时间:2023-03-06 16:00:17
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇八年级数学上册教案,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
§17.1分式及其基本性质(二)
一、选择题.1.C2.D
二、填空题.1.,2.3.三、解答题.1.(1),(2),(3),(4)2.(1),,;(2),3.
§17.2分式的运算(一)
一、选择题.1.D2.A
二、填空题.1.,2.3.三、解答题.1.(1),(2),(3),(4);2.,§17.2分式的运算(二)
一、选择题.1.D2.B
二、填空题.1.,2.1,3.三、解答题.1.(1),(2),(3)x,(4)2.,当时,17.3可化为一元一次方程的分式方程(一)
一、选择题.1.C2.B
二、填空题.1.,2.,3.三、解答题.1.(1),(2),(3),(4),原方程无解;
2.17.3可化为一元一次方程的分式方程(二)
一、选择题.1.C2.D
二、填空题.1.,,2.,3.三、解答题.1.第一次捐款的人数是400人,第二次捐款的人数是800人
2.甲的速度为60千米/小时,乙的速度为80千米/小时
17.4零指数与负整数指数(一)
一、选择题.1.B2.D
二、填空题.1.0.001,0.0028,2.,3.三、解答题.1.(1)1,(2),(3)2010,(4)9,(5),(6)2.(1)0.0001,(2)0.016,(3)0.000025,(4)17.4零指数与负整数指数(二)
第十一章11.2.1三角形的内角答案
1、直角三角形
2、60°
3、115
4、125
5、解:设一个角的度数为x,第二个角为6x,第三个角为7x-44°
由三角形内角和性质得
x+6x+7x-44°=180°
解得x=16°
所以角是96°
6、解:AB∥CD,
∠AFC=45°,
∠EFC=135°,
∠C+∠E=45°,
又∠C=∠E,
∠C=∠E=22.5°
第十一章11.2.2三角形的外角(1)答案
1、65°
2、120°
3、>
4、360°
5、答:命题正确。
∠BDE是∆DEC的外角,则有∠BDE=∠DCE+∠E;
同理,∠DCE=∠A+∠B,
所以∠BDE=∠E+∠A+∠B
6、解:(1)∠F=(∠B+∠D)
由题意可知∠DEG=∠GEA=∠DEA,
∠ACF=∠FCB=∠ACB
在∆DEG和∆FGC中,
由于∠DGE=∠FGC(对顶角相等),
则有∠F+∠ACF=∠D+∠DEG,
即∠F+∠ACB=∠D+∠DEA
同理可得∠F+∠DEA=∠B+∠ACB,
可得∠F=(∠B+∠D)
(2)x的值为3
第十一章11.2.2三角形的外角(2)答案
1、直角三角形
2、20°
3、70
4、75°
5、解:∠DAC=∠BAC-∠1=63°-∠1,
∠DAC=180°-∠3-∠4=180-2∠3,
而∠3=∠1+∠2=2∠1,
∠DAC=63°-∠1
∠DAC=180°-4∠1,
求∠1=39°,
一、选择题(每题3分,共30分)1、在ABC和DEF中,AB=DE, ∠B=∠E,如果补充一个条件后不一定能使ABC≌DEF,则补充的条件是( )A、BC=EF B、∠A=∠D C、AC=DF D、∠C=∠F2、下列命题中正确个数为( )①全等三角形对应边相等;②三个角对应相等的两个三角形全等;③三边对应相等的两个三角形全等;④有两边对应相等的两个三角形全等. A.4个 B、3个 C、2个 D、1个3、已知ABC≌DEF,∠A=80°,∠E=40°,则∠F等于 ( )A、 80° B、40° C、 120° D、 60°4、已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为( ) A、70° B、70°或55° C、40°或55° D、70°或40°5、如右图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是( )A、10:05 B、20:01 C、20:10 D、10:026、等腰三角形底边上的高为腰的一半,则它的顶角为( )A、120° B、90° C、100° D、60°7、点P(1,-2)关于x轴的对称点是P1,P1关于y轴的对称点坐标是P2,则P2的坐标为( )A、(1,-2) B、(-1,2) C、(-1,-2) D、(-2,-1)8、已知 =0,求yx的值( )A、-1 B、-2 C、1 D、29、如图,DE是ABC中AC边上的垂直平分线,如果BC=8cm,AB=10cm,则EBC的周长为( )A、16 cm B、18cm C、26cm D、28cm10、如图,在ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若ABC的面积为12 ,则图中阴影部分的面积为( )A、2cm ² B、4cm² C、6cm² D、8cm²二、填空题(每题4分,共20分)11、等腰三角形的对称轴有 条.12、(-0.7)²的平方根是 .13、若 ,则x-y= .14、如图,在ABC中,∠C=90°AD平分∠BAC,BC=10cm,BD=6cm,则点D到AB的距离为__ .15、如图,ABE≌ACD,∠ADB=105°,∠B=60°则∠BAE= .三、作图题(6分)16、如图,A、B两村在一条小河的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址P应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址Q应选在哪个位置?请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹. 四、求下列x的值(8分)17、 27x³=-343 18、 (3x-1)²=(-3)²
五、解答题(5分)19、已知5+ 的小数部分为a,5- 的小数部分为b,求 (a+b)2012的值。 六、证明题(共32分) 20、(6分)已知:如图 AE=AC, AD=AB,∠EAC=∠DAB.求证:EAD≌CAB. 21、(7分)已知:如图,在ABC中,AB=AC,∠BAC=120o,AC的垂直平分线EF交AC于点E,交BC于点F。求证:BF=2CF。22、(8分)已知:E是∠AOB的平分线上一点,ECOA ,EDOB ,垂足分别为C、D.求证:(1)∠ECD=∠EDC ;(2)OE是CD的垂直平分线。
23、(10分)(1)如图(1)点P是等腰三角形ABC底边BC上的一动点,过点P作BC的垂线,交AB于点Q,交CA的延长线于点R。请观察AR与AQ,它们相等吗?并证明你的猜想。(2)如图(2)如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB的延长线上时,(1)中所得的结论还成立吗?请你在图 (2)中完成图形,并给予证明。
一、选择题(每题3分,共30分)C C D D B A B C B C二、填空题(每题3分,共15分)11、1或3 12、±0.7 13、2 14、4cm 15、45°三、作图题(共6分)16、(1)如图点P即为满足要求的点…………………3分(2)如图点Q即为满足要求的点…………………3分 四、求下列x的值(8分) 17、解:x³= ………………………………2分 x= …………………………………2分 18、解:3x-1=±3…………………………………2分①3x-1=3x= ……………………………………1分②3x-1=-2 x= ……………………………………1分五、解答题(7分)19、依题意,得,a=5+ -8= -3……………2分b=5- -1=4- ……………2分a+b= -3+4- =1…………2分 = =1…………………1分六、证明题(共34分)20、(6分)证明:∠EAC=∠DAB ∠EAC+∠DAC=∠DAB+∠DAC 即∠EAD=∠BAC………………2分在EAD和CAB中, ……………3分EAD=CAB(SAS)…………1分
21、(7分)解:连接AF ∠BAC=120°AB=AC∠B=∠C=30°………………1分FE是AC的垂直平分线AF=CF ∠FAC=30°…………………2分∠BAF=∠BAC-∠CAF=120°-30°=90°……………………1分又∠B=30°AB=2AF…………………………2分AB=2CF…………………………1分22、(9分)证明:(1)OE平分∠AOB ECOA EDOB DE=CE………………………2分∠EDC=∠ECD………………1分(2)∠EDC=∠ECD EDC是等腰三角形∠DOE=∠CDE………………………………1分∠DEO=∠CEO………………………………1分OE是∠DEC的角平分线…………………2分即DE是CD的垂直平分线…………………2分23、(12分)解:(1)AR=AQ…………………………………………1分ABC是等腰三角形∠B=∠C……………………………………1分RPBC∠C+∠R=90°∠B=∠PQB=90°………………………………1分∠PQB=∠R……………………………………1分又∠PQB=∠AQR ∠R=∠AQR……………………………………1分AQ=AR…………………………………………1分(2)成立,依旧有AR=AQ………………………1分补充的图如图所示………………1分ABC为等腰三角形∠C=∠ABC………………1分PQPC∠C+∠R=90°∠Q+∠PBQ=90°…………1分PBQ=∠ABC∠R=∠Q…………………1分AR=AQ……………………1分
一、选择题(每题3分,共30分)1、在ABC和DEF中,AB=DE, ∠B=∠E,如果补充一个条件后不一定能使ABC≌DEF,则补充的条件是( )A、BC=EF B、∠A=∠D C、AC=DF D、∠C=∠F2、下列命题中正确个数为( )①全等三角形对应边相等;②三个角对应相等的两个三角形全等;③三边对应相等的两个三角形全等;④有两边对应相等的两个三角形全等. A.4个 B、3个 C、2个 D、1个3、已知ABC≌DEF,∠A=80°,∠E=40°,则∠F等于 ( )A、 80° B、40° C、 120° D、 60°4、已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为( ) A、70° B、70°或55° C、40°或55° D、70°或40°5、如右图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是( )A、10:05 B、20:01 C、20:10 D、10:026、等腰三角形底边上的高为腰的一半,则它的顶角为( )A、120° B、90° C、100° D、60°7、点P(1,-2)关于x轴的对称点是P1,P1关于y轴的对称点坐标是P2,则P2的坐标为( )A、(1,-2) B、(-1,2) C、(-1,-2) D、(-2,-1)8、已知 =0,求yx的值( )A、-1 B、-2 C、1 D、29、如图,DE是ABC中AC边上的垂直平分线,如果BC=8cm,AB=10cm,则EBC的周长为( )A、16 cm B、18cm C、26cm D、28cm10、如图,在ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若ABC的面积为12 ,则图中阴影部分的面积为( )A、2cm ² B、4cm² C、6cm² D、8cm²二、填空题(每题4分,共20分)11、等腰三角形的对称轴有 条.12、(-0.7)²的平方根是 .13、若 ,则x-y= .14、如图,在ABC中,∠C=90°AD平分∠BAC,BC=10cm,BD=6cm,则点D到AB的距离为__ .15、如图,ABE≌ACD,∠ADB=105°,∠B=60°则∠BAE= .三、作图题(6分)16、如图,A、B两村在一条小河的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址P应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址Q应选在哪个位置?请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹. 四、求下列x的值(8分)17、 27x³=-343 18、 (3x-1)²=(-3)²
五、解答题(5分)19、已知5+ 的小数部分为a,5- 的小数部分为b,求 (a+b)2012的值。 六、证明题(共32分) 20、(6分)已知:如图 AE=AC, AD=AB,∠EAC=∠DAB.求证:EAD≌CAB. 21、(7分)已知:如图,在ABC中,AB=AC,∠BAC=120o,AC的垂直平分线EF交AC于点E,交BC于点F。求证:BF=2CF。22、(8分)已知:E是∠AOB的平分线上一点,ECOA ,EDOB ,垂足分别为C、D.求证:(1)∠ECD=∠EDC ;(2)OE是CD的垂直平分线。
23、(10分)(1)如图(1)点P是等腰三角形ABC底边BC上的一动点,过点P作BC的垂线,交AB于点Q,交CA的延长线于点R。请观察AR与AQ,它们相等吗?并证明你的猜想。(2)如图(2)如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB的延长线上时,(1)中所得的结论还成立吗?请你在图 (2)中完成图形,并给予证明。
一、选择题(每题3分,共30分)C C D D B A B C B C二、填空题(每题3分,共15分)11、1或3 12、±0.7 13、2 14、4cm 15、45°三、作图题(共6分)16、(1)如图点P即为满足要求的点…………………3分(2)如图点Q即为满足要求的点…………………3分 四、求下列x的值(8分) 17、解:x³= ………………………………2分 x= …………………………………2分 18、解:3x-1=±3…………………………………2分①3x-1=3x= ……………………………………1分②3x-1=-2 x= ……………………………………1分五、解答题(7分)19、依题意,得,a=5+ -8= -3……………2分b=5- -1=4- ……………2分a+b= -3+4- =1…………2分 = =1…………………1分六、证明题(共34分)20、(6分)证明:∠EAC=∠DAB ∠EAC+∠DAC=∠DAB+∠DAC 即∠EAD=∠BAC………………2分在EAD和CAB中, ……………3分EAD=CAB(SAS)…………1分
21、(7分)解:连接AF ∠BAC=120°AB=AC∠B=∠C=30°………………1分FE是AC的垂直平分线AF=CF ∠FAC=30°…………………2分∠BAF=∠BAC-∠CAF=120°-30°=90°……………………1分又∠B=30°AB=2AF…………………………2分AB=2CF…………………………1分22、(9分)证明:(1)OE平分∠AOB ECOA EDOB DE=CE………………………2分∠EDC=∠ECD………………1分(2)∠EDC=∠ECD EDC是等腰三角形∠DOE=∠CDE………………………………1分∠DEO=∠CEO………………………………1分OE是∠DEC的角平分线…………………2分即DE是CD的垂直平分线…………………2分23、(12分)解:(1)AR=AQ…………………………………………1分ABC是等腰三角形∠B=∠C……………………………………1分RPBC∠C+∠R=90°∠B=∠PQB=90°………………………………1分∠PQB=∠R……………………………………1分又∠PQB=∠AQR ∠R=∠AQR……………………………………1分AQ=AR…………………………………………1分(2)成立,依旧有AR=AQ………………………1分补充的图如图所示………………1分ABC为等腰三角形∠C=∠ABC………………1分PQPC∠C+∠R=90°∠Q+∠PBQ=90°…………1分PBQ=∠ABC∠R=∠Q…………………1分AR=AQ……………………1分
一、选择题(每题3分,共30分)1、在ABC和DEF中,AB=DE, ∠B=∠E,如果补充一个条件后不一定能使ABC≌DEF,则补充的条件是( )A、BC=EF B、∠A=∠D C、AC=DF D、∠C=∠F2、下列命题中正确个数为( )①全等三角形对应边相等;②三个角对应相等的两个三角形全等;③三边对应相等的两个三角形全等;④有两边对应相等的两个三角形全等. A.4个 B、3个 C、2个 D、1个3、已知ABC≌DEF,∠A=80°,∠E=40°,则∠F等于 ( )A、 80° B、40° C、 120° D、 60°4、已知等腰三角形其中一个内角为70°,那么这个等腰三角形的顶角度数为( ) A、70° B、70°或55° C、40°或55° D、70°或40°5、如右图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是( )A、10:05 B、20:01 C、20:10 D、10:026、等腰三角形底边上的高为腰的一半,则它的顶角为( )A、120° B、90° C、100° D、60°7、点P(1,-2)关于x轴的对称点是P1,P1关于y轴的对称点坐标是P2,则P2的坐标为( )A、(1,-2) B、(-1,2) C、(-1,-2) D、(-2,-1)8、已知 =0,求yx的值( )A、-1 B、-2 C、1 D、29、如图,DE是ABC中AC边上的垂直平分线,如果BC=8cm,AB=10cm,则EBC的周长为( )A、16 cm B、18cm C、26cm D、28cm10、如图,在ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若ABC的面积为12 ,则图中阴影部分的面积为( )A、2cm ² B、4cm² C、6cm² D、8cm²二、填空题(每题4分,共20分)11、等腰三角形的对称轴有 条.12、(-0.7)²的平方根是 .13、若 ,则x-y= .14、如图,在ABC中,∠C=90°AD平分∠BAC,BC=10cm,BD=6cm,则点D到AB的距离为__ .15、如图,ABE≌ACD,∠ADB=105°,∠B=60°则∠BAE= .三、作图题(6分)16、如图,A、B两村在一条小河的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址P应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址Q应选在哪个位置?请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹. 四、求下列x的值(8分)17、 27x³=-343 18、 (3x-1)²=(-3)²
五、解答题(5分)19、已知5+ 的小数部分为a,5- 的小数部分为b,求 (a+b)2012的值。 六、证明题(共32分) 20、(6分)已知:如图 AE=AC, AD=AB,∠EAC=∠DAB.求证:EAD≌CAB. 21、(7分)已知:如图,在ABC中,AB=AC,∠BAC=120o,AC的垂直平分线EF交AC于点E,交BC于点F。求证:BF=2CF。22、(8分)已知:E是∠AOB的平分线上一点,ECOA ,EDOB ,垂足分别为C、D.求证:(1)∠ECD=∠EDC ;(2)OE是CD的垂直平分线。
23、(10分)(1)如图(1)点P是等腰三角形ABC底边BC上的一动点,过点P作BC的垂线,交AB于点Q,交CA的延长线于点R。请观察AR与AQ,它们相等吗?并证明你的猜想。(2)如图(2)如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB的延长线上时,(1)中所得的结论还成立吗?请你在图 (2)中完成图形,并给予证明。
考试答案一、选择题(每题3分,共30分)C C D D B A B C B C二、填空题(每题3分,共15分)11、1或3 12、±0.7 13、2 14、4cm 15、45°三、作图题(共6分)16、(1)如图点P即为满足要求的点…………………3分(2)如图点Q即为满足要求的点…………………3分 四、求下列x的值(8分) 17、解:x³= ………………………………2分 x= …………………………………2分 18、解:3x-1=±3…………………………………2分①3x-1=3x= ……………………………………1分②3x-1=-2 x= ……………………………………1分五、解答题(7分)19、依题意,得,a=5+ -8= -3……………2分b=5- -1=4- ……………2分a+b= -3+4- =1…………2分 = =1…………………1分六、证明题(共34分)20、(6分)证明:∠EAC=∠DAB ∠EAC+∠DAC=∠DAB+∠DAC 即∠EAD=∠BAC………………2分在EAD和CAB中, ……………3分EAD=CAB(SAS)…………1分
21、(7分)解:连接AF ∠BAC=120°AB=AC∠B=∠C=30°………………1分FE是AC的垂直平分线AF=CF ∠FAC=30°…………………2分∠BAF=∠BAC-∠CAF=120°-30°=90°……………………1分又∠B=30°AB=2AF…………………………2分AB=2CF…………………………1分22、(9分)证明:(1)OE平分∠AOB ECOA EDOB DE=CE………………………2分∠EDC=∠ECD………………1分(2)∠EDC=∠ECD EDC是等腰三角形∠DOE=∠CDE………………………………1分∠DEO=∠CEO………………………………1分OE是∠DEC的角平分线…………………2分即DE是CD的垂直平分线…………………2分23、(12分)解:(1)AR=AQ…………………………………………1分ABC是等腰三角形∠B=∠C……………………………………1分RPBC∠C+∠R=90°∠B=∠PQB=90°………………………………1分∠PQB=∠R……………………………………1分又∠PQB=∠AQR ∠R=∠AQR……………………………………1分AQ=AR…………………………………………1分(2)成立,依旧有AR=AQ………………………1分补充的图如图所示………………1分ABC为等腰三角形∠C=∠ABC………………1分PQPC∠C+∠R=90°∠Q+∠PBQ=90°…………1分PBQ=∠ABC∠R=∠Q…………………1分AR=AQ……………………1分
一.选择题(共10小题)
1.(2015莆田)如图,AE∥DF,AE=DF,要使EAC≌FDB,需要添加下列选项中的(
)21世纪教育网版权所有
A.AB=CD
B.
EC=BF
C.
∠A=∠D
D.
AB=BC
(1题图)
(2题图)
(3题图)
2.(2015茂名)如图,OC是∠AOB的平分线,P是OC上一点,PDOA于点D,PD=6,则点P到边OB的距离为(
)21教育网
A.6
B.
5
C.
4
D.
3
3.(2015贵阳)如图,点E,F在AC上,AD=BC,DF=BE,要使ADF≌CBE,还需要添加的一个条件是(
)21-cn-jy.com
A.∠A=∠C
B.
∠D=∠B
C.
AD∥BC
D.
DF∥BE
4.(2015青岛)如图,在ABC中,∠C=90°,∠B=30°,AD是ABC的角平分线,DEAB,垂足为E,DE=1,则BC=(
)【来源:21·世纪·教育·网】
A.
B.
2
C.
3
D.
+2
(4题图)
(5题图)
(6题图)
5.(2015启东市模拟)如图,给出下列四组条件:
①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;
③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.
其中,能使ABC≌DEF的条件共有(
)
A.1组
B.
2组
C.
3组
D.
4组
6.(2015杭州模拟)用直尺和圆规作已知角的平分线的示意图如右,则说明∠CAD=∠DAB的依据是(
)21·世纪*教育网
A.SSS
B.
SAS
C.
ASA
D.
AAS
7.(2015滕州市校级模拟)如图,在下列条件中,不能证明ABD≌ACD的是(
)
A.BD=DC,AB=AC
B.
∠ADB=∠ADC,BD=DC
C.∠B=∠C,∠BAD=∠CAD
D.
∠B=∠C,BD=DC
8.(2015奉贤区二模)如图,已知AD是ABC的边BC上的高,下列能使ABD≌ACD的条件是(
)www-2-1-cnjy-com
A.∠B=45°
B.
∠BAC=90°
C.
BD=AC
D.
AB=AC
9.(2015西安模拟)如图所示,AB∥EF∥CD,∠ABC=90°,AB=DC,那么图中的全等三角形有(
)2-1-c-n-j-y
A.4对
B.
3对
C.
2对
D.
1对
(7题图)
(8题图)
(9题图)
(10题图)
10.(2015春泰山区期末)如图,ABC≌AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是(
)2·1·c·n·j·y
A.1个
B.
2个
C.
3个
D.
4个
二.填空题(共10小题)
11.(2015春沙坪坝区期末)如图,已知ABC≌ADE,若AB=7,AC=3,则BE的值为
.
21*cnjy*com
(11题图)
(12题图)
(13题图)
(14题图)
12.(2015春张家港市期末)如图,已知RtABC≌RtABCDEC,连结AD,若∠1=20°,则∠B的度数是
.【来源:21cnj*y.co*m】
13.(2015春苏州校级期末)如图,ABO≌CDO,点B在CD上,AO∥CD,∠BOD=30°,则∠A=
°.【出处:21教育名师】
14.(2015春万州区期末)如图,已知ABC≌ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE=
.【版权所有:21教育】
15.(2015黔东南州)如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件
,使ABD≌CDB.(只需写一个)21教育名师原创作品
(15题图)
(16题图)
(17题图)
(18题图)
16.(2014秋曹县期末)如图,已知ABCD,垂足为B,BC=BE,若直接应用“HL”判定ABC≌DBE,则需要添加的一个条件是
.21*cnjy*com
17.(2015盐亭县模拟)如图,已知等边ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是
度.
18.(2014秋腾冲县校级期末)如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=
度.
19.(2015聊城)如图,在ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线.若AB=6,则点D到AB的距离是
.
(19题图)
(20题图)
20.如图,在A
BC中,CD平分∠ACB交AB于点D,DEAC交于点E,DFBC于点F,且BC=4,DE=2,则BCD的面积是
.
三.解答题(共7小题)
21.如图,CDAB于点D,BEAC于点E,ABE≌ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.
(1)求∠EBG的度数.
(2)求CE的长.
22.已知:如图,在ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CEAE,垂足为E.
(1)求证:ABD≌CAE;
(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.
23.如图,ABC中,AB=AC,ADBC,CEAB,AE=CE.求证:
(1)AEF≌CEB;
(2)AF=2CD.
24.如图:在ABC中,∠C=90°
AD是∠BAC的平分线,DEAB于E,F在AC上,BD=DF;21cnjy.com
说明:(1)CF=EB.
(2)AB=AF+2EB.
25.如图,为了测量一池塘的宽AB,在岸边找到一点C,连接AC,在AC的延长线上找一点D,使得DC=AC,连接BC,在BC的延长线上找一点E,使得EC=BC,测出DE=60m,试问池塘的宽AB为多少?请说明理由.21·cn·jy·com
人教版八年级数学上册第二章单元测试题
一.选择题(共10小题)
1.A
2.A
3.B
4.C
5.C
6.A
7.D
8.D
9.B
10.C
二.填空题(共10小题)
11.4
12.70°
13.30
14.30°
15.AB=CD
16.AC=DE
17.60
18.90
19.
20.4
三.解答题(共7小题)
21.解:(1)ABE≌ACD,∠EBA=∠C=42°,∠EBG=180°﹣42°=138°;
(2)ABE≌ACD,AC=AB=9,AE=AD=6,CE=AC﹣AE=9﹣6=3.
22.证明:(1)AB=AC,∠B=∠ACD,
AE∥BC,∠EAC=∠ACD,∠B=∠EAC,
AD是BC边上的中线,ADBC,CEAE,∠ADC=∠CEA=90°
在ABD和CAE中ABD≌CAE(AAS);
(2)AB=DE,AB∥DE,如右图所示,
ADBC,AE∥BC,ADAE,
又CEAE,四边形ADCE是矩形,AC=DE,
AB=AC,AB=DE.
AB=AC,BD=DC,
四边形ADCE是矩形,AE∥CD,AE=DC,
AE∥BD,AE=BD,四边形ABDE是平行四边形,AB∥DE且AB=DE.
23.证明:(1)ADBC,CEAB,∠BCE+∠CFD=90°,∠BCE+∠B=90°,
∠CFD=∠B,
∠CFD=∠AFE,∠AFE=∠B
在AEF与CEB中,,AEF≌CEB(AAS);
(2)AB=AC,ADBC,BC=2CD,
AEF≌CEB,AF=BC,AF=2CD.
24.证明:(1)AD是∠BAC的平分线,DEAB,DCAC,DE=DC,
在RtDCF和RtDEB中,,RtCDF≌RtEBD(HL).CF=EB;
(2)AD是∠BAC的平分线,DEAB,DCAC,CD=CE.
在ADC与ADE中,ADC≌ADE(HL),AC=AE,
AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.
25.解:AB=60米.
理由如下:
在ABC和DEC中,,ABC≌DEC(SAS),
一、课时化原则
学案要分课时编写,对学习进行分课处理,使学生对每节课应当完成的学习任务和内容有明确的认识和了解,通过任务对学生形成行为驱动,促使其养成按时按量完成相应任务的学习习惯,为此要避免以一个学案涵盖几个小专题的全部内容,而应一个小专题设计为1-2课时的学案。比如《平行四边形》一节可以分为平行四边形的性质和平行四边形的判定两个小专题。
二、目标性原则
目标对任务的执行起到结果预测的作用,其能产生显著的激励和导向作用。学生学习预期达到的成果就是所谓的学习目标,这种目标能够成为学生学习的内在驱动力,因此,这就要求教师应当以学习目标为中心和重要依据开展学案的设计和编写。同时,在学生的学习过程中,教师要持续通过评价他们的学习进程和学习质量来引导学生沿着正确的方向更为深入地进行自主学习,这里就必须借助学习目标为作为评价指针的衡量标准。所以,设定学习目标时,首先要促发学生的学习动机,使他们的兴趣点凸显出来,促使学生对进一步的学习有所期待;其次还要为学生制定一个能够帮助他们进行明确而有效的自我评价的依据或者标准,使学生能够及时、正确地评价自己的自主学习和探究探索过程与结果。比如青岛版八年级数学上册第二章第五节《角的平分线的性质》的教学目标可以定为:
1.知识与能力:(1)应用三角形全等的知识,解释角平分线的原理.
(2)会用尺规作一个已知角的平分线.
(3)会证明角平分线的性质,并会在题目中应用。
2.过程与方法:通过操作,观察,探索用尺规作一个已知角的平分线,归纳得出角平分线的性质的过程.
3.情感态度价值观:在 学习过程中关注学生学习过程,让学生表达自己的看法,使学 生树立信心。
三、引导性原则
编写学案是为了引导学生进行自主的探索性学习,主张教会学生如何学习,因此学案编制应当遵循引导性原则。这样学案才能够引导学生主动积极地开展探索性学习,并从探索学习中体会乐趣、惊喜和成就感,更加能够促进学生形成缜密的思维模式和严谨的治学态度。教师在设计学案时可以以若干个小模块实现对知识的分解处理,并在每个模块中设置梯度较为合理且程度由浅入深的教学问题,同时适当地给予解答提示,一步步地引导学生尽可能自己探索出问题的答案、解题的技巧和思想。以下以青岛版八年级数学上册第二章第五节《角的平分线的性质》为例加以说明:
1.复习思考:
1)什么是线段垂直平分线?怎样画线段的垂直平分线?线段的垂直平分线有什么性质?
2)什么是角的平分线?怎样画一个角的平分线?
2. OC是∠AOB的平分线 ,点P是射线OC上的任意一点 操作测量:取点P的三个不同的位置,分别过点P作PDOA,PE OB,点D、E为垂足,测量PD、PE的长.
将三次数据填入下表 :观察测量结果,猜想线段PD与PE的大小关系,写出结论
PD PE
第一次
第二次
第三次
四、梯度性原则
教师在设计编写学案时,要尽量从学生的认识水平和理解能力出发设置相应的问题,同时这些问题还应具备一定的梯度性。立足于不同层次学生的认知规律,逐步地对学生进行引导,将本节选用的学习内容转化成深入浅出、梯度较低的学习方案。使得更多的学生能够努力一下就能触碰到学习的成果,充分享受来自成功的喜悦,进而促进学生形成更为主动的探索积极性。以下以青岛版八年级数学上册第二章第五节《角的平分线的性质》为例加以说明:
例1.计算:(1) ;
例2.计算: (1)
例3.计算:(1) ;
例4.计算: (1) ;
学生的学习往往会经历感性思维――理性思维――辨证思维的思维过程,学生在课前通常凭借直观感受开展自主学习,这是一种准备式学习,此时学生的认知水平处在“最近发展区”的前端水平,为此教师应当首先设置难度较小且能够由学生直接回答的自主探究问题和体验式练习,然后通过深入的教学和广泛的互动,学生就能形成较高且较为理性的思维水平,进而可以通过适当点拨,加大问题的难度,这时学生的认知水平是处在最近发展区的后端水平,教师可在课后布置一些自主学习活动,使学生更加明确所学知识,并形成一定的辨析能力,促进其进入到学习的后发展区,因此,教师在设计编制学案时应当适当地设置一些具有综合性和挑战性的问题,来帮助学生实现思维的跨越式发展和自主探究学习的进一步深化。
参考文献:
[1]王富英,王新民.数学学案及其设计[J].数学教育学报,2009,(2):19页.
[2]杨衣农.充分发挥学生的主体作用――实施“学案教学”的体会[J].中学数学教学参考,2001,(8):35页.
人生天地之间,若白驹过隙,忽然而已,又将迎来新的工作,新的挑战,是时候开始制定计划了。计划到底怎么拟定才合适呢?下面是小编给大家准备的小学六年级数学上册《位置与方向二》教案范文,供大家阅读。
更多关于教学工作计划的内容请点下方链接
五年级语文下册《清贫》精选教案
小学三年级下册《面积》精品教案
八年级数学教学计划范文大全
小学数学教研组工作计划
小学三年级下学期数学教学计划
小学六年级数学上册《位置与方向二》教案范文一教学目标:
(1)能绘制平面示意图,通过制作平面图的过程,使学生知道如何根据方向和距离,在图上标出物体的位置。
(2)通过绘制平面图,培养学生的动手操作能力。在活动中,培养学生合作探究的意识和能力。
(3)通过解决问题,使学生体会所学知识在生活中的应用,增强学生学好数学的兴趣和意识。
教学目的
一、复习引入
合作绘图、练习巩固
目的是通过看图回答问题,复习、巩固有关图上方向、角度、距离等知识,为下面自己绘制平面图作准备。
(1)停车场在广场的 方向,距离大约是 米。小红家在广场的 偏 方向,距离大约是 米。
(2)地铁站在广场东偏南45度方向,距离广场100米。你能在图上标出地铁站的位置吗?并说一说是怎么想的。
1、出示学校的录相或图片
问:学校中有哪些建筑?现在有一些数据,能根据这些数据将这些建筑物在平面图上标出来吗?出示数据:教学楼在校门的正北方向150米处。图书馆在校门的北偏东35度方向150米处。体育馆在校门的西偏北40度方向200米处。活动角在校门的东偏北15度方向50米处。
2、小组讨论:你们打算怎么完成任务?有什么问题要解决吗?
3、小组汇报完成平面图绘制的计划,教师进行梳理:
(1)绘制平面图的方法:
先确定平面图上的方向,再确定各建筑物的距离。如果学生没有说道,老师可以进行引导:你们打算怎样在图上表示出150米,200米和50米?从而帮助学生确定比例尺,和图上距离。
(2)小组合作完成,可以怎样分工,能在有限的时间内又好又快地完成任务。
4、小组活动,绘制平面图。
5、展示各组绘制的平面图,集体进行评议。
(1)评价绘制的正确性,如果平面图有问题,说一说问题是什么,应该怎样确定位置。
订正后交流:你们组认为在确定这点在图上的位置时,应注意什么?怎样确定?
教师小结:绘制平面图时,一般先确定角度,再确定图上的距离。
(2)比较各个平面图,为什么有的图大,有的图小?
小结:1厘米表示的大小不同,图的大小也不同。
练习:
1、完成书上习题21页3、4题并订正。
2、在纸上设计小区,并说明各个建建筑的位置。
老师提供给学生一些建筑物的图片:如医院、学校、商店、银行、邮局、药店等。
小学六年级数学上册《位置与方向二》教案范文二教学目标:
1.通过解决问题,体会确定位置在生活中的应用,了解确定位置的方法。
2.学会通过测量描述物体在平面图上的具置。
3.体会到数学知识与实际生活紧密联系,感受到生活中处处有数学。
教学重点:能根据任意方向和距离确定物体的位置。
教学难点:根据描述物体在平面图上的具置。
教具准备:直尺、量角器等。
教学过程:
一、情景导入
1.交流例题1中有关台风的消息。
⑴同学们听说过台风吗?你对台风有什么印象?
⑵教师叙述有关台风的消息:目前台风中心位于A市东偏南30°方向、距离A市600km的洋面上,正以20千米/时的速度沿直线向A市移动。
师:听到这侧消息,你有什么感想?
启发学生交流,引导学生关注台风的位置和动态。
2.导入新课
现在台风的确切位置在哪里呢?今天这节课,我们就来学习确定物置的知识。
[板书课题:位置与方向(一)]
二、探究新知
㈠教学题例1
1.小黑板出示例1的相关内容。
学生从图中提取信息?
(启发学生观察时关注以下几方面的信息:东、南、西、北四个方向在哪里;以哪里为观测点;图中台风中心的个置在哪里。)
2.交流确定台风中心具置的方法。
⑴让学生尝试说说台风中心的具置。
⑵教师结合学生的汇报情况进行引导。
提问:东偏南30°是什么意思?
(东偏南30°表示的是台风中心位置相对于A市所在的方向,也就是台风中心位置与A市的连线和正东方向的夹角是30°,即正东方向往南偏30°。)
⑶小结确定位置的方法。
提问:如果只有一个条件,能够确定台风中心的具置吗?
引导学生得出:要确定台风中心的具置必须知道两个条件,即物体所在的方向和物体在这个方向上距离观察点的距离,简单地说就是要用“方向+距离”的方法来确定物体所在的具置。
3.组织计算:
师:现在我们知道台风中心所在的具置了,那台风大约多少小时后到达A市呢? 学生独立计算,组织交流。
600÷20=30(小时)
4.练习:教科书20页做一做。
三、作业:练习五的2题。
四、课堂小结
今天这节课我们知道要确定物体的位置,关键需要方向和距离两个条件。
板书设计
位置与方向(一)
确定观测点
确定物体在观测点的什么位置
确定物体距离观测点的距离
第二课: 位置与方向(二 )
教学内容: 教材第20、21页相关内容及练习题
教学目标:
1.学会根据描述在平面图上画出物体的具置,掌握画图的方法。
2.体会到数学知识与实际生活紧密联系,感受到生活中处处有数学。
教学重难点:根据描述标出物体在平面图上的具置。
教具准备:直尺、量角器等。
教学过程:
一、复习
名师点拨第二题。
二、教学例题2
1.教师叙述例题2中一段文字,并小黑板出示题目。
提问:在例题1的图中,B市、C市的具置应该标在哪里呢?请你在例题1的图中标出B市、C市的具置。
2.尝试画图。
⑴学生独立思考怎样标出B市、C市的具置。
⑵小组交流作图的方法。
⑶尝试画图。
教师巡视交流,参与部分小组讨论,辅导有困难的学生。
3.组织全班交流。
展示学生完成的作品。
组织交流和评议,通过交流明白在图上标出B市、C市位置的方法。
B市:先确定方向,用量角器量出A市的北偏西30°(量角器中心点与A市重合,量角器0刻度线与正北方向重合,往西量出30°);再表示距离,用1cm 表示100km,B市距离A市200km,在图上也就是2cm。
C市:先确定方向,直接在图上找到A市的正北方向,再表示距离,用1cm表示100km,C市距离A市300km,在图上也就是3cm。
4.算一算。
台风到达A市后,移动速度变为40千米/时,几小时后到达B市?
200÷40=5(小时)
5.总结画图的基本步骤。
交流:你们认为在确定物体在图上的位置时,应注意什么?怎样确定?
总结:
(1)确定平面图中东、西、南、北的方向。
(2)确定观测点。
(3)根据所给的度数定出所画物体所在的方向。
(4)根据比例尺,定出所画物体与观测点之间的图上距离。
6.练习
教材第21页“做一做”。
学生独立进行画图。
三、作业
练习五7题
四、课堂小结
今天这节课我们知道在平面图上标明物置的方法是先确定方向,再以选定的单位长度为基准来确定距离,最后画出物体的具置,标出名称。
板书设计;
位置与方向(二)
确定平面图中东、西、南、北的方向。
确定观测点。
根据所给的度数定出所画物体所在的方向。
根据比例尺,定出所画物体与观测点之间的图上距离。
第三课: 位置与方向(三)
教学内容: 教材第22页相关内容及练习题
教学目标:
1、能用语方描述简单的路线图,并能根据描述画出具体的路线示意图。
2、在学习过程中培养学生的观察分析和交流合作的能力。
教学重点:能用语方描述简单的路线图,并能根据描述画出具体的路线示意图。
教学难点:能根据观测点的变化灵活描述路线。
教具准备:量角器、三角尺等。
教学过程:
一.复习导入
1.复习。
同学们,在上节课的学习过程中,我们知道了要确定一个物体的位置,需要哪几个条件?分别让学生说一说。
(确定物体相对于观测点的方向;确定物体相对于观测点的距离。)
2.导入。
今天这节课我们继续学习位置与方向的相关知识。
[板书课题:位置与方向(三)]
二、探过新知
㈠教学例题3。
1.出示台风的大致路径图。
(1)让学生在路径图上分别找一找:台风生成地、A市、B市、路径图上的方向标。(2)指名汇报。
2.提出问题。
你能用自己的语言说说台风的移动路线吗?
如果学生有困难,可以进行如下适当启发:
台风生成以后,先是沿正西方向移动 km,然后改变方向,向西偏北 方向移动
了km,到达A市。接着,台风又改变了方向,向 偏 30度方向移动了 km,到达B市。
3.组织交流。
指名汇报,其他学生进行补充。
通过交流活动让学生明白台风到达一个新的位置后,要以新的位置作为观测点来判断台风运行的方向。
4.小结描述路线的方法。
描述路线时要讲清楚“从哪里出发”“沿什么方向”“移动多少距离”“到达哪里”。
(二)出示教材第22页“做一做”。
1.提出要求。
根据下面的描述画出路线示意图
2.小组讨论画图方法。
⑴学生小组讨论怎么样画图。
教师巡视,参与个别小组讨论。
小学六年级数学上册《位置与方向二》教案范文三科
数学
年级
六年级
教学内容
位置与方向1
备课人
袁友平
教材解读
教学目标
1.通过解决问题,体会确定位置在生活中的应用,了解确定位置的方法。
2.学会通过测量描述物体在平面图上的具置,并会根据描述在平面图上画出物体的具置。
3.通过小组合作交流探讨,掌握画图的方法。
4.体会到数学知识与实际生活紧密联系,感受到生活中处处有数学。
教学重点
能根据任意方向和距离确定物体的位置。
教学难点
根据描述标出物体在平面图上的具置。
课时安排
1课时
教 学 过 程预习
导学案
预习
引导
自己理解台风的有关知识,知道在播报台风消息时,是怎样播报的?
第三课时教 学 设 计
学习小组
活动设计
学情设计
(必须手写)
学习案
激趣
利导
1.交流例题1中有关台风的消息。
⑴同学们听说过台风吗?你对台风有什么印象?
⑵播放有关台风的消息:目前台风中心位于A市东偏南30°方向、距离A市600km的洋面上,正以20千米/时的速度沿直线向A市移动。
师:听到这侧消息,你有什么感想?
启发学生交流,引导学生关注台风的位置和动态。
2.导入新课
现在台风的确切位置在哪里呢?今天这节课,我们就来学习确定物置的知识。
板书课题:位置与方向(一)
“四互”悟导
㈠教学题例1
1.投影出示例题1。
学生观察情境图,交流从图中信息?
(启发学生观察时关注以下几方面的信息:东、南、西、北四个方向在哪里;以哪里为观测点;图中台风中心的个置在哪里。)
2.交流确定台风中心具置的方法。
⑴让学生尝试说说台风中心的具置。
⑵教师结合学生的汇报情况进行引导。
提问:东偏南30°是什么意思?
(东偏南30°表示的是台风中心位置相对于A市所在的方向,也就是台风中心位置与A市的连线和正东方向的夹角是30°,即正东方向往南偏30°。)
3.小结确定位置的方法。
提问:如果只有一个条件,能够确定台风中心的具置吗?
引导学生得出:要确定台风中心的具置必须知道两个条件,即物体所在的方向和物体在这个方向上距离观察点的距离,简单地说就是要用“方向+距离”的方法来确定物体所在的具置。
4.组织计算。
师:现在我们知道台风中心所在的具置了,那台风大约多少小时后到达A市呢?
学生独立计算,组织交流。
600÷20=30(小时)
(二)教学例题2
1.投影出示例题2。
提问:在例题1的图中,B市、C市的具置应该标在哪里呢?请你在例题1的图中标出B市、C市的具置。
2.尝试画图。
⑴学生独立思考怎样标出B市、C市的具置。
⑵小组交流作图的方法。
⑶尝试画图。
教师巡视交流,参与部分小组讨论,辅导有困难的学生。
3.组织全班交流。
投影展示学生完成的作品。
组织交流和评议,通过交流明白在图上标出B市、C市位置的方法。
B市:先确定方向,用量角器量出A市的北偏西30°(量角器中心点与A市重合,量角器0刻度线与正北方向重合,往西量出30°);再表示距离,用1cm表示100km,B市距离A市200km,在图上也就是2cm。
C市:先确定方向,直接在图上找到A市的正北方向,再表示距离,用1cm表示100km,C市距离A市300km,在图上也就是3cm。
4.算一算。
台风到达A市后,移动速度变为40千米/时,几小时后到达B市?
200÷40=5(小时)
5.总结画图的基本步骤。
交流:你们认为在确定物体在图上的位置时,应注意什么?怎样确定?
总结:
(1)确定平面图中东、西、南、北的方向。
(2)确定观测点。
(3)根据所给的度数定出所画物体所在的方向。
(4)根据比例尺,定出所画物体与观测点之间的图上距离。
小结:今天这节课我们知道要确定物体的位置,关键需要方向和距离两个条件。在平面图上标明物置的方法是先确定方向,再以选定的单位长度为基准来确定距离,最后画出物体的具置,标出名称。
习得
固导
1.教材第20页“做一做”。
这道题物体所在的具体方向和距离都没有直接给出,需要学生自己测量和计算。
⑴让学生独立进行测量、计算、填空。
⑵组织交流。
让学生说说是怎样测量方向的,怎样计算距离的。
2.教材第21页“做一做”。
⑴学生独立进行画图。
⑵投影展示,组织评议。
⑶交流画图的方法。
作业案
长江作业本相应练习
板书案
板书设计;位置与方向(一)
确定观测点
确定物体在观测点的什么位置
确定物体距离观测点的距离
反思案
第二课时
学科
数学
年级
六年级
教学内容
位置与方向2
备课人
袁友平
教材解读
教学目标
1.能用语方描述简单的路线图,并能根据描述画出具体的路线示意图。
2.在学习过程中培养学生的观察分析和交流合作的能力。
3.体会到数学知识与实际生活紧密联系,感受到生活中处处有数学。
4.培养学生合作交流的能力以及学习数学的兴趣和自信心。
教学重点
能用语方描述简单的路线图,并能根据描述画出具体的路线示意图。
教学难点
能根据观测点的变化灵活描述路线。
课时安排
1课时
教 学 过 程预习
导学案
预习
引导
我们知道了要确定一个物体的位置,需要哪几个条件?
第三课时教 学 设 计
学习小组
活动设计
学情设计
(必须手写)
学习案
激趣
利导
1.复习。
同学们,在上节课的学习过程中,我们知道了要确定一个物体的位置,需要哪几个条件?
分别让学生说一说。
2.导入。
今天这节课我们继续学习位置与方向的相关知识。
板书课题:位置与方向(二)
“四互”悟导
(一)出示主题图。此次台风的大致路径如下图。你能用自己的语言说说台风的移动路线吗?1.分段描述,理解移动路径。
(1)师:从台风生成地到第一站,台风是怎么变化的?
师:沿正西方向移动,你是怎么判断出来的?
师:移动了540 km,你是怎么知道的呢?
师:从台风生成地到第一站,我们把哪个点作为参照点?
生:把台风生成地作为参照点,发现台风向正西方向移动了540 km。(PPT课件演示:台风生成以后,先是沿正西方向移动了540 km)
(2)师:到了第一站之后,台风改变方向了。(PPT课件演示:然后改变方向)。它是怎么改变方向的、移动了多少距离呢?
生:向西偏北30°方向移动了600 km,到达A市。
师:西偏北30°方向是怎么看出来的?移动600 km又是怎么知道的?
师:也就是说我们现在把哪个点作为参照点了?
师:同意他说的吗?再请个同学来说一说。(PPT课件演示:向西偏北30°方向移动了600 km,到达A市。)
师:我们刚才描述台风第一次移动时是把哪个点作为参照点的?我们发现两次移动,描述路径时,参照点是不一样的。
(3)师:到达A市后,台风又改变方向了,接下来是怎么变的呢?(PPT课件演示:接着,台风又改变方向。)
生:向北偏西30°方向移动200 km,到达B市。
师:同样他说的吗?再请同学来说一下。
师:这次把哪个点作为参照点?(PPT课件演示:向北偏西30°方向移动200 km,到达B市。)
师:最后又改变方向了,怎么移?(PPT课件演示:最后又改变方向了,向正西方向移动100 km。)
2.完整描述移动路径。
同桌两人一组,看着图,互相说一说台风的移动路径。
全班交流说一说。
(二)出示教材第22页“做一做”。
1.提出要求。
根据下面的描述画出路线示意图。
2.小组讨论画图方法。
⑴学生小组讨论怎么样画图。
教师巡视,参与个别小组讨论。
⑵组织交流汇报。
通过交流,让学生明白画图的步骤:
①定下出发时的位置。
②标出示意图的方向标。
③用量角器量出方向。
④确定比例尺,计算出图上距离,量出图上距离。
3.学生独立画路径图。
教师巡视,辅导有困难的学生。
4.展示汇报,交流评议。
交流时分别让学生说一说自己是如何画的。
教师要适时指导学生,特别是如何确定比例尺,也就是图上每一格代表实际的距离是多少。更
(三)小结:今天这节课我们就学习如何描述这样的路线图。(出示课题:描述路线图。)在描述台风移动路径时,要注意什么问题?
每移动一次,参照点都发生改变,要根据新的参照点来描述它的移动方向和距离(PPT演示)。
习得
固导
1.教材第23页“练习五”第3题。
这道题主要是通过动手操作测量,体会观测点的不同,引起方向的不同,从而懂得物置的方向是相对的。教学时可以通过以下步骤进行:
在中国地图上找出北京和哈尔滨的位置;
分别以北京和哈尔滨为观测点,画出“十”字方向标;
(3)连一连,量一量;
(4)说一说北京在哈尔滨的什么方向上,哈尔滨在北京的什么方向上;
(5)你发现了什么?(物置方向是相对的)
2.教材第26页“练习五”第9题。
(1)先根据描述,把公共汽车行驶的路线图画完整。通过这个小题,让学生巩固画路线图的方法。
(2)再根据路线图,说一说公共汽车沿原路返回时行驶的方向和路。通过这个小题,感受物置方向的相对性。
作业案
长江作业本相应练习
板书案
位置与方向㈡
描述路线:从哪里出发沿什么方向移动多少距离到达哪里
定下出发的位置。
标出示意图的方向标。
画路线图的方法: 用量角器量出方向。