时间:2023-03-06 15:59:14
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇文化学术论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
文化结构由物质文化和精神文化组成。由于一定的社会制度是一定的物质基础上产生的,要受到一定的精神文化制约,因而可将文化结构分成三个层面:“这就是物质文化,制度文化和精神文化”①。数学在建立发展过程中,受到了物质文化、制度文化、精神文化的影响及制约。
东方中国的古代文化的经济基础基本上是农业经济。这种情况决定古代中国的物质文化是农业文化。中国古代数学也与农业经济有着密切的关系。《九章算术》是中国最古老的经典著作,书有九章,包含246个问题。都和农业生产有关,九章分别是方田(土地测量)、粟米(百分法和比例)、衰分(比例分配)、少广(减少宽度)、商功(工程审议)、均输(征税)、盈不足(过剩与不足)、方程(列表计算的方法)、勾股(直角三角形)。这些问题都是用来解决农田的测量、粟米的称量,农业水利工程的测算等。《五曹算经》是一部为地方行政人员所写的应用算术,全书五卷,有田曹、兵曹、集曹、仓曹、金曹五个部分。田曹卷的主题是田地面积的量法;兵曹算术大都是军队的给养问题;集曹问题和《九章算术》粟米章问题相仿;仓曹解决粮食的征收、运输和储藏问题;金曹问题以丝绢、钱币等物资为对象,是简单的比例问题。我国古代大数学家刘徽到祖冲之、祖冲之研究圆周率和圆面积的辉煌成就中,都深深地打着农业经济的印记。农业的交通工具主要是车,车轮是否圆,不仅和车辆行驶中的平稳状况有关,而且还和省力有关,因而农业经济的需要使得我国圆周率的研究在世界数学中占有相当的地位。过去,农业的显著特点是靠天吃饭,天文、节气的测算是农业生产的需要,在中国,古代天文测算的成果是相当辉煌的,“东汉末年天文学家刘洪造乾象历法(公元206年),创立了推算定朔、定望时刻的公式”。“隋朝天文学家刘焯在他的杰作《皇极历》(公元600年)中创立了一个推算日、月、五星行度的比以前更加精密的公式”②。天文学的发展推动了数学的发展。解一次同余式就是由天文测算开始的。天文数学的发展除了物质文化的需要,还受到制度文化的要求,中国数学的重要性在于它与历法有关,“在《畴人传》中很难找到一个数学家不受诏参与或帮助他那个时代的历法革新工作。”③除了中国,古代埃及数学的建立基础也是农业的需要。埃及几何学的起源被史学家们归因于泥罗河泛滥后土地的重新测量;巴比伦的数学起源也是如此,尤其是巴比伦数学的60进位制来自于天文学;印度数学和占星术有关,而占星术又和农业及宗教有关。
东方数学的建立比西方要早,但东方的数学在理论化的道路上行动迟缓。原因何在呢?自给自足的自然经济的生产力状况决定的生产力关系是以家族为中心、以血缘关系为纽带的宗法等级关系,社会制度是宗法等级制度。自给自足的自然经济中分散的家族和农民需要有高高在上、君临一切的中央集权的君主专制制度的统治。在这种社会制度的影响和作用下,形成中国古代稳定的上下尊卑等级秩序的文化心理。主要特点是静态的、和解的、自然的、消极的心理特点。造成安于现状的生活方式、工作方式、管理方式。思想僵化、调和持中,这种文化心理使得数学只停留在实用上。没有就数学而数学,使数学自身的规律没有得到完善。“在古代东方的全部数学中甚至找不到一个我们今天称之为‘证明’的例子,代替论证的只有程序的描述,所讲授的内容只是‘如此这般地做’,而且也不是以一般规则的形式提出来,只不过是在一系列特殊情况下的应用方法。”④这段话虽有失偏颇,但也道出中国古代数学的特征。在中国数学的发展史上曾出现了刘徽、墨子、惠施等天才的数学家,但他们的数学研究和成就不能和西方的阿基米得、欧几里德相比较。这主要是我国古代数学的理论研究不受重视所致。汉王朝建立以后的“重农抑商”政策使数学研究受不到贸易的诱惑。农业经济的财富有限和填饱肚子的生活状况,不允许人们的思想向实用以外的地方延伸;隋朝开始的科举制度也扼杀了大批在数学研究上具有不凡才华的人。在科举制度中数学不是要考的课程,为“学而优则仕”而奋斗的人们,自然不会将数学当作主修课程来学习。另外,农业经济的贫困使得没有多少人来学文化,学数学的人自然更少。在这种情况下,中国古代数学的许多成就只处在应用和描述过程阶段,没有提高到抽象的、系统的理论阶段,从而使数学的发展和升华受到限制,象“勾股定理”、“圆周率”这些值得中国人骄傲的数学成就,没有造成相应的数学的轰动效应。“勾股定理”在我国商高的时代就应用比西方的毕达哥拉斯发现早600年,但由于我们没有给出严格的数学证明,这个定理在现在还认为是毕氏的成果,称为“毕氏定理”。墨子的极限理论也没有引起足够的重视,后来西方数学传入我国时才知西方极限思想和黑子的思想是一致的。“重农抑商”的文化传统的价值观具有明显的伦理性。小农经济的自给自足的环境不需进行商品交换(至少不需要太多的货币介入)。生产中占支配地位的是使用价值,人们关心的是使用价值而不是价值,以不言利为荣,“重义轻利”的思想渗透到人们的思想深处。数学的应用只局限于分配环节中。而在复杂的流通和交换领域中数学没有机会“施展才华”。多农少商没有足够的财富供人们享受,财产的有限性限制了人们的探险精神和“想入非非”,从而限制了数学向理性的发展。
在西方,小亚西亚海岸新兴的商业城市、希腊本土、西西里岛和意大利海滨,由于海上贸易和战争的刺激使得人们的思想活跃,商品贸易发达,对计算要求的提高,财富的增加使人们有更多的时间从事“非实用”的理论研究。古代东方静态的观点和西方动态的观点不一样,表现在数学上唯理论的气氛浓厚起来。人们不但要知其“然”,而且要知其“所以然”。不但要问“什么”,而且要问“为什么”,要解决“所以然”和“为什么”。古代东方的以实践和经验为根据的方法就显得“无能为力”和“后劲不足”。为了知道“所以然”和“为什么”,就得在数学的证明方法上作一定的努力,在这样的文化氛围中现代意义上的数学产生了。东方的几何学只为测量提供方法,而证明的几何学是由公元6世纪前半期米利都的泰勒斯开创的。泰勒斯不是农业经济中的“耕夫”,而是一个商人,他在经商过程中积累了足够的财富后,在后半生从事研究和旅行。他在几何学中的主要成果有“圆被任一直径二等分”,“等腰三角形的两底角相等”、“两条直线相交对顶角相等”,“两个三角形,有两个角和一条边对应相等,则全等”、“内接与半圆的角必为直角”等⑤。这些成果的意义不在于断言的本身,而是提供了一些逻辑推理(象他的第五个问题巴比伦比他早知道近1400年,但没有形成严格的证明)。使得数学被推向抽象、系统化轨道的还有毕达哥拉斯、柏拉图以及他们的继承者形成的毕氏学派和柏氏学派。由于商业的发达、财富的增长,使得人们旅行的欲望越来越高,而旅行和游动的生活方式给数学的发展提供了机遇。前面提到的泰勒斯的后半生就是在旅行和数学研究中渡过的,“他有一段时间住在埃及”⑥。毕达哥拉斯也有旅行和流动生活的经历。“他曾在埃及居住了22年,从埃及神庙的祭司那里了解了古埃及有关数学、天文方面的知识……回国后,又前往希腊的移民地阿佩宁半岛的克罗托纳城定居”⑦。从这两位数学大师的经历看,不能不说旅游这种文化活动给数学的发展提供了条件。商业贸易的发展,可诱导战争的爆发,战争不仅给侵略者掠夺来物质财富,而且也带来了许多精神财富,其中就有数学成就。公元前334年,马其顿国王亚历山大领兵进入埃及,不久挥师东进,横扫了波斯帝国的军队,到了印度河西岸,建立起庞大的亚历山大帝国和亚历山大城,这个城市的建设主要着眼于文化科学设施的建设,吸引了大量的人才,不久就成为当时世界科学文化的名城,欧几里德就是在这个环境中熏陶和成熟起来的伟大的数学家。他对数学宝库的贡献是《几何原本》。他的几何和东方几何的不同之处是,不仅从应用的角度来谈,而是就几何而几何的角度加以研究,运用逻辑推理来证明命题的真伪。而且用几何的方法来解决代数方程。他的著作中的许多公理、定理和定义除了适应当时的经验外,还具有普遍的意义。阿基米得也是当时伟大的数学家,他采用穷竭法来求圆的周长和直径的比值,其指导思想和我国刘徽的计算圆周率的思想是一致的,但不同之点是“刘徽是从圆内接正多边形着手,而阿基米得不仅从圆内接正多边形着手、还从外切正多边形这个角度进行计算”⑧。这就体现出西方数学家多方位的思维方式。另外,阿基米得在研究圆的同时,还研究了球和圆柱的问题,他在《论锥形体和球形体》中使用了近似于现代数学的方法。他的工作不仅涉及到具有很大应用价值的数学问题,而且提出了许多明确的数学概念,在这一点上要比东方数学先进。商业贸易具有一定的风险性、尤其是远航贸易。这种背景下产生了保除业。而保险的兴起又促使了概率论的产生和发展。虽然刺激概率论的是赌博,但起源是商业文化。即使是赌博也是产生于发达的商业文化城。可见,东西方传统文化不仅影响到不同的数学分支和范围,而且在同一数学问题上所体现的解决问题的方法也不同,表述的形式、研究的动机也存在差异。再来看一个事实,《周易》及先天图二分法与菜布尼兹的二进制,两者一个讲对分,一个讲进位。但都“用两个符号表示无限的事物或数学其客观存在的排列法则,决定了先天图与二进制算术的一致”⑧。二进制和先天图没有关系,这是不同时代的东西方数学家,在完全不同的社会背景下的产物,其一致性是令人吃惊的,但思想方法却完全不同。二进制是在西方传统文化中欧洲科学发展的基础上产生的,是有意识地运用十进制知识而创造的一种计数方法。二分图是《周易》众多象数体系中的一个,其中有合理的因素。但其动机不免有些封建意识的糟粕,因为它不是依靠科学的依据推出来的。
总之,东西方传统文化的不同,造成了东西方数学上的差异。东方是数学原始的发祥地,但其发展和科学化、理性化的功劳基本上归于西方。
参考文献:
①张立文等《传统文化与现代化》,中国人民大学出版社。
②钱宝琮《中国数学史》,科学出版社。
③(英)李约瑟《中国科学技术史》,科学出版社。
④⑤⑥(美)H·伊夫斯《数学史概论》,山西人民出版社。
关键词:数学文化;数学学习;文化认知
《全日制义务教育数学课程标准(实验稿)》在基本理念中充分肯定了数学的文化价值,特别是在“课程实施建议”的“教材编写建议”中指出,教材可以在适当的地方介绍有关的数学背景知识(数学家的故事、数学趣闻与数学史料)。而《普通高中数学课程标准(实验)》则进一步强调:“数学课程应适当反映数学的历史、应用和发展趋势,数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神。数学课程应帮助学生了解数学在人类文明发展中的作用,逐步形成正确的数学观。为此,高中数学课程提倡体现数学的文化价值,并在适当的内容中提出对‘数学文化’的学习要求,设立‘数学史选讲’等专题。”可见,数学文化已逐步从理念走进中小学数学课堂。如何使数学文化真正走进数学课堂,一个比较现实的做法是使之融入到数学学习之中。这不仅要重视数学学科本身的文化价值,还要探讨学生的文化认知特点,对文化、数学、学习三者之间的内在联系做深入的考察。
一、高中学生的文化认知特点
根据维果茨基的“文化发展的一般发生学原理”:儿童的文化发展所有机能出现两次或两个层面,先是社会层面,接着是心理层面。首先它作为心理间的范畴出现在人们之间,然后作为心理内的范畴进入儿童中。[1]可见,从文化的视角剖析数学学习,至少要采用社会学和心理学的观点。
(一)同喻性
一个时代文化环境的形成离不开文化的传递机制。美国人类学家玛格丽特·米德从研究人类社会文化传递的差异出发,将人类的文化变迁划分为三个部分:后喻文化、同喻文化和前喻文化,其中同喻文化是指学习主要发生在同辈人之间,其基本特点是以当代流行的行为模式作为自己的行为准则。今天的高中学生带有同喻文化的特征。
高中学生的同伴影响逐步扩大。我国绝大部分高中学生是独生子女,在家里缺乏可以沟通的兄弟姐妹。而在多数中学,一个班级通常有四五十人之多。家庭和学校之间存在着的差异使他们更倾向于在学校群体生活中表达和交流自己的思想,同龄人的观念、行为对他们产生较大的影响。
中学教师的长辈角色正在淡化。社会的迅猛发展,使教师再也无法通过施加压力来传播旧的文化观念,原来的自上而下的教育模式已失去了部分魅力,许多青年人通过自己摸索和感受萌生了前人未曾有过的想法和期望。特别是高中学生,由于知识的增长及心理的逐渐成熟,开始比较多地从个体存在与发展的角度来思考社会与人生,他们已经不可能也不必完全照搬前辈的经验去刻画自己的人生轨迹。那种后喻文化中说教式的思想教育方式,比以往更不容易为学生所接受。
作为文化的数学正以学生乐于认同的方式被传播。数学具备文化独有的特性:它是延续人类思想的一种工具,是描述世界图式的有力助手,精确的形式化、简洁的符号表征常常被成功地运用到其他科学领域。伴随着科学技术在社会生活领域的不断渗透,学生有更多的机会联系数学。在数学新课程背景下,一些密切联系学生生活的数学知识进入高中教材。网络技术的普及使学生得以快速了解大量知识。不断拓宽的信息通道,活泼平易的呈现方式,使数学有机会向学生展示它人文的一面。
(二)不均衡性
人的认知源于人与大自然、与社会和文化之间的相互作用,其发展又与个体内部的认知因素密切相关。由于学生的大量知识通过学校习得,他们的认知结构在相当程度上取决于学校所传授的知识内容及其形成过程。联系我国目前高中教育的实际情况,学生对“数学文化”的认知存在如下问题。
1.知识结构的不均衡造成学生对“数学”的文化感知产生偏差。学校的学科设置力求体现当代人类知识的主要特征,现代人类知识总体结构中,关于自然科学与技术科学的知识部门已大大超过了人文社会科学。人类6 000余种学科中,属于科技类的知识约占总数的。与之相应,我国普通高中课程虽然设置了政治、历史和地理,但在学校的地位却难以与数学、物理和化学等相比。如果高一阶段有若干可以机动安排的课时,学校更愿意留给数理化等学科。由此造成的一个突出现象是,文、理科学生人数的差距巨大,尤其是经济较为发达的地区,如浙江省的文科学生通常只占同年级人数的左右。人文知识与科学知识的不均衡,使学生文化素养不够全面,对待事物容易就事论事。有不少学生认为数学是确定的,数学问题有且只有一个答案,学校中学到的数学在现实生活中很少有价值。
2.组织结构的不均衡导致学生对“数学”的文化认同出现逆差。人们重视科技教育而忽视人文教育,“不只表现在教育规模、教育结构方面,更表现在课程与教学内容和教学方式方法方面,换句话说,科技文化统治着学校教育,科技知识、理性思维广泛而深入地影响和左右着学校教育教学过程”。[2]造成学生知识结构的组成方式不均衡。在中学界,几乎所有的教师和学生都相当重视数学,但他们对待数学的动机不同,其中不乏出于高考的压力。由此带来的负面影响是:教学中存在着重结果、重应用的现象,忽略数学知识形成和发展的过程,知识的生成是快速的,知识之间连接的链条被机械地焊接,知识的运用中充斥着大量的习题。在“现成的数学与做出来的数学”之间,很难将数学看成是人类的活动。学生数学“学”得越多,对文化的认同反而越少。
二、数学文化在高中数学学习中的表现形态
数学文化与数学学习融合的过程中,文化、数学、学习三者之间的内在关系必以某种形态表现出来,而这些表现形态又将决定我们采取相应的方式。在分析高中学生文化认知特点的基础上,笔者将从数学学习的“文化”特征、文化学习的“数学”课程以及数学文化的“学习”过程三个方面探讨数学文化在数学学习中的表现形态。
(一)群体的活动性
群体与活动是数学文化进入数学教育过程的直接表现。一旦我们以文化的理念开展数学教育,这种表现形态便应运而生。
其一,数学教育的文化观强调学生以活动的方式进行数学学习。
数学作为人们描述客观世界的一种量化模式,它当然是人类文化的一个组成部分。在承认这一“客观性”的基础上,相对于认识主体而言,数学对象终究不是物质世界中的真实存在,而是抽象思维的产物,它是一种人为约定的规则系统。可见,数学的文化观念不仅承认数学在科学技术方面的应用,还强调“人”在数学文化体系形成过程中的能动作用。美国文化学家克罗伯和克拉克洪在文化的界定中指出:“文化体系一方面可以看作是活动的产物,另一方面是进一步活动的决定因素。”这说明人的主观能动性主要表现在活动的参与中,通过活动,使知识学习与精神教化自然地结合起来。并且,数学文化的渗透性具有内在和外显两种方式,其内在方式表现在数学的理性精神对人类思维的深刻渗透力。因而,在数学教育中,教师应当尊重学生的主体地位,通过学生的主动参与,发挥数学在精神领域上的教育功效。
其二,文化意义上的数学教育提倡群体的交流与合作。
文化的概念始终与群体、传统等密切相关。在现代人类文化学的研究中,关于文化的一个较为流行的定义是:“由某种因素(居住地域、民族性、职业等)联系起来的各个群体所特有的行为、观念和态度等。”在现代社会中,数学家显然构成了一个特殊群体──数学共同体,在数学共同体内,每个数学家都必然地作为其中的一员从事自己的研究活动,从而也就必然地处在一定的数学传统之中,个人的数学创造最终必须接受社会的裁决。“只有为相应的社会共同体(即数学共同体)一致接受的数学概念才能真正成为数学的成分。”[3]文化意义上的数学正是关注到了数学与整体性文化环境的关系,数学“不应被等同于知识的简单汇集,而应主要地被看成人类的一种创造性活动,一种以‘数学共同体’为主体,并在一定环境中所从事的活动。”[4]
可见,一个富有生命力的数学知识,蕴涵着一定的“社会性”。教科书上貌似明了的叙述,其实是经过历史荡涤的精华,承载着复杂的文化背景。在学校教育的条件下,教师与学生自然构成了一个“数学学习共同体”,虽然他们未必能发明或创造出新的理论,但面对同一个数学问题,各成员有着不同的行为、观念和态度,这些差异常常在相同的时间聚集于同一个环境。鉴于高中学生文化认知的同喻性,某个学生的见解需要接受共同体的评价才能被承认,教师的教学内容同样需要经过共同体的认同才有可能真正被学生内化。因此,从文化的角度来看,学校中的数学学习实质上是一种微观的数学文化。
由于学生主要通过在教室中获得数学知识,所以,数学文化教育的中心场所应在教室。已有的国内外研究表明,教师和学生所具有的各种与数学教学直接相关的观点、信念等是影响数学教室文化的重要因素,彼此的数学交流与合作是构建教室文化的主体部分。近几年来,现代教育学正将这种相互交换想法的学习(即互惠性学习reciprocal learning)当做未来学习的模式,作为建构新的教室文化的指标。
(二)系统的开放性
群体的活动显然可以贴切地表现数学学习的“文化”特性,但这些活动始终在“数学”范畴内展开。我们有必要探究高中数学课程的特点。
从文化传承上看,高中数学课程具有组织构成的开放性,主要表现为它与社会生活及现代数学的动态联系。作为人类文化的一个子系统,数学并不是一个完全封闭的系统,外部力量对于数学发展也起着决定性作用。例如,二次世界大战就曾促进了系统分析、博弈论、运筹学和信息论等学科的研究。虽然高中数学课程有别于一般意义上的数学,出于教育的目的对数学知识进行了重新整合,但这种“教育加工”仍然要尽量地展示数学科学的原貌,以达到文化传承的目的。我们可以看到现代数学的一些分支等正逐步地进入高中教材。虽然外部力量对基础教育阶段的中学数学课程没有如此巨大的影响,但它们表明了数学的广泛应用价值,从而为高中数学课程结构的开放性给出了有力的证明。例如,教材中的有限与无限、随机与确定、结构与算法等都与现代科学技术有联系,而数列、线性规划等直接地涉及学生的社会生活。
从文化传播上看,高中数学课程具有观念整合的开放性,通过课程的活化促进文化增殖。数学课程中内容的选择、编写乃至实践,不可避免地受到各种社会、文化与观念等要素的影响,从而在传播的过程中产生文化的扩展和延伸。课程作为文化传播的一种手段,并不是简单地复制,更主要的是通过文化增殖起到一种强烈的活化作用。在中学阶段,虽然各位教师面对的是同一本教材,但教师总是要根据具体教学过程的需要进行具体的再加工,而这种加工的过程又必然会溶进每个教师特有的个性因素,渗透着教师本人的世界观,体现他的精神面貌并以此对学习者产生影响。同时,由于学生个体素质的多样性,即使是由同一位教师传递并且传递的文化实质完全相同,对每个学习者来说,文化信息的接受也存在着差异。[3]
从文化传递上看,高中数学课程具有整体效能的开放性,通过系统属性的联合作用,发挥出“整体大于部分和”的功效。在高中数学课程内部,各子系统既保持着纵向的知识序,又维系着横向的方法序。例如,从指数函数到对数函数,三角函数到反三角函数,这些知识被有序地排列着,它们之间借助反函数融为一体,利用数形结合的方法,生动地刻画出函数的性质。在其外部,高中数学课程以工具性学科的地位与其他中学“友邻”课程形成协同关系。“数学课程向‘友邻’课程提供知识和智能方面的储备工具,又从‘友邻’课程那里获得需求信息、实证材料、强化运用数学智能的场所。”[5]例如,函数与物理的势能、立体几何与化学的分子结构、排列组合与生物的基因分析、对称与语文的对偶等。
文化与课程的关系表明,高中数学课程是一个开放的文化体系。作为中学数学教师,要在教学中体现数学的文化价值,要对“数学”有正确的认识,那就是:是整体的数学,而不是分散、孤立的各个分支;是广泛应用的数学,而不仅是象牙塔里的严密体系;是与其他科学密切联系的数学,而不是纯而又纯的抽象理念。
(三)知识的默会性
对群体活动与数学课程的考察,有助于我们把握数学文化表现形态的总体脉络,但数学文化必须通过学习才能被学生领悟。由于文化由外显的和内隐的行为模式构成,作为文化的数学与作为科学的数学在学习过程中也有所不同。
科学的数学追求完全确定的知识、精确的运算与严密的推理,追求用简单且抽象的语言来描述客观世界的规律。在客观主义知识观、科学观的支配下,人们过多地强调知识的客观性、非个体性、完全的明确性等等,出现了“人的隐退”现象。
其实,知识并不是孤立的、静态的、纯形式逻辑的,而是常常与人休戚相关的。“自然科学与人文科学一样,充满着人性因素,科学实质上是一种人性化的科学。”[6]在国际哲学界以创立意会认知理论(Tacit Knowing)而闻名的英国物理化学家和哲学家波兰尼从“我们所知道的要比我们所能言传的多”出发,把人类的知识分为明言知识与默会知识。明言知识指以书面、图表和数学公式加以表述的知识,默会知识是指未被表述的、我们知道但难以言传的知识,例如,我们在做某事的行动中所拥有的知识。波兰尼认为:“在非言传的‘意会’认知层面,科学与人文是相通的。”[7]
既然这种默会知识藏于内心,无法用明确的规则来表达,那么该怎样学习传授呢?波兰尼指出:“通过了解同样活动的全过程,我们才能了解另一个人的内心东西。”基于高中学生的文化认知特点和数学学习的实际情况,我们可以通过以下方式突出数学知识中的“人性”。
1.客观对象“数学化”。弗赖登塔尔曾言:“我们的教育应当为青年人创造机会,让他们通过自己的活动来获得文化遗产。”对学生而言,“学一个活动的最好方法是做。”[8]通过“做”数学,“学生和学生之间的相互作用真实地反映了在数学课堂中形成的文化:具体的教师、具体的学生以及正在形成的具体的‘数学化’。”
2.数学解题“拟人化”。从文化的角度审视数学解题过程,它是策略创造与逻辑材料、技巧性与程式化的有机结合,是一个有序结构的统一体,它与数学的特征相一致,隐含着数学家的思维方式,从而使解题超越了数学思维活动本身的范围,进一步延伸到文化道德、思想修养的素质范畴。G·波利亚的《怎样解题》中包含了程序化的解题系统、启发式的过程分析、开放型的念头诱发及探索性的问题转换等,字里行间不时地涌现出诸如“如果你有一个念头,你是够幸运的了”“好的题目和某种蘑菇有点相似,它们都成串生长”“呆头呆脑地干等着某个念头的降临”这些平和的话语,使读者不知不觉间置身其中,一些解题外的感受也油然而生。优秀学生对解题感兴趣,更多时候像在做游戏,说明数学习题中蕴涵着很多人性化的品质──题中寻趣,在于换个角度看问题。
参考文献
[1]莱斯利·P·斯特弗,杰里·盖尔.教育中的建构主义[M].上海:华东师范大学出版社,2002.120.
[2]刘振天,杨雅文.当代知识发展的不平衡与教育的战略选择[J].现代大学教育,2001,(4):15.
[3]孙小礼,邓东皋.数学与文化[M].北京:北京大学出版社,1990.149.
[4]郑毓信,王宪昌,蔡仲.数学文化学[M].成都:四川教育出版社,2001.5.
[5]张永春.数学课程论[M].南宁:广西教育出版社,1996.184.
[6]钱振华.默会理论的SSK意蕴[J].自然辩证法研究,2003,(9):32.
可以肯定地说,数学是一种为人们所承认的文化现象。数学文化的传播载体首推数学文化史料。研析数学文化史料,就可以直接获取数学知识的基本概念,直观认识获取数学的思维、理论和研究方法。一个典型的实例就是大学数学教学中开始涉及的“极限”概念,对于这个大学生首遇的抽象概念,教师们通用的施教方法一般始于数学文化史料的介绍,在渐进的过程中定义出“极限”概念。大学的数学教育实践要领,首先应该推崇和学习数学逻辑原理的产生缘由,还原基本数学原理的历史背景,以此为背景,在潜移默化中激发大学生对数学学习爱好,增强大学生学习数学的原发力量,启迪大学生数学思维和创新智慧。诚然,数学自然是一门兼具抽象与具体、逻辑与计算、演绎与推导、想象与实现的学科,数学发展的历史渊源曾经极具挑战性。而现代大学的数学教育教学内容一般都涉及到微积分、线性代数、概率论与数理统计等基础数学学科,其特点之一是数学知识体系传承涵盖面较为广泛,其特点之二是传统数学课程实质性内容基本保持恒定。这对于研究能力正在成长中的大学生来讲,如果采取抽象经典数学理论引入为主的“速食数学”教学方法,可能会导致大学生初入高校后,产生对数学的困惑和厌学心理。而重视数学教学的文化理解,对数学概念、方法等的历史演进,以此为基础的数学定理和公式的推理教学,才能教授给大学生数学的系统化、完备化的知识结构体系,引导其逐渐倾向于关注抽象经典的理论结果,建立起演绎严密、推导细致的数学课程自我学习的思维范式,完成抽象理解的升华。如此明理于数学危机及其成长过程,理性看待数学分支的由来与曲折,从而智炼出深厚的数学底蕴、精髓思想、理性思维等学生个体成长科学思维方式。我国数学家王浩也认为:数学的本质是它的抽象性、精确性、确定性、广泛的应用性以及丰富的文化美。因此,可以将大学数学教学设计为以直观、形象地掌握基本数学概念为起点,通过增强大学生数学学习的积极性,提高大学生数学学习效率。按照这样的数学教学变革,彰显出强大的大学数学教学文化教育意义。
二、数学文化融入大学数学教学的必要性
数学文化具有普遍的区域性和人文性双重特征。自从20世纪70年代末我国恢复高考制度以来,全国逐渐形成了教材、教学形式基本统一的数学教学格局,造就了数学教学的繁荣。但如果审视数学教学的文化属性,就会发现我国幅员辽阔的国土上,教育发展不均衡,加之国内各民族聚居区域有别、人口不一造成了全国各地人文文化的巨大差异。以数学文化的视角,显而易见,上述的两个统一是不满足协调关系的,基于此,数学教学组织的顶层设计是不合理的,故需倡导大学数学教学的层次性,满足数学教学的基本文化属性。通过数学教学的文化属性组织教学,通过区域性融入民族文化的教学,通过协调区域差异和文化差异的多模式存在,实现匹配的针对性数学文化教学实践。同时,也要注意数学文化作为文化范畴需要匹配东部地区、西部地区以及发达地区和欠发达地区的社会文化背景,不能盲目追求数学文化的文化属性,必须要将数学文化作为教学实践工具应用形式紧密结合抽象理性思维模式,必须清楚地认识到数学文化思想具有广泛的应用实践性和纯粹理论的抽象逻辑性的双重特征。
三、数学文化融入大学数学教学的策略
皮影是一种极为古老的民间表演艺术。皮影戏小小的幕布,可以取得以近追远、以小见大、生动有趣的艺术效果。罗山皮影又叫“丝弦皮影”,相传始于明代,有着悠久的历史,皮影剧多取材于历史人物、神话传说等,没有固定的剧本,只通过师傅口头传授技艺。罗山皮影的影人以水牛皮为材料,经艺人镂刻而成,再以布帛作为背景,一般表演时由三个人同时操作影人,由唢呐配乐或是演奏成员用豫南方言演唱,通俗易懂。信阳固始柳编全国闻名。固始县拥有“中国柳编之乡”的称号,固始柳编有着色泽洁白、造型新颖、款式大方、纺织精巧、风格独特、自成一统的特点。随着市场的需要,固始柳编由原来单一的柳编创新发展出草柳混编、蒲柳混编和藤柳混编等多种材料混合编制的新产品,主要有果篮、礼品篮、购物篮、门帘、屏风等多种产品,既经济实用又绿色健康,是集工艺、装潢、实用性为一体的生活用品。同时,由于编织工艺精细,有的柳编制品可以当做工艺品和室内软装饰品。信阳的根雕艺术是一种独特的中国民间工艺美术形式。信阳地处大别山腹地,根材资源丰富,种类繁多,是从事根雕艺术创作的好地方。现在常用的根雕树种有檀木、女贞、杜鹃等十多种。信阳根艺具有浓厚的泥土气息,令人爱不释手,在色、形、质、味、韵等方面都保留了根料的自然天趣,给人以高层次的艺术享受。
二、信阳历史文化遗产在美术教学中的开发利用
21世纪初,我国开始关注教学资源的开发与利用问题,并在新的美术课程标准中专门设置“综合·探索”学习领域,使美术教学不再局限于美术学科本身,而进一步拓展至自然、文化、社会等范畴。因此,教师要敢于开发利用当地的美术教学资源,以拓展美术教学内容。
1.改变教学观念
部分教师仍以课本和课堂为中心,只注重学生美术技能的培训,只看重学生的考试分数,不注重学生创造力的培养。这样的结果只会导致课堂气氛不活跃,学生的学习兴趣低,教学效果差。还有的教师对当地的历史文化和民间艺术理解不够,误以为“乡土”就是过时的代表。殊不知随着社会的进步,大到世界各民族,小到各村寨部落,都因有自己独特的文化和历史而骄傲,越是本土的越受到追捧。因此,教师必须转变观念,不能把教学局限于书本和课堂,而要提高自身的文化素养,积极搞科研,要认识到美术教科书不是唯一的课程资源,要掌握和了解本地的历史文化和民间美术等资源,并善于研究,理解这些历史文化资源的内涵和意义,并将其与美术教学相结合进行研究,根据学生的特点有针对性地对这些资源进行整理、筛选、分类和整合。
2.改变教学方法
学校是文化传承和发展的载体,学校教育受文化的影响具有时代性,没有学校教育文化就缺失了最重要的传承方式,导致很多文化可能会失传。文化是学校教育的基础,没有文化,学校教育的内容就会显得空洞乏味,因为学校教育是以传播科学文化知识为主,并将其运用到生产生活中。由此看出,文化与教育的关系是密切相连的,武术文化与学校教育的关系显得更为错综复杂。
2武术文化在学校教育中的价值
武术文化在学校教育中的价值主要从武术文化对学生的道德修养、意志品质和民族精神这三个方面体现出来。
2.1对学生道德修养的培养
中华民族传统文化博大精深,儒家作为中国传统文化的代表,对武术文化的传承和发展起到很大的促进作用。武术文化作为传统文化的一部分,受儒家学说的影响,把个人的道德修养放在很高的地位。我国以“礼仪之邦”著称于世,在几千年的发展过程中,中华民族以厚德载物、自强不息、尊师重道、谦虚礼让、勤劳节俭、重义轻利、重信守诺、积极进取等美德为历代习武之人遵守和传承。为此,在学校教育中,教师在传授武术技术的同时,重视用传统武德教育学生,提高学生的个人修养,对学生进行爱国主义教育,提高学生的民族自尊心和自信心,有利于学生自信、自立、自强品德的形成。
2.2对学生意志品质的培养
日趋激烈的竞争,带来了巨大的压力,由于学校教育自身存在的不足,不能及时的教会学生如何调节压力直面竞争。我国的家庭中,独生子女越来越多,从小娇生惯养,导致他们受挫能力差,心理素质差,面对竞争和压力容易逃避。在学校教育的过程中,通过对武术套路的学习不仅能增强学生的体质,发展学生的协调性、灵敏性和柔韧性,而且在学习武术的过程中能磨练学生的意志,使学生学会吃苦耐劳,不惧辛苦。教师在教授学生武术文化的过程中,应多给学生讲解古代侠义人士在面对苦难时所受的屈辱和痛苦,让学生明白面对逆境要学会百折不饶,面对竞争和压力时要保持良好的心态,从这些历史人物身上学会如何做人如何解决困难,通过对武术和武术文化的学习,有利于提升学生的意志品质,学会助人为乐,尊重对手,严于律己、宽以待人,形成良好的意志品质。
2.3对学生民族精神的培养
同志在党的十六大报告中指出:“民族精神是一个民族赖以生存和发展的精神支柱,一个民族没有振奋的精神和高尚的品格,不可能自立于世界民族之林。在几千年的历史发展过程中,中华民族形成了以爱国主义为核心的团结统一,爱好和平,勤劳勇敢,自强不息的伟大民族精神。”一个民族的民族精神“重在弘扬、重在培育”,但在弘扬和培育民族精神的过程中尤其要处理好继承和创新的关系。继承是前提,创新才是根本,是弘扬和培育民族精神的永恒动力。中华民族精神是与时俱进的精神,是历史性和时代性的统一,继承与创新的统一。它始终是发展的、前进的。中华民族精神内涵丰富多彩,在这种民族精神的指引下出现了一批具有先进思想并顽强奋斗的杰出人物,他们高扬时代精神为实现伟大的中国梦而不断探索。武术文化继承了中华民族传统文化的精髓,凝聚了以爱国主义为核心的中华民族精神。在学校教育过程中,向学生讲述民族精神中的历史人物和典故,对学生进行民族精神教育,提高学生的素养,有利于传承民族文化和民族精神。
3学校教育传承武术文化的构想
3.1建立健全武术文化教学体系,转变教学思路和教学理念
任何一种文化的传承和发展都离不开教育,武术文化的传承和发展同样如此。武术文化真正要传承发扬光大,必须把武术和武术文化纳入到正规的教育体系中。当今武术文化发展暂时处于落后状态,究其原因主要是因为学校教学思路和教育理念的落后。我们必须以积极的心态面对现实,要不断的更新自己的教育观念、知识体系以进行及时补充和更新,并对原有知识进行整合,还需要调整自己原有的教学思路和方法,使自己的教学节奏和教学模式适应新的教育形式。不能再用单一、枯燥的教学模式让学生机械的学习套路,而忽略武术的技击性。在课堂中,教师应多讲武术的技击原理,攻防方法,使学生在学习武术的过程中不仅身体素质得到锻炼,还能传承武术文化。
3.2营造良好的校园文化氛围
利用学校广播、黑板报、橱窗、文化广场、食堂等公共场合作为媒介,对武术文化进行广泛的宣传,有利于在全校范围内形成良好的校园武术文化氛围,有利于武术文化在校园的传播。通过多媒体让学生观看武侠电影,用广播宣传武术赛事介绍武术文化的历史,用艺术节进行武术套路表演和宣传,开展与武术有关的知识问答。学校运动会、课余体育活动、体育文化节、体育训练队、班级体育活动和各种体育竞赛等这些活动的开展,都可以让学生在校园中充分了解武术和武术文化。其中,武术协会作为武术爱好者互相学习和交流的地方,在营造良好的校园武术文化氛围上发挥了很大的作用。武术协会定期进行武术训练和武术表演,可以普及武术文化知识,传授武术技术,使武术在学生尤其是对武术有兴趣的学生群体中得以不断传播和发展。学校组织学生参加全国性质的武术比赛,不仅可以得到学习和提高,而且能加强武术运动在学校体育中的地位,促进武术在学校教育中的发展。
3.3加强师资队伍建设,改革教学内容
马克思曾明确指出:“一门科学只有当它达到了能够成功地运用数学时,才算真正发展了。”这是对数学作用的深刻理解,也是对科学化趋势的深刻预见。事实上,数学的应用越来越广泛,连一些过去认为与数学无缘的学科,如考古学、语言学、心理学等现在也都成为数学能够大显身手的领域。数学方法也在深刻地影响着历史学研究,能帮助历史学家做出更可靠、更令人信服的结论。这些情况使人们认为,人类智力活动中未受到数学的影响而大为改观的领域已寥寥无几了。
二、数学:科学的语言有不少自然科学家、特别是理论物理学家都曾明确地强调了数学的语言功能。例如,著名物理学家玻尔(N.H.D.Bohr)就曾指出:“数学不应该被看成是以经验的积累为基础的一种特殊的知识分支,而应该被看成是普通语言的一种精确化,这种精确化给普通语言补充了适当的工具来表示一些关系,对这些关系来说普通字句是不精确的或过于纠缠的。严格说来,量子力学和量子电动力学的数学形式系统,只不过给推导关于观测的预期结果提供了计算法则。”(注:《原子物理学和人类知识论文续编》,商务印书馆1978年版。)狄拉克(P.A.M.Dirac)也曾写道:“数学是特别适合于处理任何种类的抽象概念的工具,在这个领域内,它的力量是没有限制的。正因为这个缘故,关于新物理学的书如果不是纯粹描述实验工作的,就必须基本上是数学性的。”(注:狄拉克《量子力学原理》,科学出版社1979年版。)另外,爱因斯坦(A.Einstein)则更通过与艺术语言的比较专门论述了数学的语言性质,他写道:“人们总想以最适当的方式来画出一幅简化的和易领悟的世界图像;于是他就试图用他的这种世界体系来代替经验的世界,并来征服它。这就是画家、诗人、思辨哲学家和自然科学家所做的,他们都按照自己的方式去做。……理论物理学家的世界图象在所有这些可能的图象中占有什么地位呢?它在描述各种关系时要求尽可能达到最高标准的严格精确性,这样的标准只有用数学语言才能做到。”(注:《爱因斯坦文集》第1卷,商务印书馆1976年版。)
一般地说,就像对客观世界量的规律性的认识一样,人们对于其他各种自然规律的认识也并非是一种直接的、简单的反映,而是包括了一个在思想中“重新构造”相应研究对象的过程,以及由内在的思维构造向外部的“独立存在”的转化(在爱因斯坦看来,“构造性”和“思辨性”正是科学思想的本质的思想);就现代的理论研究而言,这种相对独立的“研究对象”的构造则又往往是借助于数学语言得以完成的(数学与一般自然科学的认识活动的区别之一就在于:数学对象是一种“逻辑结构”,一般的“科学对象”则可以说是一种“数学建构”),显然,这也就更为清楚地表明了数学的语言性质。
数学作为一种科学语言,还表现在它能以其特有的语言(概念、公式、法则、定理、方程、模型、理论等)对科学真理进行精确和简洁的表述。如著名物理学家、数学家麦克斯韦(J.C.Maxwell)的麦克斯韦方程组,预见了电磁波的存在,推断出电磁波速度等于光速,并断言光就是一种电磁波。这样,麦克斯韦创立了系统的电磁理论,把光、电、磁统一起来,实现了物理学上重大的理论结合和飞跃。还有黎曼(Riemann)几何和不变量理论为爱因斯坦发现相对论提供了绝妙的描述工具。而边界值数学理论使本世纪二三十年代的远距离原子示波器的制成变为现实。矩阵理论为本世纪20年代海森堡(W.K.Heisenberg)和狄拉克引起的物理学革命奠定了基础。
随着社会的数学化程度日益提高,数学语言已成为人类社会中交流和贮存信息的重要手段。如果说,从前在人们的社会生活中,在商业交往中,运用初等数学就够了,而高等数学一般被认为是科学研究人员所使用的一种高深的科学语言,那么在今天的社会生活中,只懂得初等数学就会感到远远不够用了。事实上,高等数学(如微积分、线性代数)的一些概念、语言正在越来越多地渗透到现代社会生活各个方面的各种信息系统中,而现代数学的一些新的概念(如算子、泛函、拓扑、张量、流形等)则开始大量涌现在科学技术文献中,日渐发展成为现代的科学语言。
三、数学:思维的工具数学是任何人分析问题和解决问题的思想工具。这是因为:首先,数学具有运用抽象思维去把握实在的能力。数学概念是以极度抽象的形式出现的。在现代数学中,集合、结构等概念,作为数学的研究对象,它们本身确是一种思想的创造物。与此同时,数学的研究方法也是抽象的,这就是说数学命题的真理性不能建立在经验之上,而必须依赖于演绎证明。数学家像是生活在一个抽象的数学王国中,然而他们在数学王国的种种发现,即数学结构内部和各种结构之间的规律性的东西,最终还是现实的摹写。而数学应用于实际问题的研究,其关键还在于能建立一个较好的数学模型。建立数学模型的过程,是一个科学抽象的过程,即善于把问题中的次要因素、次要关系、次要过程先撇在一边,抽出主要因素、主要关系、主要过程,经过一个合理的简化步骤,找出所要研究的问题与某种数学结构的对应关系,使这个实际问题转化为数学问题。在一个较好的数学模型上展开数学的推导和计算,以形成对问题的认识、判断和预测。这就是运用抽象思维去把握现实的力量所在。
其次,数学赋予科学知识以逻辑的严密性和结论的可靠性,是使认识从感性阶段发展到理性阶段,并使理性认识进一步深化的重要手段。在数学中,每一个公式、定理都要严格地从逻辑上加以证明以后才能够确立。数学的推理步骤严格地遵守形式逻辑法则,以保证从前提到结论的推导过程中,每一个步骤都在逻辑上准确无误。所以运用数学方法从已知的关系推求未知的关系时,所得结论有逻辑上的确定性和可靠性。数学的逻辑严密性还表现在它的公理化方法上。以理性认识的初级水平发展到更高级的水平,表现在一个理论系统还需要发展到抽象程度更高的公理化系统,通过数学公理化方法,找出最基本的概念、命题,作为逻辑的出发点,运用演绎理论论证各种派生的命题。牛顿所建立的力学系统则可看成自然科学中成功应用公理化方法的典型例子。
第三,数学也是辩证的辅助工具和表现方式。这是恩格斯(F.Engels)对数学的认识功能的一个重要论断。在数学中充满着辩证法,而且有自己特殊的表现方式,即用特殊的符号语言,简明的数学公式,明确地表达出各种辩证的关系和转化。如牛顿
(I.Newton)—莱布尼兹(G.W.Leibniz)公式描述了微分和积分两种运算之间的联系和相互转化,概率论和数理统计表现了事物的必然性与偶然性的内在关系等等(注:孙小礼《数学:人类文化的重要力量》,《北京大学学报》(哲学社会科学版),1993年第1期。)。最后,值得指出的是,数学还是思维的体操。这种思维操练,确实能够增强思维本领,提高科学抽象能力、逻辑推理能力和辩证思维能力。
四、数学:一种思想方法数学是研究量的科学。它研究客观对象量的变化、关系等,并在提炼量的规律性的基础上形成各种有关量的推导和演算的方法。数学的思想方法体现着它作为一般方法论的特征和性质,是物质世界质与量的统一、内容与形式的统一的最有效的表现方式。这些表现方式主要有:提供数量分析和计算工具;提供推理工具;建立数学模型。
任何一种数学方法的具体运用,首先必须将研究对象数量化,进行数量分析、测量和计算。同志曾指出:“对情况和问题一定要注意到它们的数量方面,要有基本的数量的分析。任何质量都表现为一定的数量,没有数量也就没有质量。”(注:《选集》第4卷第1443页,人民出版社1990年版。)例如太阳系第行星——海王星的发现,就是由亚当斯(J.C.Adams)和勒维烈(U.J.Leverrier)运用万有引力定律,通过复杂的数量分析和计算,在尚未观察到海王星的情况下推理并预见其存在的。
数学作为推理工具的作用是巨大的。特别是对由于技术条件限制暂时难以观测的感性经验以外的客观世界,推理更有其独到的功效,例如正电子的预言,就是由英国理论物理学家狄拉克根据逻辑推理而得出的。后来由宇宙射线观测实验证实了这一论断。
值得指出的是,数学模型方法作为对某种事物或现象中所包含的数量关系和空间形式所进行的数学概括、描述和抽象的基本方法,已经成为应用数学最本质的思想方法之一。模型这一概念在数学上已变得如此重要,以致于许多数学家都把数学看成是“关于模型的科学”。怀特海(A.N.Whitehead)认为:“模式具有重要性的看法和文明一样古老……社会组织的结合力也依赖于行为模式的保持;文明的进步也侥幸地依赖于这些行为模式的变更。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)并进一步指出:“数学对于理解模式和分析模式之间的关系,是最强有力的技术。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)物理学家博尔茨曼(L.E.Boltzmann)认为:“模型,无论是物理的还是数学的,无论是几何的还是统计的,已经成为科学以思维能力理解客体和用语言描述客体的工具。”这一观点目前不仅流行于自然科学界,还遍布于社会科学界。为自然界和人类社会的各种现象或事物建立模型,是把握并预测自然界与人类社会变化与发展规律的必然趋势。在欧洲,在人文科学和社会科学中称为结构主义的运动,雄辩地论证了所有各种范围的人类行为与意识都有形式的数学结构为基础。在美国,社会科学自夸有更坚实、定量的东西,这通常也是用数学模型来表示的。从模型的观点看,数学已经突破了量的确定性这一较狭义的范畴而获得了更广泛的意义。既然数学的研究对象已经不再局限于“量”而扩展为更广义的“模型”,那么,数学概念的本质也在发生嬗变。数学正成为一个动态的、变化的、泛化了的概念体系,其涵盖的科学对象也必然随之增加。数学在社会科学中的模型建构大都以结构分析为目标,即在高度简化与理想化的框架中去理解社会行为机制。在某些框架下,利用科学去预测与控制一个社会系统的一切变量的更高层次的目标已经实现。
数学的模型方法把数学的思想方法功能转化成科学研究的实际力量。数学中有一个分支叫应用数学,主要就是研究如何从实际问题中提炼数学模型。这是一个对研究对象进行具体分析、科学抽象和做出判断与预见的过程。如对客观事物的必然现象,人们用确定性模型去描述,而对或然现象,人们建立了随机性模型。模糊数学被用于刻画弗晰现象。而各种突变现象,如地震、洪灾等,则可以由突变理论给出数学模型。
五、数学:理性的艺术通常人们认为,艺术与数学是人类所创造的风格与本质都迥然不同的两类文化产品。两者一个处于高度理性化的巅峰,另一个居于情感世界的中心;一个是科学(自然科学)的典范,另一个是美学构筑的杰作。然而,在种种表面无关甚至完全不同的现象背后,隐匿着艺术与数学极其丰富的普遍意义。
数学与艺术确实有许多相通和共同之处,例如数学和艺术,特别是音乐中的五线谱,绘画中的线条结构等,都是用抽象的符号语言来表达内容。难怪有人说,数学是理性的音乐,音乐是感性的数学。事实上,由于数学(特别是现代数学)的研究对象在很大程度上可以被看成“思维的自由想象和创造”,因此,美学的因素在数学的研究中占有特别重要的地位,以致在一定程度上数学可被看成一种艺术。对此,我们还可做出如下进一步的分析。
艺术与数学都是描绘世界图式的有力工具。艺术与数学作为人类文明发展的产物,是人类认识世界的一种有力手段。在艺术创造与数学创造中凝聚着人类美好的理想和实现这种理想的孜孜追求。尽管艺术家与数学家使用着不同的工具,有着不同的方式,但他们工作的基本的目的都是为了描绘一幅尽可能简化的“世界图式”。艺术实践与数学活动的动机、过程、方法与结果,都是在其自身价值的弘扬中,不断地实现着对世界图式的有力刻画。这种价值就是在充分、完全地理解现实世界的基础上,审美地掌握世界。
艺术与数学都是通用的理想化的世界语言。艺术与数学在描绘世界图式的过程中,还同时发展并完善着自身的表现形式,这种表现形式最基本的载体便是艺术与数学各自独特的语言体系。其共同特征有:(1)跨文化性。艺术与数学所表达的是一种带有普遍意义的人类共同的心声,因而它们可以超越时间和地域界限,实现不同文化群体之间的广泛传播和交流。(2)整体性。艺术语言的整体性来自于其艺术表现的普遍性和广泛性;数学语言的整体性来自于数学统一的符号体系、各个分支之间的有力联系、共同的逻辑规则和约定俗成的阐述方式。(3)简约性。它首先表现为很高的抽象程度,其次是凝冻与浓缩。(4)象征性。艺术与数学语言各自的象征性可以诱发某种强烈的情感体验,唤起某种美的感受,而意义则在于把注意力引向思维,升迁为理念,成为表现人类内心意图的方式。(5)形式化。在艺术与数学各自进行的代码与信息的意义交换中,其共同的特征就是达到了实体与形式的分隔。这样提炼出来的形式可以进行形式化处理。
艺术与数学具有普适的精神价值。有人把精神价值划分为知识价值、道德价值和审美价值三种。艺术与数学同时具备这三种价值,这一事实赋予了艺术与数学精神价值以普适性。概括起来,其共同的特点有:(1)自律性。数学价值的自律性是与数学价值的客观性相联系的;艺术的价值也是不能由民主选举和个人好恶来衡量的。艺术与数学的价值基本上是在自身框架内被鉴别、鉴赏和评价的。(2)超越性。它们可以超越时空,显示出永恒。在艺术与数学的价值超越过程中,现实被扩张、被延伸。人被重新塑造,赋予理想。艺术与数学的超越性还表现为超前的价值。(3)非功利性。艺术与数学的非功利性是其价值判断有别于其他种类文化与科学的显著特征之一。(4)多样化、物化与泛化。在现代技术与商业化的冲击下,艺术与数学的价值也开始发生嬗变,出现了各自价值在许多领域内的散射、渗透、应用、交叉等现象。
在人类思维的全谱系中,艺术思维和数学思维的主要特征决定了其主导思维各居于谱系的两端。但两种思维又有很多交叉、重叠和复合。特别是真正的艺术品和数学创造,一般都不是某种单一思维形式的产物,而是多种思维形式综合作用的结果。人类思维之翼在艺术思维与数学思维形成的巨大张力之间展开了无穷的翱翔,并在人类思维的自然延拓和形式构造中被编织得浑然一体,呈现出整体多样性的统一。人类思维谱系不是线性的,而是主体的、网络式的、多层多维的复合体。当我们想要探索人类思维的奥秘时,艺术思维与数学思维能够提供最典型的范本。其中能够找到包括人类原始思维直至人工智能这样高级思维在内的全部思维素材(注:黄秦安《论艺术与数学的普遍意义及基本关系》,《陕西师大学报》(哲学社会科学版),1994年第
2期。)。
六、数学:充满理性精神数学犹如一棵正在成长着的大树,它是不断发展和丰富着的理论知识体系。数学充满着理性精神,它不断为人们提供新概念、新方法。有的数学家说:“数学在人类历史中的地位绝不亚于语言、艺术和宗教,今天数学正对科学和社会产生着翻天覆地的影响。”(注:〔美〕L.A.斯蒂恩主编《今日数学》第26页,上海科技出版社1982年版。)
数学对于人类理性精神发展有着特殊的意义,这也清楚地说明数学作为整个人类文化的一个有机组成成分的重要性。正如克莱因(M.Kline)指出的:“在最广泛的意义上说,数学是一种精神,一种理性的精神。正是这种精神,试图决定性地影响人类的物质、道德和社会生产;试图回答有关人类自身存在提出的问题;努力去理解和控制自然;尽力去探求和确立已经获得知识的最深刻的和最完美的内涵。”(注:M.Kline.MathematicsinWesternCulture.PenguinBooks,1953.Preface,121~132.)
1.1道德素质逐步下滑
当代大学道德素质状况主流是好的,但也存在很多负面的问题,并有逐步蔓延的趋势,比较突出的问题有以下几个方面。社会公德意识薄弱,传统美德观念淡漠,全球一体化进程的加快和市场经济的快速发展,打破了原有的道德观念体系,大学生群体在多元化的观念影响下迷失了方向,主要表现为社会公德意识淡薄,道德修养仍需提高,缺乏良好的道德理想追求,缺少社会责任感。个人主义、拜金主义倾向严重,在拜金主义、享乐主义的腐蚀下,部分大学生只注重个人发展和个人利益,忽略了个人发展和祖国利益、社会发展相结合,同时表现出强烈的拜金主义,为了谋取个人的利益,不惜丢弃社会责任,甚至践踏法律。大学生信仰迷失也是大学生道德素质下滑的突出表现。大学生诚信意识也在不断弱化,大学生群体中的考试作弊、就业毁约等现象也在某种程度上反映了当代大学生道德素质的下滑。
1.2心理承受能力和自我调节能力较差
据统计当代大学生有心理问题的人数正在逐年增加,心理问题干预也正在被高校重视,究其原因便是大学生心理承受能力和自我调节能力差的原因。“郁闷”、“失落”等词汇经常会出现在大学生口头,面对学习、情感、就业等问题,由于缺乏良好的心理承受能力和自我调节能力,又不能很好地借助外界的帮助,一些大学生陷进了困惑的泥潭,寻短见、暴力解决问题、自暴自弃等事件各个高校都已不再新鲜。大学生心理问题已经成为阻碍大学生成功成才的主要问题。
1.3社会适应能力有待提高
大学生社会适应能力简单的讲是指大学生在走到工作岗位上之后在心理、生活、工作环境以及人际关系等方面,能较快地认识、了解和熟悉外部环境,并使主体与客体协调一致的能力素质。众所周知,大学生就业难的状况正在逐年加剧,除了高等教育普及、社会经济形势变化等外部因素外,大学生自身的社会适应能力也是就业难的一个主要因素。大学生的适应能力、应变能力、创新能力等较之社会的需求都存在着不同程度的差距,如何提高大学生社会适应能力是其能否成功成才的重要因素。
1.4尊师重道的意识淡薄
中国历来被颂以礼仪之邦,尊师重道是中国人推崇的美德,《后汉书.孔僖传》中有云:“臣闻明王圣主,莫不尊师贵道。”,封建社会君王尚且如此,况乎寻常百姓。然而这种美德在一些大学生眼里正在逐步淡化。很多学生在校园了见到老师没有打招呼、问好的意识;在接受老师批评教育时表现漠然,无动于衷,甚至直接顶撞、谩骂老师;不尊重老师的劳动,上课迟到、早退、睡觉、说话、玩手机等现象较为普遍。
1.5不能很好的处理人际关系
大学生的人际关系问题已经成为近几年来大学生突出的问题,马加爵事件、复旦投毒案等校园暴力事件都反映出了大学生人际关系危机。当代大学生独生子女的比例正在不断增加,曾经的“小皇帝”在融入到大学生集体生活中后不能很好地处理与周围同学的关系。一些大学生以自我为中心,奉献意识差,我行我素过分的张扬个性,不能很好的顾忌周围同学的感受,这些都导致了其不能很好的与周围的同学相处,人际关系紧张,最终产生孤独、悲观等不良情绪,加之不能很好地进行自我调节,就酿成了一些校园悲剧的发生。
2武术文化在大学生人文素质教育中的优势分析
2.1武术文化有助于提高大学生道德修养
武术文化植根于中国传统文化,蕴含着中华文明的精髓,包含了哲学、伦理、美学、兵法、医学等经典传统文化,其中对于道德修养尤为重视,拳谚曰:未曾习武先习德。武德是武术习练者的必备的个人修养和行为准则,武德是武术文化的精髓和核心,对于当代大学生而言,弘扬武术文化,开展武德教育对于提高大学生的道德修养有着良好的促进作用。武德要求武术习练者要有良好的道德情操,高尚的人格,匡扶正义、除暴安良的社会责任感,不倚强凌弱、逞强斗狠的个人操守,谦虚谨慎、戒骄戒躁的个人修养等。这些对于当代大学生的道德修养的提升都有着良好的教育价值。另外,武术文化发展至今,传承下来了大量的古书典籍,拳彦拳谱,其中不乏对于武术习练者道德修养的说明,这些都可以作为大学生道德修养的教育的文字材料,还有一些生动形象的人物故事,鲜活而又真实,都是大学生教育的良好素材。
2.2武术文化有助于大学生建立和谐的人际关系
武术文化中和谐文化是其重要组成部分和典型特征,“持中贵和”、“天人合一”、“内外兼修”等思想都是其集中体现。武术文化中和为贵的思想对于当代大学建立和谐的人际关系有着良好的促进作用。由于和谐文化的深层影响,本来以技击为主要功能的传统武术文化,也具有了“和”的色彩。如“太极拳以静心养性、动中求静的运动方式,以绵缓斯文的运动风格,以‘舍己从人’、‘随曲就伸’、‘粘连黏随’的运动理念,以‘引进落空’、‘立身需中正不偏,方能八面支撑’的技击思想,不断地培养着人的忍让、谦虚的为人处世态度,塑造着中国人所特有的‘中庸’思想,体现着人与人之间和谐相处的观念,促进了人与人之间的和谐发展”。这些都体现了武术文化历来注重人与人之间的和睦相处。武德文化是武术和谐思想的一个重要基石,通过对习练者的道德行为、个人操守、民族情感等的沿袭和传承,使每一个武术人都具备一颗博爱、正义、自律、具备责任感的心,这些品格对于改善人际关系无疑是良性的推动。此外,在武术的习练过程中,通过招式、套路的不断研习、体悟,逐渐消磨习练者的好斗之心,培养其宽容、忍耐的品格,最终达到净化心灵,养成仁爱、谦逊的美好品德,这对与人和谐相处也有着独特的帮助。
2.3武术文化有助于培养大学生坚韧的意志品质
武术历来是中华民族强身健体、保家卫国的不二之选,在不同历史时期的改造与沉淀之下,武术文化中也逐渐形成了刚健有为、自强不息、不屈不饶的人文精神,武术对于增强习练者的身心健康、意志品质、道德修养都有着明显的效果。武术历来注重培养习练者的坚强意志品质,例如“要练武不怕苦”、“冬练三九,夏练三伏”、“欲学惊人艺,须下苦功夫”、“天行健,君子以自强不息”等拳彦和名句,都是武术文化中对习练者品格培养的警示,同时也是武术文化对于提高坚韧意志品质的彰显。在科技高度发展的今天,武术文化的熏陶同样可以培养人勤奋、刻苦、勇敢、不屈不挠、锐意进取等意志品质,这些品质对于当代大学生尤其重要,在逐渐远离战争的和平年代,在日益提高的生活条件下,在家长百般疼爱和过度呵护下,大学生的意志品质却出现了退化,经不起挫折,受不了磨难已经不再是个别现象,武术文化作为身体力行的文化,不仅有肢体的锻炼和磨砺,更有心灵和意志力的培养和塑造,这些特点是其他教育手段所无法达到的。参与武术运动,弘扬武术文化是培养和塑造大学生坚韧意志品质的良好途径。
2.4武术文化有助于传承传统文化,弘扬民族精神
中国传统文化孕育了武术文化,武术文化传承和保留了大量中国优秀的传统文化精髓,这也使得了武术文化具有了深厚的哲学底蕴和人文精神,已经超出了体育的范畴。中国传统文化中的哲学思想是中国人的思考方式和对事物的分析方法,这些在武术文化中都得到了良好的体现,例如:武术文化中天人合一的思想体现了和谐发展的哲学观、人生观、世界观;武术文化中“仁”的思想,可以培养习练者宽容、大度、仁爱等思想,因此,弘扬武术文化对于大学生继承和发扬优秀传统文化有着积极意义。民族精神是一个民族的生命力、创造力和凝聚力的集中体现,是一个民族生存、发展的根基和灵魂。武术文化中历来不乏仁人志士、各路豪杰为国捐躯、捍卫民族精神的事迹。南宋岳家军,捍卫山河力克金兵;明代抗击倭寇戚继光,保家卫国秉存大义;近代霍元甲,为民族气节迎战外国拳师等。武术文化在不同的历史时期虽具体内容各有不同,但爱国主义精神、民族自豪感始终贯穿其中,几千年来为了民族独立、国家兴盛、捍卫尊严,无数爱国志士前仆后继,英勇奋斗便是最好的佐证。如今虽然时代变化更,但其依然依然有良好的教育价值,值得大学生继承和发扬。
3结语
当代社会,信息化下的多媒体技术,无疑给我们的教学带来极大的便利。各种多媒体技术大大丰富了教学的方式与手段。声音、动画、图片,让课堂更有活力,学习积极性更高。此外我们还需充分利用网络平台,强化课堂知识,补充课后资料,增强学生的自学能力,培养学生研究数学的思路与方法,拓宽学生的学习视角,培养学生研究数学的热情。
二、如何在信息化条件下进行小学数学教学
工欲善其事必先利其器,教师若想充分利用信息化的成果,必然努力提升自己的计算机操作能力,熟悉常用数学软件,了解最新信息产业动态,将科学成果以最快的速度应用于日常生活。
(一)设备教学
如今,多媒体教学在各校已较为普遍,教学实践因此获益颇多。多媒体教学为原本“死气沉沉”的课堂增添了几分激情与活力,更关键的是,课堂效率大大提高,学生学习小学数学的热情更加高涨。例如,在中学数学教材中讲立体几何这一部分,很多学生空间想象能力极差,学习起来甚是吃力,不能够对涉及立体几何的知识有相对明晰的把握,而立体几何对于教师来说,由于没有合适的足够的模型,讲解的难度也比较大,尤其是个别题目的讲解。从前教学的棘手难题,如今有了多媒体的帮助,可以说是迎刃而解。无论遇到何种题目,3D模型均可以做到,学生也在一次次的演示中,逐步建立起空间想象能力。这种教学方法能够使学生在学习的过程中,紧密联系日常生活,使学生在生活中感受到数学知识的重要性,同时有利于学生理论联系实际,激发学习兴趣。
(二)在线教学
现如今,各种网络教学网站充斥互联网。虽然水平参差不齐,但是,巨大的市场潜力无疑证明了潜在的趋势性。网络教学以其自由度高,不受时间与空间的限制,以及不必担心口音、语速问题而导致的听课效果欠佳等显著优势而受到广泛关注。数学教师有专业优势,有丰厚的经验完全可以建立专门的教学网站,网站内容主要涵盖两个方面:1.课堂内容的提炼升华,课后习题的补充及详细讲解,以便于学生预习及复习。2.课堂知识的拓展,上传名师教学视频,补充学习背景资料。比如,定理研究中的小故事,数学家的逸闻趣事等等,加深对课堂知识的了解,增加学生对数学的学习兴趣。更为关键的是,通过在线网络学习可以增强学生许多在课堂不能获取的能力,现略举几例:(1)利用网络获取知识的能力,培养学生独立解决问题的习惯,教会其解决问题的方法。(2)利用电脑构建数学模型,解决数学问题的能力,可以设置专栏教给学生如何用专业的软件构建数学模型。(3)创造性思维,勤于钻研。通过数学家的逸闻趣事,潜移默化培养学生发现问题解决问题的能力。
(三)课堂教学
数学本身就是一门逻辑性和理论性非常强的科目,学生在学习的过程呈现出“死气沉沉”的局面,不仅会影响学生学习的情绪,还直接影响着数学教学质量。倘若我们能够充分利用多媒体的音、像、动画,增加课堂教学的冲击力,甚至营造一种独特的教学氛围,那么学生必然改变对数学的传统看法。只要能够扭转学生的观念问题,那么他们就能从根本上喜欢数学,爱上数学,那样他们学习数学才能逐渐有了自己的方法,养成好的习惯,最终提高数学成绩。
三、总结