时间:2023-03-07 15:04:29
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇人工智能技术论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
以上论证说明:人工智能技术可以在人类隐性智慧定义的工作框架内模拟人类显性智慧(人类智能)生成知识,创建主客双赢的策略解决各种复杂问题。而这是现今其他各类技术做不到的。不过,由于在人工智能系统工作的基本过程中,(1)中客观存在各种不确定性,人类给定的知识未必能够理想地体现客观规律,也未必能够完全满足求解问题的需要,(2)中人类预设的求解目标也不见得完全合理,(3)中人工智能系统各个环节必然存在各种不理想性。因此,人工智能系统对人类显性智慧能力的模拟不可能完全到位,人工智能系统提供的问题解答也有可能不如人类自己求出的解答。换言之,人工智能系统所模拟的人类显性智慧能力,原则上不可能超过人类自己的显性智慧能力。如果说人工智能系统确实也有超人的地方,那主要是它的工作速度、工作精度、持久能力等因素,而不可能是显性智慧中的智慧品质。至于一些人所宣传的机器超越人类甚至机器淘汰人类的说法,是没有根据的。无论是人工智能系统,还是其他各种机器系统,它们共同的问题之一是:机器没有生命,没有目的,不可能自主发现应当解决的实际问题,不可能自主形成机器的智慧,尤其不可能无中生有地形成超越人类和淘汰人类的荒唐愿望,因此更不可能产生淘汰人类或灭绝人类的行为。
2人工智能与信息技术的关系
图2的人工智能系统模型表明,完整的人工智能技术系统必须具有如下环节:信息获取(感知)、信息传递(通信)、信息处理(计算)、知识生成(认知)、策略创建(决策)、策略执行(控制)以及反馈学习优化等基本技术系统,这正像“人”这个智能系统必须具有感觉器官(信息获取)、传输神经系统(信息传递)、思维器官(信息处理、知识生成、策略创建)以及执行器官(策略执行)。 其中传感(感受信息)、通信(传递信息)、计算(处理信息)、控制(执行信息)等技术属于信息技术。可见,人工智能系统是一个全局整体,其中包含着传感、通信、计算、控制等信息技术环节;这正像人这个智能系统是一个全局整体,其中包含感觉器官、传输神经、丘脑和执行器官这些信息器官。如果把人工智能系统称为完整的人工智能系统,而把其中的知识生成和策略创建称为核心人工智能系统,那么,则有:完整的人工智能系统=核心人工智能系统+信息技术系统其中,核心人工智能系统处于完整人工智能系统的核心,处理知识和智能层次的问题;信息技术系统处于完整人工智能系统的外周,处理信息层次的问题,同时担任核心系统与外部环境之间的两端接口:一端是从环境获取本体论信息(传感),另一端是对环境施加智能行为(控制)。这就表明,信息技术系统提供给人类的服务主要是方便快捷的信息共享,而不可能提供如何认识事物本质的服务(因为这需要知识),更不可能提供如何解决问题的服务(因为这需要智能策略)[2]。
3“新型”信息技术
近十多年来,先后出现了大数据、云计算、物联网、移动互联网以及各种互联网的应用技术。人们把它们称为“新型”信息技术或“新一代”信息技术。深入分析可以发现,这些新型信息技术的核心技术正是核心人工智能系统的知识生成和策略创建技术。不妨以大数据技术为例加以说明。图3表示了大数据技术系统的工作流程。由于有着多种来源、多种背景以及多种格式,大数据通常是病态结构或不良结构的大规模数据集合,其中可能包含垃圾、病毒和黑客攻击程序。因此,如图3所示,大数据技术的第一个环节就是智能分类:把无用的数据识别分类出来加以过滤和抑制,把有用的数据按照某些特征进行分类,再分门别类地送到恰当的云计算(和云存储)系统,进行相应的信息处理,为知识生成(知识挖掘)做好必要的准备。通过知识挖掘生成了足够的知识之后,才可以把这些知识(结合求解目标)转换成为用来解决问题的智能策略。其中,智能分类、知识挖掘和策略创建都是人工智能的基本技术。可见,如果没有这些人工智能技术,大数据就只能是数据,而不可能转换成为有用的知识和可以用来解决问题的智能策略。
由此可知,大数据技术的核心就是人工智能技术,可以把它比较确切地称为面向大数据的智能技术。而把它称为新型信息技术则没有真正抓住大数据技术的要害和本质,模糊了人们对大数据技术和人工智能技术的认识,不利于大数据技术的研究和发展,也不利于人工智能的研究和应用。真正的智能物联网模型不是别的,正是图2所示的模型。如图2所示,只要在综合知识库内设置“对物控制的目标”,那么“外部世界的物”的信息就经由传感器获得,经过通信系统传送到计算系统并在这里进行必要的处理即把信息变成适用的信息,接着由认知系统转换成为知识,然后由决策系统根据控制目标把信息和知识转换成为智能策略,智能策略再经通信系统传到执行系统之后转换成为智能行为反作用于所关注的“物”,使它的状态符合预设的目标。近来人们在密切关注着“互联网+”。其实,“互联网+”可以有两种不同的理解。一种理解是当前人们所关注的互联网推广,这里的“+”就相当于信息化的“化”,就是互联网的各种应用。另一种更有意义的理解则把“互联网+”理解为互联网升级,就是把以计算机为终端的现有互联网升级为以人工智能系统为终端的智能互联网。这就是2015年全国两会期间全国政协委员的“中国大脑”提案。应当认为,互联网推广,即把互联网应用到各行各业是完全必要的,这是信息化建设的正常要求。但是,从信息化建设的发展大势来看,互联网升级即把当前常规互联网升级为智能互联网则更为必要,这将为中国信息化建设注入更为强大的新活力,是转变经济发展方式的需要,是国民经济产业升级的需要。综上所述,大数据技术、云计算技术、智能物联网技术,其实都是人工智能技术的相关具体应用。可以这么说,如果没有人工智能技术,单凭信息技术很难有效地应对大数据和物联网以及未来更多更复杂的技术挑战。
4结束语
人工智能是一门综合了生理学、语言学、计算机科学等的学科,具有综合性、挑战性等特点,其主要目的便是赋予机器人工智能的功能,使其能够替代人去完成一些危险性与复杂性较高的工作,进而确保人们的安全,促进工作效率的提高[1]。因此,人工智能也被称为机器智能。相比于自然智能与人类智能而言,人工智能属于一项全新智能,其通过将设备、系统等来模拟人类各项智能活动,从而完成命令。作为一项结合多门学科的应用技术,人工智能的发展与其组建学科的关系十分紧密,特别是计算机技术的发展方向,其对人工智能的应用具有决定性作用。此外,人工智能技术也极大程度上促进了计算机网络技术的发展,计算机为从单纯数据计算转变为知识处理,就离不开人工智能技术的支持。人工智能的作用与优势具体如下:其一,可处理不确定信息,实时了解系统资源表现出来的局部及全局状态,并对状态变化情况进行追踪,通过技术处理获取的信息,从而为用户实时提供所需信息护具。其二,具有较高的写作能力,可科学、有效整合获得的资源,进而将各用户之间的资源进行传输与共享,通过有机结合网络管理与众多写作分布式人工智能的思想,可充分促进网络管理相关工作效率及效益的提高。其三,其在网络智能化护理中具有显著优势,主要表现在其学习、推理能力方面。在网络管理工作中应用人工智能,可将信息处理的准确性及效率进行提升,同时,通过利用人工智能技术的记忆功能,可在存储信息过程中建立完善的信息库,并将其作为综合、解释、总结信息的平台,在产生出更为准确及科学的高级信息的基础上,实现网络管理水平的全面提升。
2计算机网络技术的问题
目前,随着计算机技术的广泛应用,人们愈发重视有关网络信息安全问题。在网络管理系统的应用过程中,用户最为关注的功能便是网络监视与网络控制,其中,为正常发挥网络监视及网络控制这两大功能,就需要对信息急性及时获取与准确处理。网络传输的数据通常是不连续、不规则的,而在早期阶段,计算机只具备逻辑化分析及处理数据的功能,难以准确判断出数据的真实性,因此,为从大量繁复的信息中,挑选出有效的信息,实现计算机网络技术的智能化具有非常重要的意义[2]。计算机的应用日益广泛与深入,这使得用户需要通过网络安全管理来为其信息安全提供保障,而网络犯罪现象的增多,使得计算机必须具备灵敏的观察能力及迅速的反应能力否则便难以对侵犯用户信息的各种违法犯罪行为进行有效遏制。为促进网络安全管理的实现,就需要将以人工智能技术为基础而建立起来的智能化管理系统作为有效手段,自动收集信息数据,及时诊断运行故障,并在线分析趋势及性能等,从而确保计算机发生网络故障时,可做出快速、准确的反应,并采取有效措施来恢复计算机的网络系统。由此可知,针对计算机网络中存在的问题,就需要应用人工智能技术,在其内部建立完善的网络管理及防御系统,从而为用户信息安全提供充分保障。
3计算机网络技术中人工智能的应用分析
在计算机网络技术中应用人工智能,可极大程度满足人们对计算机提供人性化及智能化服务的需求。其中,计算机网络技术智能化服务主要指的是智能化的人机界面、信息服务、系统开发及支撑的环境这几个方面,与此同时,这些需求进一步促进了人工智能在计算机网络技术,尤其是在智能人机界面、网络安全及系统管理评价等方面的应用进程。
3.1人工智能在计算机网络安全管理中的应用。在计算机网络技术中,人工智能得到了极为广泛的应用。在计算机网络安全管理中,人工智能的应用主要表现在智能防火墙、入侵检测、智能型反垃圾邮件系统这三个方面。相比于其他防御系统,智能防火墙系统采用的是智能化识别技术,例如,通过概率、统计、记忆、决策等方法,来识别并处理有关信息数据,不但有效减少了计算机匹配检查过程中的庞大计算,而且大大提高了发现网络有害行为的效率,从而实现了限制访问及拦截有害信息的功能;此外,与传统防御软件相比,智能防火墙系统具有更高的安检效率,从而将拒绝服务共计这一普通防御软件普遍发生的问题进行有效解决,实现了高级应用的入侵及病毒传播的有效遏制[3]。作为计算机网络技术安全管理的一项重要环节,入侵检测起着保证网络安全的关键作用,同时也是防火墙技术的核心部分。计算机系统资源的保密性、完整性、安全性等均与网络系统入侵检测功能的有效发挥有着紧密联系。入侵检测技术通过采集、筛选、分类、处理信息数据,在形成最终报告的基础上,将当前计算机网络系统的安全状态及时反映给用户。现阶段,人工智能在模糊识别、专家及人工神经网络等系统入侵检测中,得到了非常广泛的应用。计算机网络安全管理中的智能型反垃圾邮件系统,是一项以人工智能技术为基础而研发出来的防护技术,其针对的对象为垃圾邮件。此项技术可在不对用户信息安全造成影响的前提下,有效监测用户的邮件,并在完成邮箱内垃圾邮件的开启式扫面后,将垃圾邮件分类信息提供给用户,提醒其对可能对自身不利或对系统造成危害的信息进行尽早处理,进而确保整个邮箱的安全性,
3.2人工智能在计算机网络系统管理及评价中的应用。计算机网络管理的智能化发展,离不开人工智能技术及电信技术的发展。除了应用在计算机网络安全管理中,人工智能技术中的问题求解技术及专家知识库等,均可促进计算机网络综合管理的实现。由于网络具有瞬变性及动态性的特点,因而给计算机网络管理工作增加了一定的难度,这同时也使得现代化网络管理工作朝着智能化的方向发展。其中,以人工智能理论为发展基础的专家级决策及支持方法,在信息系统的管理工作中得到了广泛应用。作为一项智能计算机程序,专家系统可累积尽可能多的专家经验与知识,并通过进行归纳与总结,在形成资源录入系统的基础上,利用这一汇集了多位特定领域中的专家经验的系统,对此领域中相似的其他问题进行解决。因此,对于计算机网络管理及其系统评价,可通过众多专家系统来开展计算机网络管理及系统评价等大量工作。
4结数语
关键词:人工智能 科学技术 伦理问题
一.人工智能的背景
人工智能是计算机科学的分支,它企图了解智能的实质,并研制出一种新型的以人类思维相似的方式做出相应反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能的思想萌芽最早可以追溯到十七世纪的巴斯卡和莱布尼茨。十九世纪,英国数学家布尔和摩尔根提出了“思维定律”,这些可谓是人工智能的开端。(1)50年代至70年代,人工智能相继出现了一批显著的成果,这一阶段的特点是重视问题求解的方法,忽视知识重要性。(2)随着第五代计算机的研制进入了80年代,人工智能得到迅猛发展。它的研制形成了一股研究人工智能的热潮。(3)90年代,由于国际互连网的技术发展,将人工智能更面向实用。研究人工智能出现新的。
二.人工智能的发展给人类带来伦理问题
(1)人工智能的情感问题。情感问题是千百年来人们一直在谈论的话题。明斯基认为,通过把我们的身体部分看做是大脑可以使用的资源,就可以改变它们的精神状态。因此,现在人工智能界的一种观点认为情感是一种特别的思维方式,我们可以利用它来增加我们的机智。智能机器人毕竟是一个赋予一种人类情感程序的机器,实质上还是没有人类的意识,只有固定的程序。
(2)人工智能机器的责任问题。人类不断向前发展,社会不断进步,人类把人工智能机器研制出来,赋予一定的程序,帮助老人,照顾小孩等;爱,不仅是男女之间的爱,也有父母对子女,这种爱是相互的。人们要面对智能机器的情感控制,我们不能把它视为一台机器,应该视为人类其中的一员,他们是一个种族,我们要对研制出来的人工智能机器负责。智能机器赋予人类的情感,我们也要给予同等的情感。我们不仅要研制智能机器,我们也要爱护和保护他们。
三.人工智能的问题对策
(1)人工智能情感问题研究。我们可以看出人工智能的机器情感是一个极其复杂的问题,这不仅涉及到人工智能的技术层面,同时情感是一种特殊的思维方式,机器是同样可以具有情感的。人类可能赋予人工智能一定的情感程序,我们要把人工智能的看成一类种族,让人工智能与我们共同创建美好的大家庭。
(2)人工智能的责任问题研究。随着人类社会的不断发展和进步,人工智能技术研究将成为人类不可避免,人类研究人工智能不仅会给人类带来帮助,也会给人们的带来一些困惑。我们在研究人工智能机器要考虑到,智能机器发展到一定程度的时,智能机器可以自己转变程序,人类要研究一种机器人的法律规范,也要赋予研究机器人的科学家一定的法律法规。
四.人工智能的影响
(1)人工智能带来负面影响。随着现代科学技术的发展,人工智能给人类带来帮助,也给人们带来了一些问题,像气候变暖,生物物种的灭绝,新型细菌的出现等。
(2)研究人工智能涉及的学科领域。人工智能是研究使计算机来模拟人的某些思维过程的智能行为学科,主要包括如下领域:专家系统、机器学习能力、模式识别、人工神经网络。在智能领域里最关键的问题之一,就是机器学习的问题。一旦机器有了学习能力,人类的未来发展难以预料!
(3)人工智能的积极影响及美好前景。人工智能的发展还没有到达一定水平,人工智能机器就可以和人做朋友,可以作为家里的一份子出现,进入人们的生活。我们在未来要研究人工智能的发展,也要研究人工智能出现以后所带来的问题,把人工智能的优势发挥的更好,给人类带来更美好的未来。
结束语:
【关键词】计算机;人工智能技术;应用
1引言
人工智能技术已经成为目前最受社会关注的新兴科技之一,随着该技术在各行业和领域中的应用不断深入,人们的工作和生活方式不断向智能化方向发展,工作和学习效率都得到了质的飞跃,未来,人工智能技术也必然会获得更加广阔的发展前景。
2人工智能技术概述
人工智能是计算机科学的一个分支,这门学科的主要目标是了解人类智能的本质,并通过将人类智能转移到智能机器中,使智能机器能在不同应用场景下做出类人思维的反应。人工智能是一项综合了多项高新科技的综合性学科,包含5项核心技术,分别是计算机视觉、机器学习、自然语言处理、机器人技术和生物识别技术。其中,机器学习是实现计算机人工智能技术的核心技术,该技术使智能机器在算法复杂度理论、凸分析、统计学等学科的支持下,能自主模拟人类行为。目前已经发表的机器学习策略主要包括模拟人脑的机器学习和采用数学学习方法2种策略。其中模拟人脑的机器学习策略又可细分为符号学习和神经网络学习,符号学习是以认知心理原理为基础,在机器中输入符号数据,用推理过程在图或状态空间中搜索并进行符号的运算,对概念性和规则性知识的学习能力较为突出,如示例学习、记忆学习、演绎学习等;神经网络学习是从微观生理角度对人脑活动进行模拟,利用函数结构模型代替人脑神经网络,以函数结构进行数据运算,并在数据迭代过程中在系数向量空间中搜索,对函数型问题具有较好的学习能力,如拓扑结构学习、修正学习等。采用数学方法的机器学习主要是利用统计机器,建立相应的数学模型,拟定超参数,输入样本数据后根据不同的运算策略对模型进行训练,最后根据训练结果进行结果预测。
3人工智能技术的发展历程
3.1人工智能技术的兴起
虽然新兴技术的兴起获得了广泛的关注,但由于人工智能技术涵盖的学科和技术范围过大,兴起阶段的该技术的理论知识、产品应用、发展应用等均存在明显缺陷。除此之外,计算机技术在当时也并不成熟,当时的计算机编程和计算水平较为落后,很多超前的想法以当时的技术水平来说实现较为困难。在多种因素的影响下,人工智能技术在兴起阶段并未得到快速发展。
3.2人工智能技术的高速发展
人工智能技术这一概念在提出后近20年的时期中其发展始终处于停滞状态,直至20世纪70年代,该领域的专家研发出全新的人工智能专家系统DENDRAL,该系统的诞生带动人工智能技术迈向新的发展阶段,并且在这之后进入高速发展时期。日本始终重视本国科学技术的发展,并且在20世纪80年代提出“科技立国”的政策,此后很长一段时间,日本依托此国策使经济得到迅速恢复和发展。在1982年,日本国内对第五代计算机的研究以失败告终,但此次研究中提出了新的计算机算法和逻辑程序语言Prolog,Prolog在处理自然语言过程中具有比LISP语言更好的应用效果,这一创新进一步促进了人工智能技术的发展。人工智能技术的发展建立在多项先进学科共同发展的基础上,与其他技术相比,人工智能技术在处理数据、整合资源方面具有更大优势。
3.3人工智能技术的发展现状
3.3.1专家系统
专家系统指的是一种智能计算机程序系统,是人工智能技术应用最为广泛也最为重要的领域之一,系统中涵盖大量某领域专家水平的知识与经验,通过应用人类在该领域中的专家级别知识来为用户解决在该领域中遇到的问题。专家系统有效地将人类智能延伸到专业领域中,实现了理论研究向实际应用方向过渡的目标,大幅提高了人类对专业问题的处理效率,并且专家系统依托复杂的算法能对专业问题未来发展的可能性进行更全面的计算,工作效率甚至会比人类专家更高效、更准确。随着对专家系统研究的不断深入,目前很多专家系统都能依据对人类行为的模拟在不同的应用场景中作出智能化的反应和判断,并且能够利用知识库,深入挖掘复杂问题的内在联系。专家系统已经在多个领域中都得到了广泛的应用,帮助企业更客观地摸索市场规律,从而作出正确的生产决策、调度规划、资源配置计划等,大幅提高了企业经营的科学性,使企业能在节省生产成本的同时,获得更好的经济效益。
3.3.2模式识别
模式识别是利用计算机技术将识别对象按一定特征归类为不同类别,目前人工智能技术在模式识别中的主要研究方向包括语音语言信息处理、计算机视觉、脑网络组等,希望通过人工智能技术实现对复杂信息的识别和处理,这一应用能促进多个行业向智能化方向发展,如军事领域、医疗领域等。
3.3.3机器人学
机器人学的主要研究方向是机器人的设计、制造和应用,随着人工智能技术的成熟与应用,机器人的智能水平不断提高,并且在不同行业中的应用已经较为普遍,日常生活中常见的机器人包括扫地机器人、迎宾机器人、快递机器人、早教机器人、无人机等,人们可以利用可移动设备对其进行操作,极大程度地提高了人们生活的智能性和便捷性。
3.3.4机器学习
机器设备并不具备自主思考能力,在不同应用场景下的反应主要是依托计算网络技术和算法对人类思维模式进行模拟,并将人类行为进行充分消化以使自身性能得到优化,能对不同问题进行处理。机器学习是一项涵盖多个学科且复杂程度很高的科学,包含统计学、概率学、算法复杂度理论等,是人工智能的核心技术,也是推动计算机向智能化方向发展的关键技术。
3.3.5人工神经网络
人工神经网络是人工智能技术自进入高速发展时期后广泛研究的重点内容。利用计算机算法将人脑神经元进行简单化、抽象化、模式化,并构建成与人脑神经元网络相似的网络结构。人工神经网络技术的成熟与发展为专家系统、模式识别、机器人学、生物、经济等多个学科的发展提供了技术支持,解决了很多人工智能技术发展中的实际难题。
4人工智能技术的应用
4.1人工智能技术在计算机网络技术中的应用
4.1.1计算机网络安全管理
人工智能技术与计算机网络技术互相依存、互相促进、共同发展,在计算机网络技术的多个方面都有深入的应用。其中,在网络安全管理方面主要有如下应用:①智能防火墙技术。防火墙技术随着计算机的普迅速发展,应用人工智能技术的防火墙技术比传统防火墙技术的性能更加优异。智能防火墙技术具有智能记忆功能,能自动记录并储存历史处理病毒的记录,在后续应用过程中依据记录直接优化计算机匹配环节,减少计算机数据量,提高防火墙的隔离病毒能力。另外,智能防火墙还能结合用户的需求,对用户不需要的弹窗功能、访问权限、有害信息等进行智能化拦截。②计算机入侵检测。防火墙的主要功能就是为计算机设备创造安全的运行环境,保证系统和内部数据不被侵害。计算机入侵检测功能是保障防火墙正常工作的基础功能模块,对提高计算机数据的安全性和可靠性具有直接的影响。应用人工智能技术的入侵检测功能,能对计算机系统进行智能化分析和处理,根据预定算法将处理数据整理成为入侵检测报告,让用户能全面地掌握计算机设备的安全状态。③垃圾邮件智能化处理。该技术依托人工智能技术中的模式识别功能,对接收邮件进行扫描和归类,发现垃圾邮件后直接将其标注为垃圾邮件,为用户发出风险警告,避免用户因误操对计算机系统造成损害。
4.1.2计算机网络管理
人工智能技术的发展和应用促进计算机网络技术向智能化方向发展。在实际应用中,除计算机网络安全管理模块外,还能解决多种网络管理问题。随着计算机技术的普及,网络数据呈爆炸式增长,网络管理工作量和工作难度都达到了空前高度,通过应用人工智能技术,能大幅提高计算机网络管理效率,优化网络管理效能。
4.2人工智能技术在企业管理中的应用
企业是市场经济活动的主要参与主体,是维持市场经济稳定运行和发展的关键要素,在企业生产活动中科学地应用人工智能技术,能有效提高企业的生产能力,促进企业获得更高的经济效益和社会效益。具体应用渠道如机械自动化、智能监控、推荐系统、用户购物行为分析、零售分析、数据提取、文本归类、文章摘要等,从员工工作的细微之处实现工作效率上的提升,进而提升企业整体的运行效率。对工业行业来说,应用机械自动化技术还能有效降低传统工业生产中对人工的依赖性,大幅提高工业企业的生产能力,在行业发展的过程中起到了非常积极的促进作用。
4.3人工智能技术在航空航天技术中的应用
航空航天技术是目前人类最高科技的集合体,涵盖众多学科,如信息技术、卫星技术、生物技术、天文学、生命科学等,对提高国家的国防力量、提高国家的国际地位、促进国家经济增长都具有非常重要的意义。航天器设计是航空航天领域中的关键工作之一,而远程控制又是航空航天技术长久发展以来研究的重点,因我国对该技术的研发起步较晚,我国对航空航天技术的研发存在重重困难,但经过国家和科技工作者的不懈努力,目前我国航空航天技术已处于世界先进水平。将人工智能技术应用于航天远程控制中,利用智能系统对数据进行自动采集、处理和储存,如通过采集航天器的轨道信息,并以此分析航天器的运行状态,根据分析结果制定运行决策,对提高航天器的运行安全性和运行质量都是非常重要的举措,推动国家航空航天事业获得进一步发展。
4.4人工智能技术在医疗领域中的应用
目前,人工智能技术在医疗领域中的应用已经非常广泛,使医护人员的工作内容不断得到优化,提高工作效率,还有效提高了国家医疗水平。具体应用包括以下几项内容:①在电子病历中的应用。传统就医诊断环节,医生都需要以手写方式记录病患病例,并根据病例详细列出治疗方案,工作量大,且效率较低,病例保存便捷性较差。通过应用电子病例,不仅能大幅减少病例记录的工作量,还能在医疗系统中直接勾选治疗所需药品,完成病例及用药的勾选后打印即可,既能大幅提高工作效率,还能将病例在计算机中进行储存,且现阶段病例文件的储存格式不再局限于文字,语音和图像也可被添加到病例中,提高医疗诊断的准确性。②在健康管理中的应用。在现代医疗中应用人工智能技术,对病患的病情进行智能化分析,能使医生对疑难病症的分析更加全面准确,制定针对性更强的医疗方案,提高医疗水平,为改善患者的健康状况提供辅助。
5结语
综上所述,计算机人工智能技术的应用,对社会各行业都产生了不同程度的影响,人们的工作和生活方式得到优化和改变,国家科技水平也不断提升。加强对计算机人工智能技术的研究,推动人工智能技术在各个行业中的应用,让人们能切身感受到科技为生活带来的改变,对促进人类社会的发展具有非常重要的意义。
【参考文献】
【1】辛颖楚.计算机人工智能技术研究进展和应用分析[J].信息与电脑(理论版),2019(9):121-122+125.
【2】陈长印.计算机人工智能技术研究进展和应用分析[J].计算机产品与流通,2019(12):5.
【3】杨坤,顾兢兢.计算机人工智能技术研究进展和应用分析[J].电脑知识与技术,2019,15(33):197-198.
【4】郑骜.浅谈计算机人工智能技术研究进展和应用[J].科学与财富,2019(19):276.
【5】赵智慧.计算机人工智能技术研究的进展及应用[J].信息与电脑(理论版),2019,31(24):94-96.
【6】李子青.计算机人工智能技术的应用与未来发展分析[J].科技经济市场,2019(10):9-11.
【7】罗柱林,韩文超,吕文杰,等.计算机人工智能技术的应用及未来发展探究[J].中国航班,2019(16):90.
【8】李乔凤.计算机人工智能技术的应用与未来发展分析[J].数字技术与应用,2020,38(3):91+93.
【9】肖梅.计算机人工智能技术的应用及未来发展初探[J].缔客世界,2019(1):39.
工作中存在的不足网络舆情监测工作是指网络信息工作的部门或人员在特定时期或者在特定的事件中对公众在互联网上发表的言论和意见进行监视、收集、分析、整理及预测的行为,这些言论被称为网络舆情。
当前的网络舆情监测工作平台主要是基于信息采集、整合技术和智能处理技术,通过对互联网海量信息的自动抓取、自动分类聚类、主题检测、专题聚焦,实现对用户的网络舆情监测,并由相关部门形成舆情工作报告、舆情信息简报等,为舆论引导提供可靠的分析依据。
进入大数据时代,网络舆论呈现的新特点,促使网络舆情监测工作暴露出诸多不足之处,这为网络舆情监测工作带来了诸多挑战。
网络舆论信息格局发生变化,舆情分析质量亟待提高。据人民网权威的《2016年中国互联网舆情分析报告》显示,在2016年,伴随着移动互联网应用不断向社会各层面渗透,网络舆论的格局发生了很大变化,如网民结构与社会人口结构趋同,网民产生代际更新导致网络流行议题和文化热点发生转换,微博、微信平台化,专业自媒体步入兴盛等。在这样的变局下,网络舆情监测工作面临着新的挑战。然而,有些部门的舆情信息收集工作仍然停留在报刊、门户网站、BBS、微博等开源信息的收集阶段,并未将新闻客户端、微信、直播等平台打通,难以保证舆情信息分析的全面性以及舆情热度指标的准确性。《2016年中国互联网舆情分析报告》还对近五年来参与当年最具网络关注度的20个舆情热点事件讨论的320万微博用户样本进行了分析,发现关注新闻事件和聚焦热点话题的网民发生了代际交替,在性别方面,女性的比例明显上升;在地域上,三、四线城市用户增长迅猛。受众层面发生的这些变化,也将在舆情监测工作中体现出来。然而在目前的舆情监测工作中,相关信息部门的舆情信息报送在内容上只是就事论事、停留在现象层面,对受众的成分、热点事件的社会背景以及事件背后所反映出来的社会问题没有进行细致深入的研究分析;在形式上,网络舆情监测工作的报送还停留在工作动态报告或者事件日志等形式的报送上。这样就造成了网络舆情信息的价值作用降低、服务能力减弱的问题。
热点事件话语体系不可控,舆情预警能力亟待增强。纵观近年来发生的热点公共突发事件,可以发现,在以大数据为基础的社交平台上,公众的话语体系呈现出了一些全新特征,如舆论主体的匿名性、参与渠道的多元化、生成议题的自发性、交流观点的无界性、汇集意见的实时性、发展趋势的不确定性等。这些特征与舆论话语体系在传统媒体的呈现完全不同,网络舆论热点事件话语体系的不可控性大大增强。
在社交媒体平台上,自媒体呈现出来的话语体系最为庞杂。许多舆情信息不仅包含结构化数据,还涉及大量非结构化数据,若对其准确性、真实性逐一核查,既耗费人力又耗费时间。就内容而言,较多负面、虚假舆情具有较强的隐蔽性,单纯以关键词或主题词进行搜索容易产生误判、遗漏。话语体系的不可控性增加了舆情监测工作的难度,这要求工作人员必须具备过硬的专业敏感性以及较强的网络操作技能。但是目前大多数舆情监测工作部门的信息工作人员缺乏专业化的训练,舆情信息工作水平参差不齐。就舆情监测平台系统来说,对于舆情信息的跟踪分析灵敏度较低,在有些热点事件的处理上没有按照公共突发事件的分类标准进行准确的分级,从而导致网络舆情信息的分析判断力体现不出其应有的情报价值,预警能力也随之削弱。
舆情监测的技术体系落后,人机不协调问题亟待解决。网络舆论的实时性及其发展的不确定性要求网络舆情监测必须迅速、及时,但很多单位部门的舆情监测平台的方法技术体系滞后,部分单位采用了网络监控系统、有害信息过滤系统等方式进行网络舆情监测,而有些单位为了节省舆情监测设备的成本,甚至将网络舆情监测工作依托于人工网页搜索及浏览的“人工盯梢”方式上,这成为监测工作的一大阻碍,监测工作出现疏忽错判也在所难免。排除资金、人力等客观因素,现阶段的网络舆情监测工作中技术方法体系的不足主要归因于“人机不协调”。机器与人工的协同分工模式不成熟、机器的辅助力量不够,导致人工智能技术在预测监测体系中分析情感、预测走势、检查效果等方面应用还稍显粗浅、机械,而在需要人工进行的高级维度分析、提出应对策略等层面,机器的应用又显得粗糙以及同质化。
人工智能为网络舆情监测带来的三大变革
网络舆情监测要适应大数据时代人工智能的要求,就必须顺势而为,积极进行变革,主要包括网络舆情监测技术体系的变革、网络舆情监测研究范式的变革以及网络舆情监测管理思维的变革三个方面。
网络舆情监测技术体系的变革。将人工智能技术应用于网络舆情是为了更好地对舆情进行分析研判,通过直观、简明的方式描述网络舆情信息的产生,进一步推导信息传播主体的态度倾向性、情绪感染性以及初衷、意图等,从而预测网络舆情信息的发展趋势。
如果说在“小数据”环境下,网络舆情监测工作还可以依托于“人工盯梢”的方式来完成,那么在“大数据”环境下,当数据的量级达到了EB甚至ZB级别后,以人工监测来把握舆情脉络已成为不可能完成的任务。而那些隐含在网络舆情信息中的观点、态度及情绪的表达,更难以从泛滥成灾的信息碎片中被真正发掘出来。加之海量信息的不共享所带来的“信息盲区”,更使得舆情信息分析不够严谨,易偏离实际,而这些问题都需要依托搭建智能化的网络舆情监管平台来解决。在平台上可以通过三种人工智能技术实现数据分析与人工智能研判相结合,再借助如眼动仪、脑电仪等受众检验仪器对网络舆情信息进行综合化分析。三种主要的人工智能技术主要包括:一是Web挖掘技术,该技术把互联网与数据挖掘技术结合起来,对网络上结构化数据如文字言论,以及非结构化的数据如视音频、图像等信息进行采集,完成信息前期处理的第一步;二是语义识别技术,该技术是利用采集到的信息,通过对语句中的关键词进行词义推断处理以及句子语法结构的分析,从而将复杂信息简单化,这是对采集的信息数据做进一步识别推断的过程;三是TFDF信息聚类技术,该技术主要提升数据信息的分析和分类速度,使网络舆情监测工作的处理更加及时,反应更加灵敏,提高采取措施的时效性。
人工智能技术的介入将有利于对信息进行挖掘、采集、分类、整理,从而找寻出最核心的关键性数据。在此基础上,还可以运用人工神经网络预测模型,对网络舆情的性质、发展趋势进行正确描述,并提出相应的对策。
网络舆情监测研究范式的变革。人工智能和大数据对网络舆情监测工作及其研究产生了颇为深刻的影响,舆情监测的研究范式从多角度发生了转向。
第一,舆情监测工作视角的转向:从单一化到多元化。在社交媒体平台上,受众的角色首先发生了转向,由信息的被动接收者转变为信息的参与者和传播者。这一转向给网络舆情监测工作带来了新的挑战,当受众是单纯的信息接收方时,网络信息的可控性强,舆情监测工作形式单一,把关相对容易。而受众角色发生变化以后,网络信息传播的不可控性大大增加,信息传播速度加快,信息传播呈现多元化特征,把关难度增加,网络舆情监测工作也从单一转向多元化,还需要对信息进行疏导、研判处理。
第二,研究视角的转向:从内容研究转向“内容+关系”研究。传统的网络舆情信息研究最重视的是受众借助网络进行的话语表达,其研究视角主要集中在内容层面。随着人工智能技术的介入,这一单向视角将发生转变,潜藏在内容层面背后的网络受众心理、行为、动机、诉求等多方面因素都将被关注到。借助人工智能技术及大数据分析技术,网络舆情信息的研究视角将透过内容层面深入到关系层面,转向对网络受众社会心理描绘、社会关系呈现、社会话语表达等多维度的研究。
第三,研究重点的转向:由舆情监测转向舆情预测。当前的网络舆情监测工作主要通过对当下网络舆情的动态信息进行随机采样来收集、整理、分析,更多的是关注已经发生的事件在过去及当下的动向,对未来的发展预测难以兼顾。而借助人工神经网络预测模型,通过自然语言处理、模式识别及机器学习等人工智能技术,可以对网络舆情的性质、发展趋势进行正确描述,再结合大数据分析处理整群数据来实现预测功能。比如,著名的搜索引擎公司谷歌通过关注用户搜索中的“流感”关键词来预测实际流感发生的时间,往往可以提前两三个周对流感的爆发进行预报及预防。
网络舆情监测管理思维的变革。在以人工智能技术为支撑的网络舆情监测平台出现之前,相关舆情监测部门的管理者往往由一人或几人的小团队组成,在监测信息数据量级不大的情况下,这种小作坊式单打独斗、面面俱到的舆情监控管理思维可以基本满足需求。但是随着人工智能技术的发展及大数据时代的到来,这种小作坊式的舆情监测体系面临瓦解。当前,商业化运营的软件监测团队多达几百家,这些监测软件服务商通过开发相应的舆情监测软件为政府部门、企业主体以及科研院所提供服务,进行简单的舆情信息数据采集及分类处理工作。在数据开源的情况下,这些软件服务商的竞争逐渐由粗放型、低层次化向数据处理的优化、人机互动、机器算法的精进等层面转变。
在以上变化的基础上,舆情监测的管理思维也必须转向,组建一支人员分工明确、高度聚合集约的舆情分析团队势在必行。舆情管理的思维变革依托于人工智能监控系统改变团队的组织结构及管理方式,通过智能化的舆情监测系统代替低效的人工操作,其专业性要求颇高,而最佳处理模式就是专业化团队加人工智能技术。按照这样的管理思维,未来舆情监测团队的分工将更加明确,行业内部集约聚合程度将进一步提高,行业有机化程度也将逐步增强。
关键词:大数据时代;人工智能;计算机网络技术;应用价值
21世纪以来,世界都已经进入大数据发展时代,人工智能的应用与居民生活息息相关。人工智能就是模仿人类的行为方式和思维模式进行工作处理,它比计算机技术更加具有实用价值。所以,为了迅速提高我国大数据时代人工智能在计算机网络技术中的应用,论文基于此展开详细分析探讨,深入研究人工智能在计算机网络技术中的应用价值。以下主要针对于人工智能计算机的基本内容展开简单分析与探讨:
一、人工智能计算机的概况
利用计算机技术来模仿人类的行为方式和思维模式就叫做人工智能。人工智能,技术的涵盖内容广泛,且创新性高、挑战力度大,它的发展与各学科知识包括信息与计算科学、语言学、数学、心理学等都有关联。人工智能的发展目标是通过计算机技术让本该由人工操作的危险或复杂的工作由人工智能机器代替,从而额实现节约劳动力、减少事故危害发生的情况,进而提高工作效率和工作质量。人工智能的发展形式多样。第一,人工智能可以帮助完善某些较为复杂的问题或是当前还无法解决的问题,若是发生由计算机运算都还无法获得正确模型的情况,此时就可利用人工智能来对该项问题进行有效解决,针对模糊的问题和内容,利用人工智能模式来不断提高网络使用质量。第二,人工智能可以将简单的东西或知识复杂化,得到人们想要的高级程序和数据,从而节约实现,提高工作效率。
二、大数据时代人工智能在计算机网络技术中的应用
(一)数据挖掘技术在计算机网络技术中的应用数据挖掘技术在近几年来越来越受到人们的重视,因为数据挖掘技术是大数据时展的关键技术。利用人工智能技术可研究外界不安全因素的入侵频率,并在网络安全运行的前提下结合网络存贮状态,将研究结果记录保存。之后的工作中,若计算机处于运行情况时发生安全问题,系统会立即给予警告提示,并及时拦截入侵对象。数据挖掘技术其实从根本上来看,就是由人工智能技术和大数据技术的综合发展而来,模仿人类处理数据信息的特征和方式,让计算机实现对数据的批量处理。此外,数据挖掘技术还可与各种传感器融合工作,从而实现技术功效的最大潜力,不断增强计算机系统的功效和实用价值。
(二)入侵检测技术在计算机网络技术中的应用现展迅速,网络科技已成为人们日常生活中至关重要的组成成分,给人们的生活工作带来极大便利,但是其中也潜存很多不稳定因素。所以,网络安全技术的发展是保证网络使用正常工作的重要前提。当前,已经有很多网络机制被运用到保护网络安全的工作中,但是在对网络安全管理时发现仍旧有很多不稳定因素的存在,尤其是现在网络技术的发展迅速,很多手机支付等网络支付方式中会存在支付密码泄露的情况。基于此,在网络计算机安全使用过程中起到良好作用的是入侵检测技术。该技术被使用时,可以对网络中潜存的安全隐患信息及时侦查处理,对其数据信息进行检测,最后将检测结果的分析报告反馈给用户,实现有效检测。入侵检测技术的不断发展和完善,让计算机网络的安全运行得到极大保障,在对计算机网络进行安全检测的条件下,防止网络受到外界环境的干扰。人工智能技术中还可结合人工神经系统高和专家系统网络,实现对实时变化信息的即时监控,切实保障计算机网络技术的安全发展。
(三)防火墙技术在计算机网络技术中的应用计算机的硬件与软件相结合才能让防火墙技术发挥功效,为计算机的安全运行构建一个完整的保护盔甲。防火墙技术的应用是针对整个计算机网络的使用安全,极大的降低了由于外界非法入侵带来的不稳定因素,让计算机的安全得到保障。尤其是在现在大数据时代的发展背景下,防火墙技术的优点更加明显,防止计算机被非法入侵是防火墙技术的最重要功效。当前,人们每天都会收到很多封垃圾邮件和短信,部分邮件和短信还携带有危害性质的病毒,一旦点开这些垃圾信息和短信就会造成病毒入侵,让计算机中原本的私人信息遭到泄露。因此,需要人工智能技术来帮助人们进行信息识别,扫描邮件中是否有不安全因素的存在,找出后还可立即进行排除,防止安全事故的发生。根据以上内容的分析得出,在当前的计算机网络系统应用过程中,人工智能技术已成为主导技术之一,它能够结合其他任何智能技术实现创新发展和进步,以促进计算机网络系统的安全使用,让计算机网络系统高效、安全的发展,这也让人们的生活、工作水平进一步提高。
关键词:人工智能;教育;新模式;改革;构想
教育是着眼于未来的事业,教育的首要任务就是为未来社会培养相适应的合格人才。随着人工智能的诞生和发展,我国已经开始将人工智能应用于教育领域,并显示出人工智能对于弥补当前教育存在的种种缺陷和不足,推动教学现代化和教育发展改革进程起着越来越重要的作用。在现代医学发展中,工程科学与临床医学不断融合,相互进步。近几年,随着人工智能技术,机器人技术,虚拟与增强现实技术,3D打印技术与医学不断的融合发展,衍生出一系列的医学诊疗技术,仪器,大大推进了医学发展。从2013年到2017年,国务院、发改委、FAD连续发文,多次提及医疗走智能化、云化的趋势,为推动智能医疗领域保驾护航。智能与医学的结合已经是大势所趋,因此,为培养大量智能医学人才极有必要对智能医学教育新模式进行深入研究。
一、目前医学教育以及医学人才培养状况
智能医学工程是一门将人工智能、传感技术等高科技手段综合运用于医学领域的新兴交叉学科,研究内容包括智能药物研发、医疗机器人、智能诊疗、智能影像识别、智能健康数据管理等。
智能医学工程的毕业生掌握了基础医学、临床医学的基础理论,对智慧医院、区域医疗中心、家庭自助健康监护三级网络中的医学现象、医学问题和医疗模式有较深入的理解,能熟练地将电子技术、计算机技术、网络技术、人工智能技术,应用于医疗信息大数据的智能采集、智能分析、智能诊疗、临床实践等各个环节。实验教学正是融合型创新人才的最好培养方式。智能医学人才的培养需要各学科间的相互交融更为紧密,学生的创新应用能力才能得到更好的培养。与此同时,由于绝大部分医工结合的专业大部分归属与工科学院下,缺乏必要的临床经验,因而学生不能很好的把握新技术的应用。
而国内相关人才缺口还非常大,目前,国内仅仅有生物医学工程、医学信息工程等工科专业培养医工结合人才。但是囿于培养时间与培养模式,他们往往只能针对具体某一方向,并且目前的培养体系还多着重于工学技术的研究,缺乏临床实践。
二、智能+医学教育的必要性探究
2.1技术进步对医疗人员的诊疗帮助
以癌症的治疗为例,由于针对癌症药物的研究何药物数量非常巨大,对于普通医生在短时间内难以进行准确的判断针对癌症的研究和药物数量非常巨大,具体来说,目前已有800多种药物和疫苗用于治疗癌症。但是,这对于医生来说却有负面的影响,因为有太多种选择可供选择,使得为病人选择合适的抗癌药物变的更加困难。同样,精确医学的进步也是非常困难的,因为基因规模的知识和推理成为决定癌症和其他复杂疾病的最终瓶颈。今天,许多受过专业训练的医学研究员需要数小时的时间来检查一个病人的基因组数据并作出治疗决定。
上述问题在拥有工学、医学双背景的医生手中已经不是问题,通过目前日渐成熟的AI技术,对于大量的医疗数据进行检索,通过可靠的编程手段,通过人工智能技术,建立完备的医疗数据库,帮助医生进行诊疗。据调查,美国微软公司已经研制出帮助医生治疗癌症的人工智能机器,其原理是对于所有关于癌症的论文进行检索,并提出对于病人治疗最有效的参考方案,它可以通过机器学习来帮助医生找到最有效,最个性化的癌症治疗方案,同时提供可视化的研究数据。
2.2智能医学对于新时代医生培养的影响
人工智能通过计算机可为学生提供图文并茂的丰富信息和数据,一方面加强了学生的感性认识,加强了对所学知识的理解和掌握,从而提高了教学质量。同时,人工智能可帮助教师完成繁杂的、需适应各种教学的教学课程、课件等设计,使教师将更多的精力专注于学与教的行为和过程,从而提高教学效率。正如前面所述例子,智能网络模块化学习平台可使教学摆脱以往对于示教病例的依赖,拓展了学生们的学习空间和时间,可极大地提高医学学习效率和教学质量。
教育与人工智能相结合将会创新教育方式和理念。北京师范大学何克抗教授在《当代教育技术的研究内容与发展趋势》中提到当代教育技术的五大发展趋势之一就是“愈来愈重视人工智能在教育中应用的研究”。结合上述人工结合上述人工智能在医学教育中的创新作用,下面就人工智能结合医学学教育新模式提出一些构想。
三、交叉医学人才的培养
3.1建立智能医学人才培养体系的必要性
目前智能医学的研发和临床还存在隔阂,临床医生并没有很好地理解人工智能,无法从实践出发提出人工智能能够解决的方向,而人工智能的产业界热情高涨,却未必能踩准点,所以产业界需要和临床深度沟通融合,才能真正解决看病难、看病贵的问题,缓解医疗资源紧张。目前,国内仅仅有生物医学工程、醫学信息工程等工科专业培养医工结合人才。
3.2医学人才培养体系初步构想
据悉,目前已经有天津大学、南开大学等几所院校开设了智能方向的医学本科教育,旨在弥补上述缺口,相关院校也在积极探索新型人才培养方案。应当为医学生开设人工智能课程,应当培养具备生命科学、电子技术、计算机技术及信息科学有关的基础理论知识以及医学与工程技术相结合的科学研究能力。该专业的学生主要学习生命科学、临床医学,电子技术、计算机技术和信息科学的基本理论和基本知识,充分进行计算机技术在医学中的应用的训练,具有智能医学工程领域中的研究和开发的基本能力。
关键词:人工智能;本科高年级教学;教学改革
中图分类号:G642 文献标识码:B
1 引言
人工智能是计算机科学与技术学科类各专业重要的基础课程,在信息类相关的许多高年级本科和研究生都开设了人工智能课程。人工智能是一门前沿性的学科,它主要研究计算机实现智能的基本原理和基本方法,同时人工智能也是一门多学科交叉的综合学科,它涉及计算机科学、数学、心理学、认知科学等众多领域。广义的人工智能涵盖了模式识别、机器学习、数据挖掘、计算智能、神经网络、统计学习理论等众多研究方向。人工智能作为计算机学科的重要分支,已成为人类在信息社会和网络经济时代所必须具备的一项核心技术,并将在未来发挥更大的作用。
由于人工智能课程的学习难度较大,内容更新比较快,也繁多,使得教学有一定的难度。特别是针对本科高年级的人工智能教学,由于本科生的研究意识相对较弱,而人工智能比较强调科研性,所以如何教好本科高年级的人工智能课程是一项非常具有挑战性的任务。
本文通过分析本科高年级的教学特点和人工智能课程的自身特点,在如何提高教学质量这一问题上提出了几点思考。
2 本科高年级的教学特点
中国的本科教育,由于历史和经济发展水平等诸多原因,目前的定位还是培养某方面专业人才的专才教育。本科高年级学生在完成了低年级公共基础课程和部分专业基础课程的学习之后,迫切希望了解本专业的应用领域和发展前景,所以在教学过程中要注意内容的应用性和专业性。另一方面,本科高年级学生也是研究生教育的储备人才,在教学过程中要适时的进行科研引导,这样能够让毕业生保持对科学的兴趣,从而为研究生阶段进一步深入研究打下基础。本科生一般于4年级的10月份开始着手毕业设计,在本科高年级的教学过程中还要注意与毕业设计的内容相结合,这样可以让学生提前做好准备,选择适合自己的方向。
3 人工智能课程的学科特点
与信息类其它专业课程相比,人工智能具有应用性、研究性和发展性三个重要学科特点。首先,人工智能是一门应用性很强的学科。人工智能学科的主要目标在于研究用机器来模仿和执行人脑的某些智力功能,并开发相关理论和技术。人工智能技术广泛应用于模式识别、数据挖掘、智能控制、信息检索、智能机器人等领域,在日常生活中,随处可见人工智能技术的应用实例;其次,人工智能技术具有很强的研究价值,是计算机科学领域中重要的研究方向。技术进步无止境,研究者们不断追求开发出效率更高、更智能的人工智能技术:最后,人工智能是一门正在发展中的学科。随着信息化、计算机网络和Internet技术的发展,人类已步入信息社会和网络经济的时代,它们为人工智能提出了许多新的研究目标和研究课题,人工智能的应用领域以及技术算法都在不断发展。
4 人工智能教学的三点思考及对策
4.1 注重应用性和介绍性
在教学实践中,笔者发现,本科高年级学生一般比较关心各种人工智能技术的应用领域和使用方法,而对基础性理论和技术细节不是很感兴趣。他们一方面希望能学到很多较新和较实用的人工智能算法,并且最好可以看到使用效果;另一方面又希望老师的教学主要停留在介绍性层面,不想花太多时间在复杂的理论理解上。这也比较符合本科高年级的教学特点,本科阶段主要是培养具备较强应用性和基础科研素质的专业人才。传统的人工智能教学主要讲授知识表示和搜索推理技术,大部分实例都是解答式或推证式的。由于其知识的抽象性,又加之其应用实例较少,所以往往教师感觉难讲,学生在学习过程中也感觉乏味,对讲授的内容大多都是死记其方法和步骤,因此影响了教学效果。针对这一问题,笔者认为,在设计人工智能教学时,要注重内容的新颖性、实用性和介绍性。除了讲授那些仍然有用的和有效的基本原理和方法之外,要着重介绍一些新的和正在研究的人工智能方法和技术,特别是近期发展起来的方法和技术,如支持向量机、决策树、模糊集、遗传算法、蚁群算法等。这些内容的理论部分可以不必过分深究,教学重点主要放在介绍每种技术的产生背景、发展状况、应用领域和具体实现上。此外,要注意理论与实际应用密切结合,在教学过程中加入一些与课程内容结合的、可以用计算机实现的实际应用内容。考虑到目前应用最广泛的人工智能领域之一是模式识别,而研究模式识别的主要计算机工具是Matlab,所以笔者在教学过程中以手写数字识别作为教学实例,针对所介绍的每一种人工智能技术,都将其应用于手写数字识别当中,并讲解了这些技术的Matlab实现方法。学生在掌握了基本理论之后,可以按照实现步骤的指导,立刻上机见到算法的实际效果,加深对算法实现思路和方法的认识。
4.2 注重科研引导性
本科教学不仅要培养学生的应用能力,还要培养学生具备基本的科研素质。本科教育一方面为社会培养了大批应用型人才,另一方面也要为我国的科研事业培养后备力量。特别是近几年来我国对科研的投入不断增加,研究生招生规模逐年增大,本科高年级学生打算继续读研的也不在少数。而人工智能是计算机相关学科非常活跃的研究课题,其涵盖的分支非常广泛,如模式识别、机器学习、数据挖掘、计算智能、统计学习理论等,都是目前国际和国内热门的研究方向。针对这一特点,在本科高年级的人工智能教学中,还要注意对学生适时适度的科研引导。这样可以激发学生的研究兴趣,树立目标意识,找准研究方向,为未来的科研工作打下基础。在教学过程中,可以引导学生思考每种人工智能技术的优点是什么?缺点是什么?有没有改进的办法?比如BP神经网络是计算智能中较为成熟的技术,具有强大的非线性学习能力,在模式识别、经济数据分析、生物信息学、数据挖掘等众多领域都取得过成功应用。然而BP神经网络算法自身也存在着一些缺点,如会有局部最小解、解受初值影响较大、理论解释不完善等。近十年来,研究者逐渐把目光转移到另一种新的非线性学习工具――支持向量机上。同神经网络相比,支持向量机具有泛化能力强、不受局部最小问题困扰、理论背景完善等显著优点。在给学生讲解BP神经网络算法的时候,一方面可以通过手写数字识别实验展示其强大的非线性分类能力,另一方面也要告诉学生,BP神经网络并不是完美的,其缺点同样明显。然后引导学生对这些问题进行思考,讨论有没有更好的解决办法。此时,顺势引出支持向量机的内容,并且介绍支持向量机的研究现状和研究方向。通过两者的对比,学生不但了解到了较新的人工智能技术,又对人工智能研究中如何去发现问题、解决问题、人工智能技术的进化历程有了直观的印象。
4.3 教学内容与毕业设计相结合
本科毕业设计是对本科生用所学知识来解决实际问题和进行专业研究能力的检验,是本科高年级学生将要面临的一项重要任务。由于人工智能学科具有应用性和科研性的特点,人脸识别、网页检索、经济预测、基因数据处理等应用领域都离不开人工智能技术,所以人工智能方向为学生提供了丰富的毕业设计选题。针对这一特点,在本科高年级的人工智能教学中,可以适当穿插介绍有关毕业设计的内容。告诉学生哪些应用领域是目前人工智能研究的热点方向,哪些人工智能技术可以用来解决这些问题。通过向学生介绍具有一定应用价值和研究意义的题目,然后引导他们查找阅读相关技术文献,分析问题,解决问题,最后编写代码和撰写论文。比如笔者给学生提供的选题包括:(1)基于支持向量机的上市公司信用评价;(2)正则化回归在股票预测中的应用;(3)基于肤色的人脸检测;(4)基于内容的网页图像检索等。这些题目应用性强,具有一定科研深度但是难度又不至于太大,学生选择这些题目的积极性很高。通过将教学内容与毕业设计相结合,不但加深了学生对课程的理解,又使其找到了合适的毕业设计题目,可谓一举两得。