线上期刊服务咨询,期刊咨询:400-808-1701 订阅咨询:400-808-1721

铁路技师论文8篇

时间:2023-03-07 15:01:17

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇铁路技师论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

铁路技师论文

篇1

隧道衬砌结构及辅助施工措施

本工程具有周边环境复杂、工程及水文地质条件差、结构形式及受力复杂、施工工序多、地面沉降控制严格、工期紧等特点。由于铁路无法设置便梁等临时保护措施,在临时支撑拆除时为确保隧道有效控制沉降及铁路的运营安全,隧道采用3层衬砌结构[2](1次初支、2次模筑衬砌),全环设置299超长管幕预加固[5],按双侧壁导坑六部[6]微台阶开挖方式进行施工。2.1衬砌结构1)初期支护。①喷混凝土:C25耐腐蚀混凝土,厚度35cm;②钢筋网:8钢筋,网格间距15cm×15cm,全环双层;③钢架:I25工字钢架,全环设置,间距60cm。2)一次模筑衬砌。采用C40耐腐蚀防水钢架混凝土,厚40cm,钢架采用25四肢格栅钢架,间距50cm,一次模筑是在中壁临时支护不拆除的情况下施工。3)二次模筑衬砌。采用C40耐腐蚀防水钢筋混凝土,厚50~60cm。在一次模筑衬砌的保护下,分段拆除临时支护后施工。4)中壁临时支护。临时支护采用C25喷混凝土(中壁厚30cm、横撑25cm)、工字钢架(中壁I25、横撑I20a)、8钢筋网联合支护,钢架间距同主钢架,并对掌子面喷混凝土进行封闭。2.2辅助施工措施1)299超长管幕。全环设置299钢管管幕[5],隧道管幕左线长度110m,右线长度76m。钢管环向间距35cm,与隧道外轮廓净距25cm,钢管采用299×12mm的无缝钢管水平铺设在土体中,299钢管之间打入60钢花管,通过60钢花管对管幕外的土体进行注浆加固并使之与299钢管成为一个整体。钢管之间的连接采用273mm的内接管箍,管箍长400mm,直接对焊连接。2)洞内深孔注浆。管幕施工完成后,采用超细水泥-水玻璃浆液对掌子面进行全断面超前注浆加固地层,防止隧道开挖过程中出现坍塌引发地表下沉。3)地面注浆。为有效保护铁路,采用超细水泥浆对隧道拱部管幕以上1.5m、边墙管幕以外2m范围进行注浆,对管幕以外的松散土体进行加固,防止土体从管幕之间的薄弱环节掉块。

工法选择及施工组织

隧道施工工法根据隧道的结构形式、工程及水文地质和周边环境条件,经综合比选后,隧道采用双侧壁导坑六步微台阶法[6]施工工法,详见图3。1)施工299管幕,全断面注浆,采用双侧壁导坑法分六步分部开挖并支护[5]。2)凿除一次模筑衬砌范围的中壁临时支护喷射混凝土,保留临时支护钢架,施作一次模筑钢架衬砌,每循环长度为6m。3)待一次模筑衬砌达到设计强度后,在其保护下,分段拆除中壁竖向临时支护,铺设防水板,施作二次模筑衬砌底板。4)采用衬砌台车施作拱墙部位的二次模筑衬砌。管幕与注浆施工顺序的选择对于超长管幕与注浆的施工顺序有先施工管幕后注浆和先注浆后管幕2种。1)如采用先施工管幕后注浆,管幕扩孔施工是在原状松软地层中进行,较容易推进,但注浆需要分2种方式,在管幕以内部分需要洞内水平注浆,管幕以外需要在地面垂直注浆,这样就存在2种注浆方式的工序转换,且洞内注浆效果没地面效果好。2)如采用先注浆后管幕,由于埋深较浅,均采用地面注浆方式,施工容易,注浆效果较好,但对管幕的施工影响较大,由于注浆后会提高地层的强度,对管幕的扩孔造成较大的困难,对工期和管幕的施工质量均有较大影响。经综合比较后,选择先施工管幕后注浆的施工顺序。(a)(b)图3隧道双侧壁导坑微台阶法步骤图Fig.3Sequenceoftunnelconstructionbydoublesidedriftminibenchmethod3.3管幕施工工艺为控制地表及铁路沉降,保证铁路运营的安全、畅通,在综合比较108双层大管棚、299钢管管幕、600管幕后,根据施工现场的工程及水文地质条件,并结合目前各施工工艺情况,根据计算和工程类比,确定超前支护采用299钢管管幕。考虑到管幕最长为110m,采用前拉后夯[5]施工工艺进行施工,即首先利用水平导向钻机打设127的水平孔,然后通过前拉后夯工艺将299钢管拉到指定位置。具体施工方法为:采用127钻杆每隔4孔打设一个导向孔,要求导向孔的导向精度控制在5cm以内,利用导向孔进行扩孔作业,扩孔作业要采用挤扩的方法,不能采用通常水循环方法,防止引起地层扰动,导致地面沉降;扩孔完成后采用前拉后夯法,将299钢管连同60注浆管同时拉入;在拉入时,可能会遇到回填及不均匀的硬地层引起卡钻现象,局部用夯锤夯法,在钢管后部施以夯力使钢管顺利通过,直至将钢管拉出对面掌子面。管幕导向孔利用有线和无线2种导向方法,严格控制导向精度。利用高精度有线导向仪及管内光学测量系统,其精度控制在3‰以内;利用无线导向仪器在地表进行测量定位,将偏差控制在5cm以内。为了避免相邻管幕施作后引起地层松动,确保地面无沉降,在管幕施工过程中须适时在管幕外侧进行回填注浆,补偿地层的松散变形,更加有效地控制地层的扰动变形。跟进回填注浆采用60mm钢花管注浆。根据本项目管幕的施工情况统计,一般正常情况下3d可以施工2根长管幕。当地层中遇到障碍物时就会较长,最长1根管幕花了5d才完成。地层条件对管幕的工期影响较大,在选用时应慎重考虑。

铁路保护措施

鹰厦铁路是进入厦门本岛的主要铁路通道,每天有13对客车与17对货车通过,交通十分繁忙。隧道下穿段既有铁路有3~4条股道交错设置,平面布置十分复杂;与拟建下穿隧道交角较小,影响范围长,专用线道岔位于隧道拱顶位置。控制标准根据《铁路线路修理规则》,线路轨道静态几何尺寸容许偏差管理控制标准值如表1所示。对铁路的保护措施1)采用强大的隧道支护结构和措施,控制隧道及地表变形。隧道采用3层结构,施工阶段荷载由初期支护与一次模筑衬砌承担,使用阶段荷载由一次模筑衬砌与二次模筑衬砌承担。一次模筑衬砌达到强度后,拆除临时施工支护,施作二次模筑衬砌。2)洞口管幕端头设置支撑于桩基的导向墙,从而管幕形成刚度较大的纵梁,控制隧道周边地层变形及地表沉降。3)与铁路工务部门密切配合,为避免沉降累计,影响铁路的正常行车,可分阶段起道填碴或垫钢板(如管幕施工完成、开挖过半、开挖完成等不同阶段),根据监测数据,分别对轨道做出调整。4)隧道施工中,铁路应限速,每趟列车经过前监测一次(由第三方进行自动化监测),轨道变形接近控制标准的70%时,应立即对铁路进行起道填碴或垫钢板,保证铁路的安全畅通。应遵守现行《铁路线路修理规则》、《铁路工务安全规则》等规范。5)左、右线隧道错开30m施工,并采用小于0.7m的短进尺开挖,避免地面沉降累计,降低单位时间的沉降量。6)应有工务部门的专人负责铁路的安全评估,当影响列车通行时,应停止隧道施工,对铁路进行整修和保护。紧急预案1)每趟列车经过前监测一次(由第三方进行自动化监测),轨道变形超过控制值时,应立即与铁路运营部门联系,征求其处理意见,原则上货车应以慢性方式通过,客车应停止通过。并立即组织人员进行抢修,尽快恢复铁路正常的运营。2)隧道施工前,应备齐铁路抢险整修的材料、工具,整修人员到位,保证铁路抢险及时,列车安全通过。3)接受工务部门专人负责铁路的安全评估,整修不到位,严禁列车通行。

工程实施效果及变形分析

管幕直径较大且密排布置,其施工对其周边土体扰动较大,地面及铁路的变形对其影响的敏感性较强。左、右线隧道在下穿铁路段管幕施工引起的地表沉降主要规律及特点如下:1)管幕施工造成的地表变形量较大,刚开始施工时正线甚至出现隆起现象。管幕施工完成后,造成的地表沉降累计一般有40~50mm,多的达70~80mm,最大一天的沉降量为3mm。局部沉降较大,是因为在施工中,当管幕拉进困难时,部分段落采用高压水冲切土体超挖引起的。由于现场采用了起道填碴措施,所以没有对铁路运营造成大的影响,起道填碴频率一般为1~2次/周。2)管幕施工引起的地表沉降有3个原因,分别为成孔时的应力释放、成孔过程中的水土流失、成孔施工偏差及扰动引起的沉降。3)管幕施工引起地表沉降大小除与地层条件、埋深和施工工艺等因素有关外,还与管幕之间的施工间距和施工持续时间有关系。施工间距越大,沉降越小;施工持续时间越长,沉降越大,对周围环境造成的影响也越大,因此应尽量保持管幕施工的连续性。4)一般管幕施工期间都会引起地表沉降,而本工程局部出现隆起现象,是因为在施工过程中,正线下方遇到较多的锤坡石,给拖管或夯管造成一定的难度,强行夯或拖管会导致石块挤压土体,而管幕的埋深较浅,强夯会造成地表或轨面隆起现象。隧道开挖及初期支护施工隧道开挖采用双侧壁六步微台阶法施工,在管幕的保护下,考虑到到初支刚度较大,每循环进尺控制为1m(2榀钢架距离),在开挖后及时进行初期支护和临时支护。上台阶均采用人工开挖,下台阶采用小型挖机配合人工修边开挖。上下台阶的长度均控制在3~5m,待③部开挖支护10m后,隧道中导洞⑤部即展开施工。根据以上施工工序,要完成以上①~⑥步一个循环,最短的长度是23m。在施工开挖及支护施工过程中,由于有管幕对隧道周边的保护和注浆加固对地层的改良,施工进展较顺利,没有发生影响施工及铁路运营安全的事故,在自动化监测和铁路养护部门的配合下,保证了铁路的运营安全。隧道一次模筑衬砌施工隧道一次模筑在初支喷射混凝土达到强度后,即可进行一次格栅钢架模筑混凝土施工。只能凿除一次模筑钢架格栅混凝土范围的临时支护喷射混凝土,保留临时支护钢架,每次凿除长度为6m。一次模筑的格栅钢架和初期支护的型钢支撑间隔布置,格栅钢架的纵向间距与型钢钢架相同,两者的接头也错开位置至少1.0m。为保证隧道拱顶处混凝土的密实性和两者的较好结合,在拱顶采用自流平、免振捣混凝土。隧道二次模筑衬砌施工隧道二次模筑混凝土采用钢筋混凝土,在一筑混凝土强度基本达到设计强度要求后施工。由于初期支护和一次模筑衬砌可以承担全部的荷载,所以可以根据二次模筑台车的长度,逐段全部拆除中间2道临时支护钢架及喷混凝土。先施工仰拱防水层及仰拱混凝土,其超前于边拱混凝土衬砌约30m,然后采用模板台车进行拱墙衬砌的施工。施工监测情况为了确保铁路的正常运营和施工安全,第三方监测对铁路钢轨沉降、地表沉降、隧道拱顶沉降和隧道收敛情况共4个主要项目进行了监测。共布设地表沉降测点152个,拱顶沉降测点108个,围岩收敛测点52个,钢轨沉降测点73个。1)钢轨沉降和地表沉降监测如表2所示,通过表2可以看出,由于下穿铁路隧道地质条件差,土层松软,在管幕施工和隧道开挖期间,两者均发生了较大的沉降,由于现场采用了起道填碴措施,所以没有对铁路运营造成大的影响,起道填碴频率一般为1~2次/周。根据监测数据和各阶段的综合分析,各阶段的累计沉降比例如下:管幕施工阶段约占25%;在上、下台阶开挖阶段差别不大,两者累计约占55%;二次模筑衬砌及拆撑阶段约占20%。从各阶段的沉降比例对比分析,由于采用了二次模筑衬砌,较以前常规采用一次模筑衬砌相比,在拆撑阶段引起的地表沉降比例大大降低,从而体现出采用二次模筑衬砌的重要性。2)隧道拱顶沉降和围岩收敛监测。鉴于下穿铁路隧道地质条件极差,土层疏松,并且隧道上面还有火车动荷载的反复作用,隧道开挖引起的沉降变形较大,拱顶测点和水平收敛测点间距均为5m,具体的监测结果如下:左线隧道①部拱顶最大累计沉降值50mm,③部拱顶最大累计沉降值118mm,⑤部拱顶最大累计沉降值63mm。右线隧道①部拱顶最大累计沉降值74mm,③部拱顶最大累计沉降值84mm,⑤部拱顶最大累计沉降值50mm。左线隧道①部最大累计收敛值-6.54mm,③部最大累计收敛值-7.05mm。右线隧道①部水平收敛最大累计收敛值-7.37mm,③部最大累计收敛值-7.96mm。根据监测数据和各阶段的综合分析,隧道拱顶下沉主要是因为下台阶施工引起的。水平收敛较小,与隧道的支护刚度及强度较大和上下台阶之间的临时仰拱发挥了较大的作用有关。

结构计算

计算条件隧道按荷载-结构模型进行计算。衬砌结构分2种工况进行计算:1)施工阶段,一次模筑混凝土与初期支护共同承受荷载;2)使用阶段,考虑初期支护失效,一次模筑衬砌与二次模筑衬砌共同承受荷载。荷载考虑围岩压力、结构自重和列车活载,覆土厚度3m,围岩压力根据《公路隧道设计规范》确定,结构自重及列车活载根据《铁路桥涵设计基本规范》确定。由于隧道顶覆土厚度h≥1m,不计列车竖向动力作用。施工阶段一次模筑衬砌结构计算在施工阶段,根据《公路隧道设计规范》并考虑初期支护厚度0.35m,一次模筑衬砌的厚度0.45m,按两者的厚度比例并适当考虑初期支护弱于一次模筑衬砌,确定一次模筑衬砌的荷载分摊比例为60%。经模拟计算,一次模筑衬砌主要控制点的内力值如表3所示。使用阶段二次模筑衬砌结构计算在使用阶段,考虑一次模筑衬砌的厚度0.45m,二次模筑衬砌的平均厚度0.55m,按两者的厚度比例并适当考虑一次模筑衬砌性能降低,确定二次模筑衬砌的荷载分摊比例为60%。经模拟计算二次模筑衬砌主要控制点的内力值如表4所示。

篇2

本文作者:牛建伟工作单位:中铁七局集团郑州工程有限公司

冬期施工中关于混凝土的各项技术措施

(一)混净土搅拌冬期施工中的混凝土原材料需要在搅拌的时候进行加热,经过计算在温度低于8度的时候,只需要进行加热就可以满足温度的需求,但是在温度低于零下8度的时候就需要把原材料放在一个封闭的空间之内,然后在房间内进行供暖的方法来提高原材料的温度以保证其温度可以满足要求。其中对于温度的规定,首先对于拌合水来说其温度要求准确并且其供应应该及时,这样才可以保证混凝土的坍落度可以保持一致。在施工时要让拌合物的温度保持一致,这就需要我们对水的加热温度经常进行调节。其次,在冬期对混凝土进行搅拌时,对于投料的合理顺序应该和材料所需要的加热条件互相适应。应该首先投入加热水以及骨料,等到搅拌一定时间之后等温度降低到40度时,再投进水泥进行搅拌,直到规定的时间。在进行投料的时候,一定要注意不可以把带有冰雪或者冻团的骨料加入到搅拌机内,因为一旦这些带有冰雪以及冻块的骨料进入搅拌机内时就会给拌合物的温度带来非常大的损失,并且如果这些冻快如果其直径大于8厘米的话是很难在搅拌机内进行粉碎的。最后就是对拌合站的料仓和输送等都需要进行封闭式的保温处理,或者是通过设置热水罐、火炉等进行保温。(二)混凝土运输为了防止在运输的过程之中出现混凝土的塌落度出现变化,就需要对运输工具进行严格挑选,要让运输工具可以具有保温防风的功能,并且还应该做到严密、不漏水等,梁场采用混凝土搅拌车运输混凝土,要保持运输混凝土的道路平坦畅通,保证混凝土在运输过程中保持均匀性,运到浇筑地点时不分层、不离析。其次对混凝土搅拌车采取保温隔热措施。第三当罐车到达浇筑现场时,使罐车高速旋转20~30s,再将混凝土拌合物喂入地泵受料斗。第四混凝土的罐车应该采用篷布以及土工布来进行包裹以尽可能的减少在中间会出现的倒运环节,可以有效的缩短运输的时间,这样可以减少在运输过程中混凝土热量的散失。(三)冬期混凝土的浇筑在冬期进行混凝土的浇筑之前要首先清除在模板以及钢筋上的冰雪或者污垢等,浇注之前应该采取防风和防冻等保护措施,在模板的底面以及侧面直接接通蒸汽来有效的对模板进行预热和保温工作。在顶面搭设棚架或者混凝土浇筑采用从中间向两边全断面的防风就可以有效的减少混凝土在这个过程中的散热面积来进行保温工作。

冬期施工的保证措施

首先是在质量上的保证措施。主要包括以下几点:首先是要建立一个完善的质量保证体系和管理制度。其次就是完善质检以及实验体系,要严格的执行三级检验制度。再次就是加强对于施工过程的控制。其次就是安全的保证措施。包括:对于养护的管路以及设备要一周检修一次,并且设备要安排专门的工作人员来进行负责,严防火灾等。最后就是要求所有的工作人员都应该注意自己的安全问题,负责高空作业的人员要系好安全带并且穿防滑鞋,工作人员上下支架的时候要谨慎小心,加强个人安全防护工作来避免事故的发生。铁路的简支箱梁预制的施工最主要的就在于对混凝土温度的控制,并且这个温度的控制主要包括了对混凝土原材料以及施工中各个环节的具体管理和控制。希望本文的介绍对于实践有较好的指导意义。

篇3

铁路路基工程施工现场的进度管理主要是为了顺利完成合同工期约定的目标任务,在约定工期内按时竣工。在铁路路基工程施工现场进度管理过程中应该注意以下几个问题:第一,在铁路路基工程实施之前项目经理组成相关人员制定科学合理的进度计划。路基工程施工进度计划是在工程开工前对路基工程整体项目的选择施工工艺、核算工程量以及部署人力资源、原材料和施工机械等问题进行确定,根据合同提出的质量要求和成本要求做出合理的进度计划目标。第二,铁路路基工程在实施过程中严格执行项目部制定的进度计划,实施全过程施工进度管理。作为铁路路基工程施工过程中重要环节之一,进度管理控制主要有四阶段循环:制定进度计划—执行进度计划—动态检查进度计划—调整进度计划,如果调整后科学合理则继续开始进入一个新的循环管理。在项目经理组织相关人员编制进度计划过程中,必须掌握施工团队当前技术水平、施工管理能力及资源配备能力,紧密结合合同要求,编制具有可操作性的施工进度计划,然后把进度计划上报监理和业主方审批通过后方可开工执行。在铁路路基工程实施过程中所有施工团队必须严格执行进度计划进行施工操作,项目部每次下达的施工任务书必须写明每月的作业进度计划和对应的施工任务表,并且作业进度计划、每项施工任务都必须落实到班组,然后由班组落实到个人,从而做好认真做好资源配置和调配工作。在施工过程中一定做好进度计划检查工程,随时了解现阶段的施工实际情况,施工班组必须随时记录施工进度情况,如有延期必须及时上报并记录导致施工拖延的原因,从而及时作出资源配置调整等补救工作,通过合理的奖惩措施提高施工管理人员和施工执行人员的工作积极性,确保完成施工项目总目标的实现。项目管理人员需要随时检查时标网络图计划,一般铁路路基工程施工现场的进度管理利用时标网络图计划进行施工进度的动态管理及时对进度计划进行纠偏调整。最常用的进度管理和纠偏方法为“工期成本”优化方法,也就是如果检查发现施工进度晚于计划要求时,充分考查压缩工期的可能性以及压缩工程所增加的成本,在增加成本费用最低的前提下,选择合适的阶段进行压缩工期,从而保证最后施工总目标的顺利实现。

2铁路路基工程施工现场的质量管理

铁路路基工程施工现场的质量管理需要从以下几个方面具体操作、严格把关:第一,施工原材料的质量。铁路路基工程施工现场的质量管理工作人员应该严格执行“三把关,四检验”的原则确保施工原材料材料的质量,其中,三把关就是原料供应人员、技术检验人员、操作人员严格把关建设材料的质量,四检验就是工作人员必须认真检查建设材料的规格、品种、质量、数量是否符合要求。第二,施工人员的工作质量。在我国铁路路基工程施工工艺中仍以手工操作为主。我国目前还没有建立科学完善的技工教育体系和技工培训体系,而且我国的施工人员仍以农民工为主,因此施工现场施工人员参差不齐的技术水平和任务理解能力会严重影响铁路路基工程的施工质量。因此,在工人上岗之前加强施工工人的技术培训和安全培训,帮助他们了解技术标准、操作规范以及安全注意事项,保证每一次技术交底都能够顺利进行,保证每阶段的工作都能顺利、按时完成。第三,施工工艺的质量。在铁路路基工程的施工过程中,施工工艺水平会直接影响工程质量,因此重视对施工工艺质量的检查,及时淘汰落地的生产工艺,引进先进的施工工艺,确保施工质量符合各项标准。第四,施工工序的质量。在铁路路基工程的施工过程中,每道施工工作都有一定的施工工序,加强施工工序的质量动态管理,及时发现施工实际过程与质量计划的偏差,并且分析施工工序质量的影响因素,针对分析原因采取有效的策略进行调整,从而保障施工工序的质量符合合同要求。

3铁路路基工程施工现场的成本管理

铁路路基工程的施工成本指完成路基工程施工全过程后产生的各项费用总和。铁路路基工程的成本管理采用科学合理的技术和管理方法成本预测、成本决策、成本控制、成本核算、成本分析以及成本考核六项成本管理内容实现对施工过程中产生的人工费、机械使用费、材料费以及其他间接费用的成本管理全过程控制。铁路路基工程施工现场的成本管理措施主要注意以下几个方面:第一,参考合同内容、施工定额以及当前市场的建设材料价格,合理确定工程量清单的成本单价以及管理费用。第二,采用成本承包责任制,合理划分成本责任及确定成本管理评价体系和奖惩制度。施工团队从上自下做好施工方案优化工作,从各方面提高成本效益,同时做好施工方案变更及索赔工作,通过科学的成本管理确定成本目标的实现。

4结语

篇4

关键词: 铁路; 运输; 站场设计;枢纽

Abstract: Since the proposed Railway Leap-forward Development Strategy, railway transportation mode has been changed, these changes put forward new requirements for field design of railway station passenger railway hub layout, affect, station, station, marshalling station and section generally intermediate station design.

Key words: railway; transportation; station design; hub

中图分类号: DF416 文献标识码A 文章编号

铁路站场设计是铁路工程设计的重要环节, 它不仅关系到如何设计出一个车站, 更重要的是车站及枢纽是形成运输综合能力的关键环节, 是满足铁路运输服务质量最基本的基础设施, 是建设与运营、土建与机电设备连结的纽带。因此, 每次设计过程中, 地方部门特别关心车站的位置, 货场、旅客站房的规模。铁路运营部门也特别关心枢纽格局、站场规模、作业条件。正是由于站场与运输之间的这种密切关系,在运输方式发生变化时,对站场设计也提出了更多的要求。

1.铁路站场设计的侧重面和习惯做法

1.1 即有枢纽布局

在路网及地区枢纽形成初期, 由于列车数量不多, 大多数是一个区段站型的枢纽布局。其主要特征是正线中穿, 客货到发场横列。以后随着列车数量的增加, 区段站型的客货横列布置导致了客货列车的大量交叉, 严重影响了车站作业能力, 因此各枢纽逐步建设客货纵列式、客货并列式, 尤以客货纵列式为多, 使客运站与编组站分开, 摆在一条客货正线共用的轴线上。

1.2 既有区段站

除个别区段站为客货车场分设外, 绝大部分区段站布置成客货到发场并列的图型, 且以货车到发线为多, 客车到发线一般情况下设三条, 兼顾货车到发, 设一个基本站台加一个中间站台,少部分有二个或三个中间站台, 从站房侧依次为客车到发线,货车到发线、调车线。所有到发线客货共用。即便是客货车场分设的区段站, 其正线大多数是客货共线。

1.3 一般中间站

由于中间站作业简单,站线数量不多。基本上以横列式为主, 而且单线中间站台, 布置成二台夹二线, 站台高出轨面0.3~0.5 m;双线一般设一个基本站台, 一个中间站台,布置成二台夹三线。客流较大的中间站台与基本站台间设了跨线设备,大部分车站行包是通过站台两端平过道作业。

2.铁路运输方式发展的新要求

随着国民经济的发展、人民生活水平的提高, 铁路除满足基本的工农业原材料运输和基本的大众旅客运输外, 运输能力和运输方式都发生了较大的变化。从旅客列车的提速、五定班列快运货物列车的开行, 到集装箱专业化运输、行包专运、煤炭重载等一系列分层次分种类的运输方式体现了社会对运输需求的新变化。在客运方面, 现在普通客车行车速度都在80~120 kmPh,快速旅客列车达到140~160 kmPh。旅客列车开行的变化, 不仅仅体现在行车速度上, 在行车密度上也大幅度提高,一些繁忙干线上出现一天中某些时段只开行客车,货车被积压在相邻的技术作业站。因此,运输部门逐步提出枢纽客货分线的强烈要求。在货运方面,更加强调降低运输成本。随着路网电气化的大力发展, 机车交路进一步延长,路网中原来承担办理机车换挂作业的部分区段站, 失去了主要作业功能, 只承担本站的摘挂列车作业。除此之外,压缩车辆周转时间, 不仅可以提高货物送达速度,而且提高车辆运用效率,这就要求减少货物列车途中技术作业次数, 尽量集中在主要编组站作业,提高路网主要编组站的通过能力和作业条件;同时大力发展集装箱、轻质快运货物、行包专列、煤炭重载列车等多种类多层次的运输方式。这些运输方式不仅仅只是列车自身的变化, 而是一个从组织货源的装车地、组成车列、运营路径的选择, 到目的地的货物疏散, 一系列的系统的运输方式的变化。

3.对未来站场设计观念的分析

每次谈到更新设计理念, 谈的起点都很高, 但是落到站场设计的实处, 应该体现在几个方面, 否则就成为空谈。站场设计理念的更新来自于铁路运输方式的变化。这种变化对一般中间站和路网枢纽都产生深刻的影响。

3.1 枢纽布局

对于枢纽, 首先确定在路网上的作用。当枢纽位于干线网和客运网的结点上时, 这个枢纽从主要径路上应实现客货分线, 这意味着不仅客货车站分工明确,枢纽内相关的正线及疏解线也分工明确。其次从枢纽内车站分布上, 已不仅是以客运站、编组站为中心, 枢纽内将按照运输方式的划分, 形成客运站、编组站、集装箱中心站或作业站、行包中心站、普通货运站等多种车站的有机体。并且部分车站如客运站不只设置一个。第三, 由于引入方向的增多, 许多顺列式枢纽、客货并列式枢纽将逐步形成环线, 甚至多环枢纽。第四,随着我国路网复线率的提高, 枢纽内疏解将更加复杂,进路更加明确。

3.2 客运站

对于客运站, 首先从办理列车数量上, 将出现跨越式的突破。对于大型客站, 从以前办理几十对客车, 将大幅度提高到上百对甚至几百对列车。其次, 由于用

地资源的有限, 办理列车对数的增多,并不是以无限制地扩大车站规模为代价, 而是大幅度地提高列车开行密度和平行作业数量,提高到发线的运用效率。这就

要求尽量使衔接的线路能同时引入,列车同时到发;作业时间最短,相关的机车车辆进路更加便捷。对于采用动车组的线路,车辆交路与车站能力的衔接更加协调。第三,客运站的作业从单纯地办理旅客乘降到以人为本的观念转变。以人为本不仅体现在组织旅客上车和下车,还应体现在为旅客提供便利舒适的服务条件的全过程,如让站台与车底相平,减少旅客乘降车的障碍, 同时提高旅客进出站及与其他交通方式换乘的便捷条件,减少站台上的支柱, 提高旅客通视条件, 增加残疾人通道,体现无障碍理念等等。

3.3 编组站

对于编组站,更加注重在路网上的作用。在优化机车交路、货运通道的前提下, 对编组站进行定性; 从路网的发展需求上,对编组站进行定量;从发挥编组站的作用上, 确定建设适应期。这三定的结果,一是对确定为路网上发挥重要作用的编组站, 要求其功能更加强大、作业更加灵活, 而对路网上发挥作用不大的编组站, 功能将会调整或改变;二是对确定为路网上发挥重要作用的编组站, 要求其能力更大, 办理车数将成倍增长; 三是对确定为路网上发挥重要作用的编组站, 建设适应的时间将延长。以前的设计,编组站建成后5 年为近期、10年为远期, 适应期太短,导致反复改造。以后对于这些编组站的改扩建,考虑到对路网车流组织至关重要的作用,一旦建成后将适应20年以上较长的时期。

3.4 区段站

虽然这类车站规模不大, 但数量较多。这类车站性质没有改变, 基本维持客货共线或以货运为主的铁路作业功能, 在客运专线上没有此类车站。过去设计的区段站大多数中间站台较窄, 且邻靠正线。不仅靠正线的站台面不能接发旅客列车, 而且当既有线提速客车速度大于160 km/ h 时, 影响中间站台上旅客的乘车安全。此外, 并非所有客车均要在区段站上停车, 这就要求车站应有较好的线路平纵断面条件, 让客车不减速通过。有些区段站往往位于人口较多的大城市,不仅办理货车较多, 而且将来办理客车量也较大, 这就要求旅客站台较多。既有的区段站站型当按照这种要求布置时不仅客货干扰很大, 而且正线上的道岔很多, 咽喉区很长, 因此这种图型不适应这类区段站发展的需要, 必须加以改进, 做成客货分场横列或纵列。

3.5 一般中间站

一般中间站的图形虽然比较简单, 但是随着客车速度的提高, 其图型变化也较大。首先是车站分布突破了固有的观念, 站间距离进行了适当加大, 尤其是双

线地段最大站间距离达到了30 km; 其次, 优化了车站作业结构, 对于客货运量较小的车站, 改为会让站或越行站; 而对于客货运量较大的车站, 延长站台, 增加站台高度, 增加牵出线, 取消占用正线调车, 从而改善了客货运作业条件。第三, 改变了过去的布置图型, 对于客车速度较高的线路, 中间站台不靠正线, 双线车站一般设成二台夹四线, 增设跨线设备, 取消平过道, 为线路提供安全的运输通道。第四, 由于部分中间站位于地市级城市, 或名胜旅游城市, 乘降的客流量较大, 旅客站台设成高站台。

此外, 对于道岔的运用也在不断的更新, 过去18号道岔在设计中很少采用, 运营部门也很难接受。铁路提速后, 随着对列车运行条件要求的提高和道岔技术的进步, 采用的道岔不仅有固定型辙岔、可动心轨辙岔等不同种类型, 还有12、18、30、38、43 等不同侧向通过速度的道岔。

4.结束语

以上这些枢纽、客运站、编组站、区段站及中间站设计的变化, 在新线建设及既有线改造中正在逐步地调整。这些潜移默化的变化, 通过每一条线的建设正在形成一套适应铁路运输方式发展的新的站场设计观念。这些观念改变了过去照搬照套的习惯做法, 同时也提高了站场设计的深度与广度。

参考文献:

篇5

1.1缺乏专业的管理人员随着新的设备和机械被引进,铁路机械设备的老式管理方法已经被淘汰掉了,新型机械设备的引入就使得我们不得不加强对专业的管理人才的培训,铁路发展的脚步已经越来越快,对管理人员的专业水平要求也是越来越高,很多的大型设备我们都是从国外引进来的,对于这些机械设备的操作和使用就需要专业的管理人员,因为机械设备的更新是很快速,所以我们对管理人员的专业要求也要相应的提高,基本水平已经不足以满足我们了,管理需要更加专业的人才,设备管理也要涉及很多的领域,因此我们要组织员工对铁路机械设备操作管理进行专业的培训。只有全面的提高管理人员的专业性,才能使得铁路机械设备管理更有保障、更规范。

1.2铁路机械设备的技术寿命与经济寿命间的矛盾问题我国铁路机械设备的技术寿命与经济寿命间存在着矛盾,铁路建设中使用的设备都是比较大型的,在生产和制造的过程中都是很繁琐复杂的,国家也要投入很大的科研经费,我们在大型设备购买的过程当中也会大批量的投入资金,这样一来,我们对机械的使用寿命就会有很大的提升,大部分的大型设备可以运转使用几十年,在表面上看我们的设备性价比是非常高的,但事实上却不是这样的,我们的设备在使用的初期跟生产力能够很好的保持一个平衡,但是随着科技不断的更新进步,渐渐的原有机械设备的能力已经跟不上施工的要求了,这样就使得铁路工程的整体质量跟不上,不利于我国铁路的长期发展,所以我们一定要把机械寿命和实际的经济效益紧密的结合,才能使我国铁路得到更进一步的发展。

1.3铁路项目目标管理和机械设备安全管理间的矛盾问题铁路的项目管理是一个大目标,它的管理方向更具全面性,它能最大限度的提升施工的效率,它所要强调的是项目施工的进度,所以在设备的使用中要最大限度的利用机械设备。项目管理的目标就是质量、是进度、是效益,所以在施工的过程中机械设备带来的工作负担从机械设备的安全管理角度来看是行不通的,当前现状普遍的存在机械设备超额负载,使用的次数太多了,这样的现象使机械设备产生了一定的安全隐患。另外,我们从机械设备安全管理所处的地位来分析,它处在项目管理的最边沿,不受施工单位的重视,不抓全面的铁路施工一定会导致机械设备发生故障,从而影响铁路施工的进度,所以要把铁路项目目标管理和机械设备安全管理紧密的结合,两者都是很重要的,不要小看机械设备安全管理。

1.4我国现有的铁路施工当中所存在的机械设备安全问题我国现如今的铁路施工当中所存在一些机械设备安全的问题,一方面,操作人员工作意识不强烈,大型机械设备的管理达不到国家要求的标准,在管理的基础环节没引起一定的重视,因为不受重视,所以对大型机械设备的管理就很容易出现纰漏,这样的纰漏就变相成为了施工中的安全隐患;另一方面,尤其铁路施工的环境是相对有特殊性的,这就为机械设备的管理加大了难度,铁路建设的地点选择都不是很好,大多数都是选择在山间,很少有在平坦马路上建设的,建设的自然环境条件不好,就对设备的保养和管理产生了很多的不利因素。

2我国铁路工程施工机械设备安全的管理对策

想要增强铁路工程的设备管理需要从多方面来入手,从多方面考虑我国当下的铁路施工建设的具体情况,分析当中所存在的问题和,提高对我国铁路工程机械设备的管理意识。具体来说,可以利用下面的几个方面来进行改善我国当下铁路工程施工机械设备中所存在的问题。

2.1协调统一铁路项目管理与机械设备的安全管理机械设备的管理在铁路施工中,根本得不到管理人员的重视,两者之间得不到一个完美的共存,所以这就要求管理人员去完善机械设备的管理体制,与此同时还要做好相关管理人员的培训工作,使机械设备的安全管理更加的规范和科学化。要在铁路施工机械设备管理部门设立专门的负责管理人员,管理人员尽力去协调机械设备管理目标和项目管理目标的一致性,使它们之间不再有矛盾生成。而且要对安全施工过程当中的机械设备做好管理计划工作,加强对管理人员和操作人员的培训力度,这样才能确保机械设备能够正确安全并且稳定的使用,延长了设备的使用寿命,同时还要加大监督检查力度,只有这样才能全面提高接卸设备管理在铁路工程项目管理中的地位,协调统一铁路项目管理和机械设备的安全管理。

2.2排除存在的安全隐患,最大的发挥机械设备的性能对大型的机械设备要进行严格的检查,因为机械设备的陈旧和老化都会在施工当中形成严重的安全隐患,这样的问题对工作人员的人身安全和铁路工程的进度都有很大的影响,管理人员绝对不能够疏忽大意,要有专门的部门和人员对这些机械设备负责,责任下发到个人,每一个环节都不能出现错误,如果在检查中发现安全隐患,就要停止使用,尽快的排除安全隐患。铁路机械设备在使用之前一定要先熟悉它的安装和使用说明以及相关注意事项,要对设备的质量安全做细致的检查,在检验合格之后才能投入到施工当中进行使用。对铁路机械设备要进行定期的保养和检查,发现问题要马上维修,一定要排除机械设备的安全隐患,从而提高机械设备的安全性能。

3结语

篇6

京津城际铁路于2008年8月开通运营,是中国最具代表性的高速铁路线路之一,已成为京津两地往来最为便利的交通方式。该线路的运营对于加强北京和天津之间的人员往来、带动商业和旅游业发展以及促进城市间协调发展具有重要意义。为了更好地分析高速铁路对城市增长外部影响的微观机制,笔者所在团队于2010年12月下旬选取了工作日和双休日在京津城际列车旅途中对乘客进行问卷调研,共发放问卷1200份,回收有效问卷1005份。

1.乘客出行方式及其目的变化高速铁路对乘客交通出行方式的影响是最为直接的,特别是从其他交通方式吸引的客流,对于京津城际铁路也是如此。调查统计显示,45%的旅客是由传统(低速)列车出行转向乘坐城际铁路列车。由于高速铁路列车和传统铁路列车之间具有较强的共同性和替代性,因此前者的投入使用对后者带来的竞争冲击影响无疑是最大的。另外,来自其他交通方式的55%客流量则主要来自于长途汽车和自驾车,这与国际高速铁路的发展经验也是基本一致的。此外,旅客平均每月的来往京津两地的次数也由运营前的2.4次增加为4.2次。从各类出行目的分布来看,无论工作日还是双休日,工作都是京津两地乘客出行的主要目的(分别占出行总量的54%和30%),这说明京津两地围绕工作展开的事务通往来或就业通勤的需求是较强的。节假日期间乘客出行目的构成有所变化,探亲、旅游、购物出行的占比均出现不同程度的上升。对调研样本进一步分析发现,京津城际铁路开通运营后双休日旅游和购物出行人数分别较运营前增加213%和121%。这些数据从需求角度表明京津城际铁路在促进京津两地消费方面具有较大的潜力。

2.城际交通出行时间和成本的降低图1将北京和天津间主要交通方式的出行时间和货币成本分别进行比较。其中,京津城际铁路在货币成本上仅高于传统火车,而在出行时间的节约方面京津城际列车具有绝对优势。即使考虑市内交通出行,这种优势仍然十分明显。可将出行时间进行货币化的测算,先用收入和工作时间来计算劳动者的单位时间价值,再将其与各种交通出行方式所需花费的时间相乘即可得到相应的时间成本。根据调研数据,可以计算出乘客的平均时间价值约为22元/小时,那么采用京津城际铁路出行比其他方式出行的乘客单程节省的时间价值超过50元。若考虑京津两地之间巨大的客运量,这部分外部收益则更为可观。据测算,运营初期每年节省的时间价值总额能够达到10~20亿元。

3.高速铁路促进城市发展的预期高速铁路的外部影响通常可以从民众预期中得以体现。在实地调研的旅客当中,有76%的认为京津城际铁路的运营能够有效地带动天津市的经济增长,而仅3%的旅客认为京津城际铁路的影响并不明显存在(如图2所示)。那么这种影响是否可以使产业受益呢?有34%的乘客表示其所在公司在两地之间的业务量在该线路运营后有明显增长。与此类似地,60%以上的乘客认为京津城际铁路对两个城市土地和住房价格也有明显的拉动作用。由于案例分析仅适用于某一线路或某一区域的小范围的研究,问卷调研无法全面覆盖高速铁路的各项外部经济影响,对于城市发展以及住房价值提升只能够得到受访者的普遍预期。更加全面且精细化的量化评估高速铁路的外部影响还需要借助城市经济学和新经济地理学的研究思路和方法。

二、高速铁路外部影响的实证分析

1.新经济地理学与城市经济学的研究思路在新经济地理理论研究中,以Hanson(2005)为代表的学者通过构造“市场潜力”指标来表现本城市与周边城市之间的经济联系,强调这种联系会随着周边城市规模的扩大而增加,但也会随着城市间距离和运输成本的增加而衰减。其中,potentiali,t为t时刻城市i的“市场潜力”,popj,t表示t时刻城市j的规模,dij,t则表示t时刻城市i与j之间的距离(既可以是地理距离也可以用两地通行时间表示),λ为衰减系数(通常取值为1)。相关的实证分析验证了某一区位上“市场潜力”与其经济产出、产业结构存在着高度关联(刘修岩等,2007)。由于“市场潜力”变量中包含着空间要素,因此在交通基础设施对城市整体发展的影响分析中得以应用(Feddersen和Ahlfeldt,2011)。城市经济学领域,Roback(1982)最早提出开放城市体系下的一般均衡分析框架。在此框架下开展的实证研究普遍采用特征价格模型的分析方法,其实质是将城市的住房价格(城市价值的体现)视为城市经济发展水平和各类城市生活质量隐含价格的加总,通过模型分析方法将这些隐含价格进行定量分解。而每一部分的价格又体现为居民对相应城市特征的支付意愿。该模型的一般形式如公式(2)所示:。其中,homepricei,t为t时刻城市i的住房价格,Xi,t表示t时刻城市i一系列特征的变量,ηt表示时间固定效应,α和εi,t分别表示常数项和残差项。利用该模型即可将一些难以在市场上定价的城市特征进行“资本化”测算,已被广泛应用于城市内部轨道交通溢价效应的研究中,而这种研究思路和方法对于城市之间的“轨道交通”———高速铁路而言同样也是适用的。

2.数据来源及模型形式实证分析数据主要来自《中国城市统计年鉴》以及环境保护部、国家气象局的相关资料。实证分析模型参考Zheng和Kahn(2013)并加以改进,包括回归模型的形式以及“市场潜力”变量的构造方法等②。本文的计量经济分析采用特征价格模型的水平形式,为避免实证估计过程中的多重共线性问题,模型中选取了典型城市特征作为控制变量,包括自然特征、社会特征和公共服务。其中,自然特征用冬季和夏季的气温、城市可吸入颗粒物浓度表征;社会特征采用市辖区人口规模表征;公共服务则选用普通中学的师生比指标表征。限于数据可得性,研究时间范围为2006年第一季度至2010年第四季度,空间范围为85个地级及以上城市。具体变量及数据描述性统计如表1所示。同时,为区分既有交通网络和高速铁路对城市发展的影响,本文将“市场潜力”变量分解为2006年第一季度的基期值(b_potential)和此后的变化值(d_potential)并同时引入特征价格模型中,重点观察后者的系数来测算高速铁路运营后“市场潜力”变化的外部影响效果,如公式(3)和(4)所示:需要说明的是,公式中的距离d表示每两个城市之间的铁路通行时间,是利用历史列车时刻表和地理信息系统,对全部地级及以上城市数据综合计算得到的。从各城市“市场潜力”的基期值b_potential的比较来看,长江三角洲地区、珠江三角洲地区和环渤海经济圈的城市在高速铁路开通运营之前便具有相对较高的“市场潜力”,而多数中西部城市则相对较低。最终确定的特征价格回归模型形式如公式(5)所示。如果存在高速铁路运营的影响,那么系数α2应显著为正。

3.实证分析结果基于上述特征价格模型的回归分析结果如表2所示。就城市宜居性而言,冬季气温对城市住房价格的影响显著为正,说明冬季气温较高的城市住房价格更高。夏季气温的影响虽不显著但系数符号符合预期,即夏季气温较高的城市房价相对较低。这反映了人们更青睐于气候宜居性良好的城市,对该城市的住房的支付意愿更强。反映城市教育资源完善程度的“普通中学师生比”变量的系数显著为正,说明教育资源良好的城市更具有吸引性。同样的,空气质量的对数值对城市住房价格的影响为负且显著,说明消费者对城市住房的支付意愿中在一定程度上包含了城市环境的因素。本研究关注的“市场潜力”变量———b_potential和d_potential的系数均显著为正,说明“市场潜力”与城市价值高度相关。特别的,后者反映了高速铁路开通后所产生的外部经济影响能够显著资本化到城市住房价格之中。本地人口变量的系数显著为正,说明规模较大的城市有更高的住房价格水平(反映城市规模效应)。F检验值显示ln(pop)、b_potential和d_potential三个变量同时显著的置信度达到99%以上。此外,R2的数值达到63.9%,表示模型整体解释能力较好。在此基础上,筛选二、三线城市的子样本进行回归,d_potential的系数变化能够体现出高速铁路运营对不同类型城市的影响差别。回归结果显示,d_potential的系数在子样本回归中更大(高于全样本约7%),这说明高速铁路运营引发“市场潜力”的变化可能更有利于中小城市的发展,城市间的发展差距在高速铁路运营后可能会逐渐缩小。以京津城际铁路为例,假设两个城市的其他特征在研究期内均保持不变,d_potential仅受到京津城际铁路开通的影响(在此期间与两城市连接的国内其他铁路线路不发生变化)。根据两个城市铁路列车运行时间的变化以及基期的各项社会经济指标,可计算得到北京和天津两个城市d_potential分别为0.17和0.27,对应城市住房价格的年均增长率约为3.0%和4.8%。这也表明,京津城际铁路对两城市的外部影响是十分明显的。若将这部分住房(土地)增值率与现有的居住用地面积进行综合计算,则不难想象该线路所产生的土地增值是巨大的。此外,值得注意的是,京津城际铁路的运营对天津的影响程度超过北京,这表明该线路更有助于带动天津市的经济发展,并缩小两个城市之间经济水平的差距。

三、研究结论与讨论

篇7

本铁路工程冬季混凝土施工,在混凝土中掺加适量抗冻剂并将混凝土搅拌原材料预先加热,混凝土经运输、入模温度保持10℃以上,通过蓄热保温、人工加热(通过电暖器、电热炮加热)使混凝土养护温度保持在5℃以上。现场混凝土采用搭设保温防护棚,混凝土输送泵管用保温材料包裹,表面采用塑料薄膜覆盖保湿保温。

1.1冻临界强度冬季施工期间,采用硅酸盐水泥或普通硅酸盐水泥配制的混凝土,在抗压强度达到设计40%及5MPa前不得使其受冻;采用矿渣硅酸盐水泥配制的混凝土,在抗压强度达到设计50%前不得受冻。

1.2原材料配合比要求混凝土冬期施工应优先选用硅酸盐水泥和普通硅酸盐水泥,水泥的强度等级不应低于PO42.5MPa,最小水泥用量不应<300kg/m3,水灰比≯0.55。砂石材料必须清洁不含冻块。水加热应提前4h进行,保证水温达到80℃。搅拌站的冬施措施按照天津市相关规定执行,施工前检查其措施必须执行到位方可拌制混凝土。搅拌站的冬施混凝土要求掺加具有早强效果的抗冻剂,保证混凝土在-10℃环境下,混凝土的水分子能够保持液相状态。抗冻早强剂的使用效果和掺量经试验室试配后确定能否达到要求,防冻剂必须是环保产品,不得含有尿素、氯盐成分。混凝土的塌落度有严格要求,冬施期间,底板塌落度140~160mm,搅拌站按照要求塌落度进行搅拌,混凝土运输到工地后要对塌落度进行检验,发现塌落度不符合要求,混凝土拌和物离析、泌水,立即予以退回。

1.3混凝土搅拌和运输为保证搅拌温度,必须严格控制水的加热温度。搅拌过程中,随时注意检查砂、石、水的温度情况,当不满足计算要求的温度时,应及时采取措施或暂停搅拌混凝土。混凝土的搅拌时间不得少于135s,商品混凝土到现场的出罐温度控制在15℃以上。混凝土运输车,外缠苫布保温。混凝土运至浇灌部位后,采用2台泵车水平分层,分区块铺料,快振捣,及时覆盖的快速施工方法。混凝土经输送泵的传输后的入模温度不应低于10℃,对每一台班车辆的进场混凝土进行入泵前的温度测量,入模温度的测量,混凝土浇筑后覆盖前的温度测量并做记录。混凝土的搅拌及运输由混凝土厂家严格按要求进行控制。

1.4混凝土泵送混凝土出罐前一定要测量其温度,保证其温度不低于150℃,输送到作业层的混凝土,测量入模温度,要求不低于100℃。每一台班施工完成后,清洗机具,彻底排出其内部的积水,以免其内部受冻,影响施工的正常进行。罐车必须设置在稳固地点,不得有冰雪冻融物。喂料前,要监督罐车进行倒转,防止混凝土的离析等物理不良变化。施工现场道路注意防滑等措施,水平管的出料方向要低于进料方向。

1.5混凝土浇筑1)冬施混凝土浇筑安排每次浇筑的开始时间宜在当日上午9:00开始,尽可能避开夜间作业。2)冬施混凝土浇筑应尽可能避开雨雪严寒天气施工。3)浇筑混凝土前及时将模板、钢筋上的冰、雪清理干净。4)浇筑前充分做好准备工作,提高混凝土的浇筑速度,保证混凝土的入模温度。5)每次浇筑混凝土前,要检查混凝土入模温度。6)现场混凝土随浇随盖,尤其是底板表面混凝土在二次抹光前,临时性的先铺一层塑料薄膜,待二次抹光后,及时加盖一层保温被。7)混凝土浇筑时要测量其入模温度,保证其温度不得低于100℃,浇筑成型后的混凝土温度不得低于50℃。混凝土浇筑完毕后要及时覆盖保温养护。

1.6混凝土养护和测温混凝土的养护采用地热及混凝土本身温度及外加热综合养护,即在混凝土中掺加适量抗冻早强剂并将混凝土搅拌原材料预先加热,混凝土经运输、浇筑完成时,温度保持在10℃以上,通过蓄热保温或短期人工加热,使混凝土经1~3d混凝土强度达到抗冻临界强度后,可靠混凝土及地热蓄热、覆盖养护。蓄热保温及短期人工加热搭设保温棚。棚架采用钢管焊接制作,底板棚架宽21m×20m,侧墙利用搭设的脚手架,四周及顶部用带棉的帆布密闭。表面覆盖塑料布保湿保温,要求相邻塑料布搭结200mm,铺盖过程中应注意混凝土的成品保护,不得随意踩坏混凝土。遇大风天气时,保温棚用木方或钢管等重物覆盖,以免大风将保温层吹开。安排专人负责混凝土的覆盖检查工作,同时对工人加强冬施期间的技术交底,注意混凝土覆盖物的保护。在浇筑混凝土时,要根据测量温度的要求,预埋好温度计的测量位置,测温次数见温度测量表。保温完毕,相关人员要认真检查,遇有大风天气,要留专职人员检查覆盖情况并负责修复被风破坏的保温层。混凝土养护温度不得低于5℃,不能满足该温度条件时,必须立即增加覆盖保温。若混凝土拆模后,混凝土温度与外界温差>20℃时,在混凝土表面必须继续覆盖两层阻燃草帘被。

1.7测温测温孔的均匀设置,浇筑混凝土时,按照设计位置埋设并采取措施固定,埋设深度为底板厚度的中间部位,每块板共埋设9个。测温时,按测温孔编号顺序进行,每昼夜测4次。

2结语

篇8

1.1工程环境特点

1)气候特点

项目所在地位于燕山南麓,属暖温带半湿润大陆性季风气候,四季分明,夏季高温多雨,多东南风;冬季干燥寒冷,多西北风;春、秋两季少雨多风,气温凉爽。

2)工程地质特点

铁尾矿渣堆积地貌是人为的结果,铁尾矿渣的产出状态及铁尾矿渣与原始地层的组合关系,即地基土的类型是由原始地形地质条件和风蚀雨淋的改造情况两方面决定的。

(1)铁尾矿渣是最主要的地基土类型,范围有限,厚度不等,以极细铁尾矿渣为主,中值粒径0.1~0.2mm,不均匀系数2.8~4.0,曲率系数0.7~0.73,属不良级配砂类土。

(2)铁尾矿渣主要分布在选矿场及其周边,堆积厚度一般在10~50m之间,以粉粒为主,黏粒盛少,属粉土。

(3)铁尾矿渣坑中的尾矿渣系选矿过程中的水流冲渣并沉积而成,有水平层理或斜层理,距入池点的距离越远则平均颗粒粒径越小,颗粒的水流分选作用越明显。与铁尾矿渣堆中的尾矿渣相比,含泥量少些。两者成分相近。铁尾矿渣堆的背风坡的渣土密实度极低,处于疏松状态,工程性质很差。

1.2对路基施工的影响

1)对施工机具的影响由于堆积表面的铁尾矿渣常为松散状态,常用的轮式平地机不能直接在铁尾矿渣上行走整平,只能选用小型推土机由人工配合进行铁尾矿渣路基顶面的整平,同样压实也只能选用推土机、自行双驱压路机等轻型施工机械。为了保证路面工程的施工设备可在铁尾矿渣路基顶面行走,还需要在铁尾矿渣表面再摊铺一层封层,这对于严重缺乏筑路材料的铁尾矿渣堆积地区无疑增加了施工难度和工程造价。

2)常见的病害在风力的作用下,铁尾矿渣灾害的基本类型有风蚀和渣埋等。这些灾害过程相互关联并发生作用,其实质就是风力作用于铁尾矿渣质地表而引起的铁尾矿渣物质风吹~搬运~再堆积过程。可划分为以下形式:在风力作用下铁尾矿渣颗粒移动离开原位运动,形成铁尾矿渣风吹流而产生的物质搬运过程,主要危害铁尾矿渣堆积地区各种公路设施和基础的稳定性。调查观测表明,铁尾矿渣的风蚀渣流中98%的铁尾矿渣颗粒集中在地表以上10cm高度内,高速运动的风蚀铁尾矿渣两相流对公路路基及边坡表面造成侵蚀破坏。当含铁尾矿渣量含量呈饱和状时所挟带的铁尾矿渣颗粒产生堆积形成积渣,掩埋公路排水设施等。在铁尾矿渣危害严重地段,大风可以形成大量铁尾矿渣搬移,压埋铁尾矿渣防护体系或路面,导致防护体系失效和阻碍公路运营。项目所在地区降雨少但非常集中,多在夏季降雨,且为强降雨,同时铁尾矿渣的颗粒细小,不大的水流就可以将其带出路基造成路基病害,主要有边坡冲刷和路基掏蚀等。前者,雨水席卷铁尾矿渣从路基边流下形成沟槽,沟槽会因水流冲刷能力的增强迅速扩展;后者主要发生在铁尾矿渣路基封层和包边土已完工后,雨水从封层浸入铁尾矿渣路基内部,并将铁尾矿渣携带出路基,路基表面可能只是小裂缝,而路基内部已经掏蚀成很大一个洞,随后塌陷,这种危害突然性较大。

2影响铁尾矿渣填方路基稳定性的主要因素

2.1铁尾矿渣填料的级配和密实度

由室内试验结果可知,不同级配铁尾矿渣的抗剪强度存在明显差异。相同级配的铁尾矿渣,其抗剪强度随压实度的成正比关系。因此,铁尾矿渣路基的稳定性与填料级配、施工压实工艺以及密实度等因素有关。

2.2地基的地质结构及水文地质特征

铁尾矿渣通常堆积在山洼,沟渠等低洼地带,原始地形变化加大,地质结构及水文地质特征差异较大。在铁尾矿渣沉淀坑地带,地基主要由铁尾矿渣沉淀堆积形成,铁尾矿渣密实度沿地基深度变化较大。通常地表3m以内处于松散或松软状态,3.0m以下处于中密状态。同时,地下水位高低与铁尾矿渣的沉淀、堆积形式和覆盖层厚度等因素有关。因此,应重视铁尾矿渣覆盖层下面原始地貌及其地质结构、水文地质特征。

2.3铁尾矿渣路基的边坡设计

一般天然状态下的松散铁尾矿渣体干密度在1.55~1.57g/cm3之间,相应的自然休止角在31~36°之间,其对应的坡比为1:1.38~1:1.66。因此,一般采用1:1.5的坡比;对填方较高的情况则适当放缓。对铁尾矿渣填方路基来讲,保持边坡的稳定性对车辆安全运营是十分重要的。

2.4铁尾矿渣路基的边坡防护措施

对铁尾矿渣路基边坡防护的质量对路基的稳定性起着至关重要的作用。采用砌体防护,不仅保护坡面不受外界环境影响,在一定程度上也增强了边坡的稳定性。采用覆土植草防护,可保证边坡及路肩不被风蚀,并减少了雨水冲刷。另外,对边坡进行一定的防护措施,也可减少一些人为的破坏。2.5铁尾矿渣路基的排水防洪措施铁尾矿渣为细小的散粒颗粒,颗粒间无黏性,很容易受到雨水的冲刷而流失;路线处于遵化北部山区降雨量集中,雨季往往产生洪水;在水流集中路段,路肩及边坡则容易被冲刷而形成沟渠,使路基遭到破坏;在低洼积水地段,路基填料被浸泡,强度降低,也可能引起路基的失稳破坏。因此,在铁尾矿渣地区公路设计和施工中,应重视路基的排水防洪措施。

3铁尾矿渣路基的工程防护与环境保护措施

3.1铁尾矿渣路基的设计原则

1)铁尾矿渣路基设计宜贯彻“宁填勿挖”的思想,以减轻铁尾矿渣大风掩埋病害。

2)路线走向尽可能与季风风向平行。当路线与风向正交时,宜增大路基填方高度。因为,较高的路堤一般不至于遭受风吹铁尾矿渣流动掩埋路面的铁尾矿渣风吹埋危害。

3)铁尾矿渣路堤高度不宜太大,以减轻风、雨蚀病害,一般以1.0m左右为宜。4)对于高度小于1.0m的低路堤,边坡可视路侧地形情况,采用缓坡式或流线形的路基断面,坡比一般为1:4~1:10。这时,路侧防护工程设施可适当减少。5)对于高度大于1.0m的路基,边坡坡比采用1:1.5~1:2.0,一坡到顶,坡面设置一定的防护措施。

3.2铁尾矿渣路基边坡防护

根据前面的分析,铁尾矿渣地带路基填方愈高,则风蚀和冲刷作用愈显著。因此,路基防护是铁尾矿渣路基设计的重要组成部分。本项目中在勘察、设计和施工的各个阶段积累了大量的研究资料和工程应用经验。主要可概括为如下几方面:

1)铁尾矿渣地区路基防护应遵守因地制宜,就地取材的原则。

2)对铁尾矿渣路基路肩部分主要采用土、石灰土及沥青等材料进行防护,以保证路基的稳固和行车安全,也可采用植草、培基植被、土工网、土工布及土工格栅等材料加固。

3)对铁尾矿渣路基边坡的防护可分为临时防护和长期防护两部分。临时防护主要以植草防护为主,包括采用麦草、稻草、芦苇、铁尾矿渣生植被以及草皮等防护措施,必要时也可采用粘土、砾卵石及沥青或水泥铁尾矿渣等材料防护。长期防护主要以植被防护为主,即在边坡上种植各种适合当地特点的尾矿渣生植物,必要时也可结合采用一定厚度的粘土、山皮土、砾卵石、培基植被、土工合成材料及沥青或水泥铁尾矿渣等材料覆盖。桥涵两侧以及一些特殊地段宜用砌体防护。

4)铁尾矿渣地区路基防护应将临时防护和长期防护结合起来,这样不仅能抵御强风、暴雨对铁尾矿渣路基的风蚀危害和冲刷破坏。

5)在低洼易积水或易受洪水冲刷路段,所采取的防护措施应能经受住水的浸蚀破坏和洪水的冲刷破坏。一般常采用植树、培基植被、土工合成材料和砌体防护等加固措施。

3.3铁尾矿渣公路的环境保护措施

根据该地区铁尾矿渣堆积自然气候特征,防治尾矿渣害的措施必须要双管齐下,除了以上路基本体防护又要考虑路基两侧风雨流铁尾矿渣的危害,才能遏制铁尾矿渣风雨流的形成,减少公路对环境的影响以及因破坏环境而对公路的不利影响。铁尾矿渣地区公路环境保护措施主要包括植物防护、工程防护等方法。

1)工程措施

工程防护措施是铁尾矿渣地区公路防护的主要组成部分。常用的工程防护内容有:稳固铁尾矿渣工程、拦阻铁尾矿渣工程等两部分。

(1)稳固铁尾矿渣工程

稳固铁尾矿渣工程是通过工程措施将易于移动的铁尾矿渣堆、小铁尾矿渣丘等就地固定的一种治理方法。主要内容有砌筑护墙、护坡等。

(2)拦阻铁尾矿渣工程

拦阻铁尾矿渣工程是通过工程措施,将铁尾矿渣风吹流阻止在距公路较远的地方,以便公路不受铁尾矿渣淹埋和侵蚀影响。常用的拦阻铁尾矿渣工程有石砌拦阻铁尾矿渣墙、铁尾矿渣堤、铁尾矿渣障板等,视当地实际情况选用。

2)植物防护措施

植物防护措施是整个铁尾矿渣堆积区公路环境保护的主要组成部分。它是利用生物的生态特点来防止铁尾矿渣移动,并且达到铁尾矿渣堆积稳固的一种措施。由于生物防护具有经济、使用时间长、改善沿线生态与保护环境等优点,因此,是在铁尾矿渣堆积区公路防护中均应倡导的防护措施,也是一项很有前景的防护工程。植物防护措施主要内容有固定活动铁尾矿渣丘、拦阻铁尾矿渣、稳定边坡以及设置铁尾矿渣地林带等。植物防护措施配置要求土地整治与造林种草措施相结合,树种选择要做到适地适树,并结合生活及美化要求,可适当选择具有观赏价值的树种,在具体布设防护林带上要合理密植,注意乔、灌、草合理搭配,绿化和美化有机结合,形成综合性保水保土防护体系。

4结语

推荐期刊