/纳米结构。电化学湿印章技术和电化学纳米压印技术使用的是凝胶或固体电解质模板,模板与工件接触,利用电沉积或刻蚀形的方法形成所需的微/纳米结构。

2.1LIGA技术LIGA(德语Lithographie,Galvanoformung,Abformung的缩写)是一种加工高深宽比微/纳米结构的方法[18-20]。先在导电基底上涂覆一层光刻胶,通过光刻曝光后形成高深宽比的微/纳米结构;然后在含有微/纳米结构的光刻胶模板上电沉积金属,去除光刻胶后得到金属微/纳米结构。获得的金属微/纳米结构还可以进一步作为加工塑料和陶瓷材料工件的模板。LIGA加工的深宽比可以达到10~50,粗糙度小于50nm。该技术使用的X射线曝光光源价格昂贵,而紫外曝光工艺又受相对较低的加工深宽比的制约。另外,如何在有较高深宽比的光刻胶微/纳米结构中实现高质量的电铸也是需要解决的问题。

2.2EFAB技术EFAB(ElectrochemicalFabrication)是由美国南加州大学AdamCohan教授提出的一种微/纳米加工方法[21-23]。EFAB技术首先利用CAD将目标三维微/纳米结构分解成容易通过光刻加工的多层二维微/纳米结构;然后将设计好的微/纳米结构层和牺牲层一层一层地沉积于二维光刻胶模板中;去掉光刻胶模板和牺牲层金属就可以得到所需的微/纳米结构。每一个电铸层都要求高度的平坦化,以确保下一步工艺的质量。化学抛光(CMP)是常用的抛光方法,但是其价格昂贵,大大增加了工艺成本。另外,逐层加工对多层结构之间的精确对准有着很高的要求,任何两层之间的对准错误都将会导致整个微/纳米加工流程失败。2.3电化学湿印章技术Grzybowski提出了一种利用含有刻蚀剂和微结构的凝胶模板来实现导体或半导体材料的化学刻蚀技术[24]。我们课题组采用琼脂糖凝胶模板作为电解质体系,提出了EC-WETS技术,通过电沉积、阳极溶解或化学刻蚀等途径实现微/纳米结构的加工[25]。目前的主要问题是如何控制反应物的侧向扩散,提高反应物在胶体中的扩散速率以及加工的精度。

2.4固体电解质电化学纳米印刷技术AgS2是一种具有银离子传输能力的固态超离子导体电解质,Hsu等制备了AgS2微/纳米结构模板。当银工件表面接触到超离子导体模板时,在工件上施加一定的电压,银工件表面与模板的连接处将会发生银的阳极溶解,银离子在AgS2电解质中迁移,沉积到AgS2模板另一侧的对电极上[26-27]。这种方法的主要缺陷是可以用作模板的固体电解质有限,机械强度差,而且,工件表面溶出的阳离子在固体电解质中的扩散速度慢,加工效率低。

3约束刻蚀剂层技术微/纳米加工技术必须满足以下3点要求:微/纳米级加工尺寸,能加工复杂的三维结构以及实现批量化生产。然而非掩膜技术不适合批量生产,掩模技术又难以生产连续曲面等复杂的三维微结构。我们课题组致力于电化学微/纳米加工领域已有20多年,由田昭武院士提出的具有自主知识产权的约束刻蚀剂层技术(CELT)可以满足对微/纳米加工技术的上述3个基本要求,本节将予以详细介绍。

3.1基本原理约束刻蚀剂层技术是通过一个随后的均相化学反应将电化学、光化学或光电化学产生的刻蚀剂约束至微/纳米级的厚度,从而实现微/纳米精度的加工。约束刻蚀剂层技术主要分为以下3个步骤:①刻蚀剂的生成反应为:RO+neorR+hvO(+ne)(1)其中R为刻蚀剂前驱体,O为刻蚀剂。CELT使用的工具既是光/电化学体系的工作电极又是微/纳米加工的模板,即刻蚀剂通过电化学、光化学、光电化学的方法在模板表面产生。由于刻蚀剂在溶液中的扩散,刻蚀剂的形状和厚度很难控制,这取决于刻蚀剂的扩散性质、模板电极的大小和形状。为了确保加工精度,就必须控制刻蚀剂的扩散仅仅发生在模板电极表面微/纳米级的尺度范围以内。②约束反应为:O+SR+YorOY(2)其中S为工作溶液中的约束剂,Y是约束剂S与刻蚀剂O反应的产物或者光/电化学反应生成的自由基衰变产物。由于约束反应的发生,使刻蚀剂的扩散被限制在模板电极表面微/纳米级的尺度范围以内,约束刻蚀剂层的厚度取决于约束反应的速率或自由基O的寿命。约束刻蚀剂层的理论厚度为[28]:μ=(D/Ks)1/2(3)其中μ为约束刻蚀剂层的厚度,D为刻蚀剂在工作溶液中的扩散系数,Ks为约束反应(式(2))的准一级反应速率常数。当Ks为109s-1时,约束刻蚀剂层的厚度将达到1nm。由于刻蚀剂层被约束在微/纳米尺度范围内,刻蚀剂层保持与加工模板一致的形状。因此,约束刻蚀剂层技术的加工精度取决于约束刻蚀剂层的厚度。③刻蚀反应为:O+MR+P(4)式中M为被加工材料,P为刻蚀产物。当模板电极逐渐逼近工件使约束刻蚀剂层与工件表面接触时,工件表面将与刻蚀剂发生化学刻蚀反应,直到在工件表面生成与模板电极三维微/纳米结构互补的微/纳米结构。

3.2微/纳米加工仪器用于微/纳米加工的CELT仪器主要由电化学工作站、三维微位移控制器、计算机反馈系统三部分构成[29-33](图1)。电化学工作站用于调控CELT化学反应体系;三维微位移控制器用于模板工具的定位和进给。控温系统和工作液循环系统等附属系统在这里不做展示。计算机用于CELT整体系统的信息发送和反馈,以确保整个微/纳米加工过程协同完成。

3.3化学反应体系的筛选对于CELT而言,首先是要选择合适的化学反应体系。在实验中,我们使用一个柱状微电极作为工具电极来产生针对特定加工材料的刻蚀剂。比如在加工半导体砷化镓时,溴是常用的刻蚀剂,而胱氨酸作为约束剂用以调控刻蚀剂层的厚度[34-39]。整个刻蚀体系的化学反应表示如下:16Br-8Br2+16e(5)5Br2+RSSR+6H2O2RSO3H+10Br-+10H+(6)3Br2+GaAs+3H2O6Br-+AsO3-3+Ga3++6H+(7)用于加工砷化镓的CELT化学体系的循环伏安图见图2(a)[34]。刻蚀剂的生成反应(式(5))是一个可逆的氧化还原反应。由于工作液中胱氨酸(RSSR)与溴的约束反应(式(6)),胱氨酸被氧化为磺酸(RSO3H),体系的法拉第电流显著增加,这表明约束刻蚀剂层的厚度减小。如图2(c)所示,纳米加工的精度得到良好改善[38]。值得注意的是,约束刻蚀剂层的厚度可以通过改变约束剂的浓度来调节。这对于超光滑表面的加工十分重要,可以根据实际技术要求调整工艺。SECM可以用来探测工具表面刻蚀剂的浓度分布,并且可以用来获取CELT化学反应体系的动力学参数,这对于优化CELT微/纳米加工的技术参数十分重要[40-41]。

3.4复杂三维微结构的CELT加工CELT已被证明可以成功地用于金属、合金、半导体、绝缘体表面复杂三维微结构的加工[42-49]。在三维微结构的加工实验中,使用的是具有互补结构的模板电极。模板材料可以是铂铱合金、硅、聚甲基丙烯酸甲酯(PMMA)等。在具有三维微结构的硅或PMMA模板上首先沉积一层钛,然后再溅射一层铂,以确保模板在加工过程中的导电性和稳定性。在金属或合金基底上加工三维微结构的关键是在工具电极表面产生氢离子作为刻蚀剂,以氢氧化钠作为约束剂。目前,各种三维微结构已经被成功复制在铜[50-51]、镍[51-52]、铝[53]、钛[54]、镍钛合金[55]、Ti6Al4V[56]、镁合金[57]基底上。对于半导体硅[32,58-62]或砷化镓[34-39],一般以溴作为刻蚀剂,以胱氨酸为约束剂。图3所示的是采用CELT在n型砷化镓基底上加工出的三维衍射微透镜阵列,这是CELT加工出的首例光学微器件[39]。整个微透镜阵列是一个八相位衍射光学器件,每个小微透镜由8个同心圆以及7个台阶位构成。7个台阶位的总高度是1.3μm,每个台阶的平均高度为187nm。添加剂对提高刻蚀产物的溶解性至关重要,在硅微加工中,通常加入氟化钠以避免硅沉淀。最近,由光电化学或光化学生成自由基刻蚀剂也取得了初步进展,例如二乙胺自由基刻蚀铜[63]。

3.5超光滑表面的CELT加工如果工具模板不是复杂三维结构,而是一个超光滑平面,CELT能否发展成为一种整平技术呢?由于集成电路和超精密光学器件等领域的巨大市场需求,将CELT发展成为一种超光滑表面加工技术具有十分重要的意义。最近,我们采用CELT的基本原理开展了超光滑表面加工的研究工作,该方法有可能代替现有的化学机械抛光技术(CMP),用于超大规模集成电路中铜互连结构的整平。初步的研究结果表明CELT对铜的整平有着良好的效果(图4)。CELT抛光的关键在于确保约束刻蚀剂层在大面积范围内保持均一的浓度分布。尽管大面积超光滑工具电极的流体力学设计非常必要,但是最简单的方法是使用一个线型工具电极对在加工平台上做旋转运动的工件进行作业。本课题组正在将传统的机械加工作业方式与CELT进行对接,这无疑将在超光滑表面及其微/纳米二级结构的加工领域发挥更加重要的作用[33]。

推荐期刊