时间:2023-03-03 15:57:13
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇平方根教案,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
一、素质教育目标
(一)知识教学点:认识形如x2=a(a≥0)或(ax+b)2=c(a≠0,c≥0,a,b,c为常数)类型的方程,并会用直接开平方法解.
(二)能力训练点:培养学生准确而简洁的计算能力及抽象概括能力.
(三)德育渗透点:通过两边同时开平方,将2次方程转化为一次方程,向学生渗透数学新知识的学习往往由未知(新知识)向已知(旧知识)转化,这是研究数学问题常用的方法,化未知为已知.
二、教学重点、难点
1.教学重点:用直接开平方法解一元二次方程.
2.教学难点:(1)认清具有(ax+b)2=c(a≠0,c≥0,a,b,c为常数)这样结构特点的一元二次方程适用于直接开平方法.(2)一元二次方程可能有两个不相等的实数解,也可能有两个相等的实数解,也可能无实数解.如:(ax+b)2=c(a≠0,a,b,c常数),当c>0时,有两个不等的实数解,c=0时,有两个相等的实数解,c<0时无实数解.
三、教学步骤
(一)明确目标
在初二代数“数的开方”这一章中,学习了平方根和开平方运算.“如果x2=a(a≠0),那么x就叫做a的平方根.”“求一个数平方根的运算叫做开平方运算”.正确理解这个概念,在本节课我们就可得到最简单的一元二次方程x2=a的解法,在此基础上,就可以解符合形如(ax+b)2=c(a,b,c常数,a≠0,c≥0)结构特点的一元二次方程,从而达到本节课的目的.
(二)整体感知
通过本节课的学习,使学生充分认识到:数学的新知识是建立在旧知识的基础上,化未知为已知是研究数学问题的一种方法,本节课引进的直接开平方法是建立在初二代数中平方根及开平方运算的基础上,可以说平方根的概念对初二代数和初三代数起到了承上启下的作用.而直接开平方法又为一元二次方程的其他解法打下坚实的基础,此法可以说起到一个抛砖引玉的作用.学生通过本节课的学习应深刻领会数学以旧引新的思维方法,在已学知识的基础上开发学生的创新意识.
(三)重点、难点的学习及目标完成过程
1.复习提问
(1)什么叫整式方程?举两例,一元一次方程及一元二次方程的异同?
(2)平方根的概念及开平方运算?
2.引例:解方程x2-4=0.
解:移项,得x2=4.
两边开平方,得x=±2.
x1=2,x2=-2.
分析x2=4,一个数x的平方等于4,这个数x叫做4的平方根(或二次方根);据平方根的性质,一个正数有两个平方根,它们互为相反数;所以这个数x为±2.求一个数平方根的运算叫做开平方.由此引出上例解一元二次方程的方法叫做直接开平方法.使学生体会到直接开平方法的实质是求一个数平方根的运算.
练习:教材P.8中1(1)(2)(3)(6).学生在练习、板演过程中充分体会直接开平方法的步骤以及蕴含着关于平方根的一些概念.
3.例1解方程9x2-16=0.
解:移项,得:9x2=16,
此例题是在引例的基础上将二次项系数由1变为9,由此增加将二次项系数变为1的步骤.此题解法教师板书,学生回答,再次强化解题
负根.
练习:教材P.8中1(4)(5)(7)(8).
例2解方程(x+3)2=2.
分析:把x+3看成一个整体y.
例2把引例中的x变为x+3,反之就应把例2中的x+3看成一个整体,
两边同时开平方,将二次方程转化为两个一次方程,便求得方程的两个解.可以说:利用平方根的概念,通过两边开平方,达到降次的目的,化未知为已知,体现一种转化的思想.
练习:教材P.8中2,此组练习更重要的是体会方程的左边不是未知数的平方,而是含有未知数的代数式的平方,而右边是个非负实数,采用直接开平方法便可以求解.
例3解方程(2-x)2-81=0.
解法(一)
移项,得:(2-x)2=81.
两边开平方,得:2-x=±9
2-x=9或2-x=-9.
x1=-7,x2=11.
解法(二)
(2-x)2=(x-2)2,
原方程可变形,得(x-2)2=81.
两边开平方,得x-2=±9.
x-2=9或x-2=-9.
x1=11,x2=-7.
比较两种方法,方法(二)较简单,不易出错.在解方程的过程中,要注意方程的结构特点,进行灵活适当的变换,择其简捷的方法,达到又快又准地求出方程解的目的.
练习:解下列方程:
(1)(1-x)2-18=0;(2)(2-x)2=4;
在实数范围内解一元二次方程,要求出满足这个方程的所有实数根,提醒学生注意不要丢掉负根,例x2+36=0,由于适合这个方程的实数x不存在,因为负数没有平方根,所以原方程无实数根.-x2=0,适合这个方程的根有两个,都是零.由此渗透方程根的存在情况.以上在教师恰当语言的引导下,由学生得出结论,培养学生善于思考的习惯和探索问题的精神.
那么具有怎样结构特点的一元二次方程用直接开平方法来解比较简单呢?启发引导学生,抽象概括出方程的结构:(ax+b)2=c(a,b,c为常数,a≠0,c≥0),即方程的一边是含有未知数的一次式的平方,另一边是非负实数.
(四)总结、扩展
引导学生进行本节课的小节.
1.如果一元二次方程的一边是含有未知数的一次式的平方,另一边是一个非负常数,便可用直接开平方法来解.如(ax+b)2=c(a,b,c为常数,a≠0,c≥0).
2.平方根的概念为直接开平方法的引入奠定了基础,同时直接开平方法也为其它一元二次方程的解法起了一个抛砖引玉的作用.两边开平方实际上是实现方程由2次转化为一次,实现了由未知向已知的转化.由高次向低次的转化,是高次方程解法的一种根本途径.
3.一元二次方程可能有两个不同的实数解,也可能有两个相同的实数解,也可能无实数解.
四、布置作业
1.教材P.15中A1、2、
2、P10练习1、2;
P.16中B1、(学有余力的学生做).
五、板书设计
12.1用公式解一元二次方程(二)
引例:解方程x2-4=0例1解方程9x2-16=0
解:…………
……例2解方程(x+3)2=2
此种解一元二次方程的方法称为直接开平方法
形如(ax+b)2=c(a,b,
c为常数,a≠0,c≥0)可用直接开平方法
六、部分习题参考答案
教材P.15A1
以上(5)改为(3)(6)改为(4),去掉(7)(8)
(一)知识教学点:认识形如x2=a(a≥0)或(ax+b)2=c(a≠0,c≥0,a,b,c为常数)类型的方程,并会用直接开平方法解.
(二)能力训练点:培养学生准确而简洁的计算能力及抽象概括能力.
(三)德育渗透点:通过两边同时开平方,将2次方程转化为一次方程,向学生渗透数学新知识的学习往往由未知(新知识)向已知(旧知识)转化,这是研究数学问题常用的方法,化未知为已知.
二、教学重点、难点
1.教学重点:用直接开平方法解一元二次方程.
2.教学难点:(1)认清具有(ax+b)2=c(a≠0,c≥0,a,b,c为常数)这样结构特点的一元二次方程适用于直接开平方法.(2)一元二次方程可能有两个不相等的实数解,也可能有两个相等的实数解,也可能无实数解.如:(ax+b)2=c(a≠0,a,b,c常数),当c>0时,有两个不等的实数解,c=0时,有两个相等的实数解,c<0时无实数解.
三、教学步骤
(一)明确目标
在初二代数“数的开方”这一章中,学习了平方根和开平方运算.“如果x2=a(a≠0),那么x就叫做a的平方根.”“求一个数平方根的运算叫做开平方运算”.正确理解这个概念,在本节课我们就可得到最简单的一元二次方程x2=a的解法,在此基础上,就可以解符合形如(ax+b)2=c(a,b,c常数,a≠0,c≥0)结构特点的一元二次方程,从而达到本节课的目的.
(二)整体感知
通过本节课的学习,使学生充分认识到:数学的新知识是建立在旧知识的基础上,化未知为已知是研究数学问题的一种方法,本节课引进的直接开平方法是建立在初二代数中平方根及开平方运算的基础上,可以说平方根的概念对初二代数和初三代数起到了承上启下的作用.而直接开平方法又为一元二次方程的其他解法打下坚实的基础,此法可以说起到一个抛砖引玉的作用.学生通过本节课的学习应深刻领会数学以旧引新的思维方法,在已学知识的基础上开发学生的创新意识.
(三)重点、难点的学习及目标完成过程
1.复习提问
(1)什么叫整式方程?举两例,一元一次方程及一元二次方程的异同?
(2)平方根的概念及开平方运算?
2.引例:解方程x2-4=0.
解:移项,得x2=4.
两边开平方,得x=±2.
x1=2,x2=-2.
分析x2=4,一个数x的平方等于4,这个数x叫做4的平方根(或二次方根);据平方根的性质,一个正数有两个平方根,它们互为相反数;所以这个数x为±2.求一个数平方根的运算叫做开平方.由此引出上例解一元二次方程的方法叫做直接开平方法.使学生体会到直接开平方法的实质是求一个数平方根的运算.
练习:教材P.8中1(1)(2)(3)(6).学生在练习、板演过程中充分体会直接开平方法的步骤以及蕴含着关于平方根的一些概念.
3.例1解方程9x2-16=0.
解:移项,得:9x2=16,
此例题是在引例的基础上将二次项系数由1变为9,由此增加将二次项系数变为1的步骤.此题解法教师板书,学生回答,再次强化解题
负根.
练习:教材P.8中1(4)(5)(7)(8).
例2解方程(x+3)2=2.
分析:把x+3看成一个整体y.
例2把引例中的x变为x+3,反之就应把例2中的x+3看成一个整体,
两边同时开平方,将二次方程转化为两个一次方程,便求得方程的两个解.可以说:利用平方根的概念,通过两边开平方,达到降次的目的,化未知为已知,体现一种转化的思想.
练习:教材P.8中2,此组练习更重要的是体会方程的左边不是未知数的平方,而是含有未知数的代数式的平方,而右边是个非负实数,采用直接开平方法便可以求解.
例3解方程(2-x)2-81=0.
解法(一)
移项,得:(2-x)2=81.
两边开平方,得:2-x=±9
2-x=9或2-x=-9.
x1=-7,x2=11.
解法(二)
(2-x)2=(x-2)2,
原方程可变形,得(x-2)2=81.
两边开平方,得x-2=±9.
x-2=9或x-2=-9.
x1=11,x2=-7.
比较两种方法,方法(二)较简单,不易出错.在解方程的过程中,要注意方程的结构特点,进行灵活适当的变换,择其简捷的方法,达到又快又准地求出方程解的目的.
练习:解下列方程:
(1)(1-x)2-18=0;(2)(2-x)2=4;
在实数范围内解一元二次方程,要求出满足这个方程的所有实数根,提醒学生注意不要丢掉负根,例x2+36=0,由于适合这个方程的实数x不存在,因为负数没有平方根,所以原方程无实数根.-x2=0,适合这个方程的根有两个,都是零.由此渗透方程根的存在情况.以上在教师恰当语言的引导下,由学生得出结论,培养学生善于思考的习惯和探索问题的精神.
那么具有怎样结构特点的一元二次方程用直接开平方法来解比较简单呢?启发引导学生,抽象概括出方程的结构:(ax+b)2=c(a,b,c为常数,a≠0,c≥0),即方程的一边是含有未知数的一次式的平方,另一边是非负实数.
(四)总结、扩展
引导学生进行本节课的小节.
1.如果一元二次方程的一边是含有未知数的一次式的平方,另一边是一个非负常数,便可用直接开平方法来解.如(ax+b)2=c(a,b,c为常数,a≠0,c≥0).
2.平方根的概念为直接开平方法的引入奠定了基础,同时直接开平方法也为其它一元二次方程的解法起了一个抛砖引玉的作用.两边开平方实际上是实现方程由2次转化为一次,实现了由未知向已知的转化.由高次向低次的转化,是高次方程解法的一种根本途径.
3.一元二次方程可能有两个不同的实数解,也可能有两个相同的实数解,也可能无实数解.
四、布置作业
1.教材P.15中A1、2、
2、P10练习1、2;
P.16中B1、(学有余力的学生做).
五、板书设计
12.1用公式解一元二次方程(二)
引例:解方程x2-4=0例1解方程9x2-16=0
解:…………
……例2解方程(x+3)2=2
此种解一元二次方程的方法称为直接开平方法
形如(ax+b)2=c(a,b,
c为常数,a≠0,c≥0)可用直接开平方法
六、部分习题参考答案
教材P.15A1
以上(5)改为(3)(6)改为(4),去掉(7)(8)
一、设计数学教学方案首先把内容定位
新课程标准下,教师应该根据教学内容设计教学方案,并且有计划地做好教材分析以及学期初中数学学习目标分析,这样有计划的教学才可以快速提高教学质量。比如,在初中数学教学中,学习了解无理数、实数、平方根的概念,学会看图形会解几何图形,学习在根号下表示出数的算术平方根,而且会运算平方根和立方根,实数简单的四则运算化简等知识。
二、初中数学教学的设计思路
初中数学教师要精心地设计,首先要注重知识的具体落实,教师在备课的时候要细致入微地把每一个知识点合理地安排好。比如,在学习以上提出的知识点的时候,首先引入无理数的概念,举例子让学生明白什么才是无理数的概念,分析无理数的表示方法、实数以及平方根的具体概念,把知识点贯穿的连接起来。让学生了解学习的对象之后,在学习进行的过程中,要通过拼图或者多媒体教学工具的结合下引入无理数,引出简单的图形,让学生有意识地学习,通过具体问题的解决说明表示图形的性质,进而建立学生对图形的立体感。通过类比,以分类探索的方式提高学生学习数学的能力。
三、设计具体的学习过程
首先通过看图和运用计算机探索知识,教师通过具体的问题,引入类似的知识,做成一个知识链,通过多媒体技术拼图,引入无理数的概念,引起学生的学习兴趣,利用计算机运算无理数,可以得出无理数是无限不循环小数,并从中体会规律。教师要创设情景体验,根据现实生活中和生产实际,通过估算比较无理数之间的大小,通过生活中的具体问题来考查学生对图形的推理能力。
四、设计数学教学合理安排课堂时间
为使学生学好代数、几何的基础知识,具备当代社会中每一位公民适应日常生活、参加社会生产和进一步学习所必需的基本技能,进一步培养学生运算能力、发展思维能力和空间观念,使学生能够运用所学知识解决实际问题,逐步形成数学创新意识,特制定本学科教学计划。
二、教材内容分析。
本学期数学教材内容包括:
第一章《生活中的轴对称》的主要内容是研究轴对称图形的性质及其应用。其重点是轴对称图形的性质。
第二章《勾股定理》的主要内容是:勾股定理的探索和应用。其中勾股定理的应用是本章教学的重点。
第三章《实数》主要内容是平方根、立方根的概念和求法,实数的概念和运算。本章的内容虽然不多,但在初中数学中占有十分重要的地位。本章的教学重点是平方根和算术平方根的概念和求法,教学难点是算术平方根和实数两个概念的理解。
第四章《概率的初步认识》主要内容是通过可能性的大小认识概率,并进行简单的概率计算。概率计算是本章教学的重点。
第五章《平面直角坐标系》主要讲述平面直角坐标系中点的确定,会找出一些点的坐标。
第六章《一次函数》的主要内容是介绍函数的概念,以及一次函数的图像和表达式,学会用一次函数解决一些实际问题。其中一次函数的图像的表达式是本章的重点和难点。
第七章《二元一次方程组》要求学会解二元一次方程组,并用二元一次方程组来解一些实际的问题。
三、学生情况分析:
初二(3)班共有学生44人,从上学期期未统计成绩分析,及格人数为人,优秀人数为人,这个班的学生中成绩特别差的比较多,成绩提高的难度较大。从上学期期末统测成绩来看,成绩最好是分,差的分,这些同学在同一个班里,好的同学要求老师讲得精深一点,差的要求讲浅显一点,一个班没有相对较集中的分数段,从几分到多分每个分数段的人数都差不多,这就给教学带来不利因素。
四、教学目标。
第一章:生活中的轴对称。
1、在丰富的现实情境中,经历观察折叠剪纸图形欣赏与设计等数学活动过程,进一步发展空间观念。
2、通过丰富的生活实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质。
3、探索并了解基本图形的轴对称性及其相关性质。4能够按要求作出简面图形经过轴对称后的图形。探索简单图形之间的轴对称关系,并能指出对称轴。5欣赏现实生活中的轴对称图形,能利用轴对称进行一些图案设计,体验轴对称在现实生活中的广泛应用和丰富的文化价值。
第二章:勾股定理。
1、经历探索勾股定理及一个三角形是直角三角形的条件的过程,发展合情推理能力,体会数形结合的思想。
2、掌握勾股定理,了解利用拼图验证勾股定理的方法,能运用勾股定理解决一些实际问题。
3、掌握判断一个三角形是直角三角形的条件,并能运用它解决一些实际问题。
4、通过实例了解勾股定理的历史和应用,体会勾股定理的文化价值。
第三章:实数。
1、让学生经历数系扩张探求实数性质及其运算规律的过程。从事借助计算器探索数学规律的活动,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考合作交流的意识和能力。
2、结合具体情境,让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力。
3、了解平方根立方根实数及其相关概念。会用根号表示并会求数的平方根立方根。能进行有关实数的简单运算。
4、能运用实数的运算解决简单的实际问题,提高学生的应用意识,发展学生解决问题的能力,从中体会数学的应用价值。
第四章:概率的初步认识。
1、经历“猜测——验证并收集实验数据——分析实验结果”的活动过程。
2、了解必然事件,不可能事件和不确定事件发生的可能性大小,了解事件发生的可能性及游戏规则的公平性。了解概率的意义,体会概率是描述不确定现象的数学模型,发展随机观念。
3、能对两类事件发生的概率进行简单的计算,并能设计符合要求的简单概率模型。4进一步体会数学就在我们身边,发展用数学的意识和能力。
第五章:平面直角坐标系。
1、从事对现实世界中确定位置的现象进行观察分析抽象和概括活动,经历探索图形坐标变化与图形形状变化之间关系的过程,进一步发展学生的数形结合意识形象思维能力和数学应用能力。
2、认识并能画出平面直角坐标系。在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。
3、能在方格纸上建立适当的直角坐标系,描述物体的位置。能结合具体情境灵活运用多种方式确定物体的位置。
4、在同一直角坐标系中,感受图形变化后点的坐标的变化合格点坐标变化后图形的变化。
第六章:一次函数。
1、经历函数一次函数等概念的抽象概括过程,体会函数的模型思想,进一步发展学生的抽象思维能力。经历一次函数的图像及其性质的探索过程,在合作与交流活动中发展学生的合作意识和能力。
2、经历利用一次函数及其图像解决实际问题的过程,发展学生的数学应用能力。经历函数图像信息的识别与应用过程,发展学生的形象思维能力。
3、初步理解函数的概念。理解一次函数及其图像的有关性质。初步体会方程和函数的关系。
4、能根据所给信息确定一次函数表达式。会做一次函数图象,并利用它们解决简单的实际问题。
第七章:二元一次方程组。
1、经历从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想,发展学生灵活运用有关知识解决实际问题的能力,培养良好的数学应用意识。
2、了解二元一次方程组的有关概念,会解简单的二元一次方程组。能根据具体问题中的数量关系,列出二元一次方程组解决简单的实际问题,并能检验解的合理性。
3、了解二元一次方程组的图像解法,初步体会方程与函数的关系。
4、了解二元一次方程组的消元思想,从而初步理解化未知为已知和化复杂问题为简单问题的化归思想。
五、教学措施及方法。
1、理论学习:
抓好教育理论特别是最新的教育理论的学习,及时了解课改信息和课改动向,转变教学观念,形成新课教学思想,树立现代化、科学化的教育思想。多听听课,向其它老师借签学习一些优秀的教学方法和教学技巧。
2、做好各时期的计划:
为了搞好教学工作,以课程改革的思想为指导,根据学校的工作安排以及初二的数学教学任务和内容,做好学期教学工作的总体计划和安排,并且对各单元、各课题的进度情况进行详细计划。
3、备好每堂课:
认真钻研大纲和教材,做好初中各阶段的总体备课工作,对总体教学情况和各单元、专题做到心中有数,备好学生的学习和对知识的掌握情况,写好每节课的教案为上好课提供保证,做好课后反思和课后总结工作,以不为提高自己的教学理论水平和教学实践能力。
4、做好课堂教学:
创设教学情境,激发学习兴趣,爱因斯曾经说过:“兴趣是最好的老师。”激发学生的学习兴趣,是数学教学过程中提高质量的重要手段之一。结合教学内容,选一些与实际联系紧密的数学问题让学生去解决,教学组织合理,教学内容语言生动。相尽各种办法让学生爱听、乐听,以全面提高课堂教学质量。成立学习小组,实行组内帮辅和小组间竞争,增强学生学习的信心及自学能力。注重双基和学法指导。积极应用尝试教学法及其他新的教学方法和先进的教学手段。
5、批改作业:
精批细改好每一位学生的每份作业,学生的作业缺陷,师生都心中有数。对每位同学的作业订正和掌握情况都尽力做到及时反馈,再次批改,让学生获得了一个较好的巩固机会。
6、做好课外辅导:
全面关心学生,这是老师的神圣职责,在课后能对学进行针对性的辅导,解答学生在理解教材与具体解题中的困难,指导课外阅读因材施教,使优生尽可能“吃饱”,获得进一步提高。使差生也能及时扫除学生障碍,增强学生信心,尽可能“吃得了”。积极开展数学讲座,课外兴趣小组等课外活动。充分调动学生学习数学的积极性,扩大他们的知识视野,发展智力水平,提高分析问题与解决问题的能力。
六、本学期教学进度计划。
第一章:《生活中的轴对称》,9课时。
第二章:《勾股定理》,5课时。
第三章:《实数》,10课时。
第四章:《概率的初步认识》,5课时。
第五章:《平面直角坐标系》,8课时。
第六章:《一次函数》,9课时。
虚假的学问比无知更糟糕。无知好比一块空地,可以耕耘和播种;虚假的学问就象一块长满杂草的荒地,几乎无法把草拔尽。就像不扎实的数学基础。下面就是小编为大家梳理归纳的内容,希望能够帮助到大家。
2020北师大九年级下册数学教案:正弦和余弦一、素质教育目标
(一)知识教学点
使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.
(二)能力训练点
逐步培养学生会观察、比较、分析、概括等逻辑思维能力.
(三)德育渗透点
引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.
二、教学重点、难点
1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.
2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.
三、教学步骤
(一)明确目标
1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米?
2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少?
3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?
4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度?
前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.
通过四个例子引出课题.
(二)整体感知
1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.
学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.
2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗?
这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.
(三)重点、难点的学习与目标完成过程
1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.
2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:
若一组直角三角形有一个锐角相等,可以把其
顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,B1C1∥B2C2∥B3C3……,AB1C1∽AB2C2∽AB3C3∽……,
形中,∠A的对边、邻边与斜边的比值,是一个固定值.
通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.
而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.
练习题为 作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.
(四)总结与扩展
1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.
教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.
2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.
四、布置作业
本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.
五、板书设计
2020人教版九年级数学教案:函数教学目标:
1、进一步理解函数的概念,能从简单的实际事例中,抽象出函数关系,列出函数解析式;
2、使学生分清常量与变量,并能确定自变量的取值范围.
3、会求函数值,并体会自变量与函数值间的对应关系.
4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量的取值范围的求法.
5、通过函数的教学使学生体会到事物是相互联系的.是有规律地运动变化着的.
教学重点:了解函数的意义,会求自变量的取值范围及求函数值.
教学难点:函数概念的抽象性.
教学过程:
(一)引入新课:
上一节课我们讲了函数的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有的值与它对应,那么就说x是自变量,y是x的函数.
生活中有很多实例反映了函数关系,你能举出一个,并指出式中的自变量与函数吗?
1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系.
2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系.
解:1、y=30n
y是函数,n是自变量
2、,n是函数,a是自变量.
(二)讲授新课
刚才所举例子中的函数,都是利用数学式子即解析式表示的.这种用数学式子表示函数时,要考虑自变量的取值必须使解析式有意义.如第一题中的学生数n必须是正整数.
例1、求下列函数中自变量x的取值范围.
(1)
(2)
(3)
(4)
(5)
(6)
分析:在(1)、(2)中,x取任意实数, 与 都有意义.
(3)小题的 是一个分式,分式成立的条件是分母不为0.这道题的分母是 ,因此要求 .
同理(4)小题的 也是分式,分式成立的条件是分母不为0,这道题的分母是 ,因此要求 且 .
第(5)小题, 是二次根式,二次根式成立的条件是被开方数大于、等于零.的被开方数是 .
同理,第(6)小题 也是二次根式, 是被开方数,
.
解:(1)全体实数
(2)全体实数
(3)
(4) 且
(5)
(6)
小结:从上面的例题中可以看出函数的解析式是整数时,自变量可取全体实数;函数的解析式是分式时,自变量的取值应使分母不为零;函数的解析式是二次根式时,自变量的取值应使被开方数大于、等于零.
注意:有些同学没有真正理解解析式是分式时,自变量的取值应使分母不为零,片面地认为,凡是分母,只要即可.教师可将解题步骤设计得细致一些.先提问本题的分母是什么?然后再要求分式的分母不为零.求出使函数成立的自变量的取值范围.二次根式的问题也与次类似.
但象第(4)小题,有些同学会犯这样的错误,将答案写成 或.在解一元二次方程时,方程的两根用“或者”联接,在这里就直接拿过来用.限于初中学生的接受能力,教师可联系日常生活讲清“且”与“或”.说明这里 与是并且的关系.即2与-1这两个值x都不能取.
例2、自行车保管站在某个星期日保管的自行车共有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管费是每次一辆0.3元.
(1)若设一般车停放的辆次数为x,总的保管费收入为y元,试写出y关于x的函数关系式;
(2)若估计前来停放的3500辆次自行车中,变速车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围.
解:(1)
(x是正整数,
(2)若变速车的辆次不小于25%,但不大于40%,
则
收入在1225元至1330元之间
总结:对于反映实际问题的函数关系,应使得实际问题有意义.这样,就要求联系实际,具体问题具体分析.
对于函数 ,当自变量 时,相应的函数y的值是 .60叫做这个函数当 时的函数值.
例3、求下列函数当 时的函数值:
(1)
(2)
(3)
(4)
解:1)当 时,
(2)当 时,
(3)当 时,
(4)当 时,
注:本例既锻炼了学生的计算能力,又创设了情境,让学生体会对于x的每一个值,y都有确定的值与之对应.以此加深对函数的理解.
(二)小结:
这节课,我们进一步地研究了有关函数的概念.在研究函数关系时首先要考虑自变量的取值范围.因此,要求大家能掌握解析式含有一个自变量的简单的整式、分式、二次根式的函数的自变量取值范围的求法,并能求出其相应的函数值.另外,对于反映实际问题的函数关系,要具体问题具体分析.
人教版九年级数学上册教案:直接开平方法
理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.
提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.
重点
运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次——转化的数学思想.
难点
通过根据平方根的意义解形如x2=n的方程,将知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.
一、复习引入
学生活动:请同学们完成下列各题.
问题1:填空
(1)x2-8x+________=(x-________)2;(2)9x2+12x+________=(3x+________)2;(3)x2+px+________=(x+________)2.
解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p2)2 p2.
问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?
二、探索新知
上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?
(学生分组讨论)
老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3
即2t+1=3,2t+1=-3
方程的两根为t1=1,t2=-2
例1 解方程:(1)x2+4x+4=1 (2)x2+6x+9=2
分析:(1)x2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1.
(2)由已知,得:(x+3)2=2
直接开平方,得:x+3=±2
即x+3=2,x+3=-2
所以,方程的两根x1=-3+2,x2=-3-2
解:略.
例2 市政府计划2年内将人均住房面积由现在的10 m2提高到14.4 m2,求每年人均住房面积增长率.
分析:设每年人均住房面积增长率为x,一年后人均住房面积就应该是10+10x=10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x=10(1+x)2
解:设每年人均住房面积增长率为x,
则:10(1+x)2=14.4
(1+x)2=1.44
直接开平方,得1+x=±1.2
即1+x=1.2,1+x=-1.2
所以,方程的两根是x1=0.2=20%,x2=-2.2
因为每年人均住房面积的增长率应为正的,因此,x2=-2.2应舍去.
所以,每年人均住房面积增长率应为20%.
(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?
共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.
三、巩固练习
教材第6页 练习.
四、课堂小结
本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p
新学期应该有新计划,新学期应该勇往直前,新学期应该给自己制定一个目标。下面是小编整理的关于初一数学教师下学期工作计划2020,希望能够帮到大家。
初一数学教师下学期工作计划2020【一】本学期我担任七年级(x)(x)两个班下学期数学教学工作,从学生的上期数学成绩上看,两班学生的数学基础很差,所以本学期的教学任务非常艰巨,但我仍有信心迎接这个新挑战。为了能更出色地完成教学任务,特制定计划如下:
一、本学期教材分析
本学期的教学内容共计六章,第5章:相交线和平行线;第6章:实数;第7章:平面直角坐标系;第8章:二元一次方程组;第9章:不等式和不等式组;,第10章:数据的收集、整理与描述。
第5章:相交线和平行线本章包括相交线、平行线及其判定、平行线的性质和平移共4节内容,前三节主要讨论平面内两条直线的位置关系,重点是垂直和平行关系,第4节是有关平移交换的内容。本章的重点是垂线的概念与平行线的判定和性质,而逐步深入地让学生学会说理,是本章的一个难点。
第6章本章主要学平方根与立方根以及实数的有关概念和运算。这一章是学生在初中学习过程中的一个里程碑,他们要从有理数进入到无理数的领域,认识上将从有理数扩展到实数的范围,让学生进一步深化对数的认识,扩大学生的数学视野与界限。
第7章:平面直角坐标系本章包括平面直角坐标系、坐标方法的简单应用两节课的内容,主要内容为平面直角坐标系的有关概念、点与坐标(坐标为整数)的对应关系、用坐标表示地理位置和用坐标表示平移等内容。
第8章:二元一次方程组本章的主要内容包括:利用二元一次方程组分析与解决实际问题,二元一次方程组及其相关概念,消元思想和代入法、加减法解二元一次方程组,三元一次方程组,三元一次方程组解法举例。其中,以方程组为工具分析问题、解决含有多个未知数的问题是重点,同时也是难点。实际问题始终贯穿全过程之中进行。消元思想——解方程组时“化多为少,由繁至简,各个击破,逐一解决”的基本策略,是产生具体解法的重要基础,而代入法和加减法则是落实消元思想的具体措施。先了解基本思想,然后在基本思想指导下寻求解决问题的具体办法,这是本章内容安排中的一个突出特点。
第9章:不等式与不等式组本章的主要内容包括:一元一次不等式(组)及其相关概念,不等式的性质,一元一次不等式(组)的解法及其解集的几何表示,利用一元一次不等式分析、解决实际问题。其中,以不等式(组)为工具分析问题、解决问题是重点;一元一次不等式(组)及其相关概念、不等式的性质是基础知识;掌握一元一次不等式(组)的解法及解集的几何表示是基本技能。本章重视数学与实际的关系,注意体现列不等式(组)中蕴涵的建模思想和解不等式(组)中蕴涵的化归思想。
第10章:数据的收集、整理与描述本章是统计部分的第一章,内容包括:1、利用全面调查与抽样调查(以抽样调查为重点)收集和整理数据;2、利用统计图表(以直方图为重点)描述数据;3、展现收集、整理、描述和分析数据得出结论的统计调查的基本过程。本章通过一些案例展开有关内容,在每一个案例中都展示了收集数据、整理数据、描述数据和分析数据得出结论的一般过程。其中重点在收集、整理与描述数据上,所涉及的分析数据比较简单,较复杂的内容将在后面的内容中进一步讨论。
二、确立本学期的教学目标及实施目标的具体做法
本学期的教学目标是七年级(下)的六章内容,力求学生掌握基础的同时提高他们的动手操的能力,概括的能力,类比猜想的能力和自主学习的能力。在初中的数学教学实践中,常常发现相当一部分学生一开始不适应中学教师的教法,出现消化不良的症状,究其原因,就学生方面主要有三点:一是学习态度不够端正;二是智能上存在差异;三是学习方法不科学。我以为施教之功,贵在引导,重在转化,妙在开窍。因此为防止过早出现两极分化,我准备具体从以下几方面入手:
1、认真研读新课程标准,钻研教材,精选习题,精心备课,做好教案,上好新课。
同时仔细批改作业,作好辅导,发现问题及时解决作认真总结成功与失败的经验和原因。
2、充分利用现代化教学设施制作教学道具,设置教学情境,结合日常生活,由浅入深,循序渐进。
引导学生主动加入课堂学习和讨论,积极参与知识的探究与规律的总结。
3、营造民主、和谐、平等、自主的学习氛围,引导学生进行合作探究、交流和分享发现的快乐。
从而体会到学习的乐趣,激发学生的学习热情。
4、精心设计探究主题,引导学生学会发散思维,培养学生创造性思维的能力,实现一题多解、举一反三、触类旁通。
5、开展分层教学模式,成立互助学习小组,以优带良,以优促后。
同时狠抓中等生,辅导后进生,实现共同进步。
三、个人教学进度安排
第1、2、3周 学习第五单元;
第4、5、6周 学习第六单元;
第7、8周 学习第七章;
第9、10、11周 学习第八章;
第12、13周 学习第九章;
第14周 学习第十章;
第15、16周 复习迎接期末考试。
初一数学教师下学期工作计划2020【二】在春节结束之际,新的学期也已经来临,在新的学期里,作为七年级数学教师的我对下学期的工作进行计划如下:
一、学情分析
本学期我将担任七年级的数学教学工作。通过上学期的教学,学生的计算能力、阅读理解能力、实践探究能力得到了发展与培养,对图形及图形间数量关系有初步的认识,逻辑思维与逻辑推理能力也得到初步提升,学生由形象思维向抽象思维转变,特别是抽象思维得到了较好的发展。从上学期的教学中,发现有以下问题:部分学生没有达到应有的水平,学生课外自主拓展知识的能力几乎没有,很少有学生具有课外阅读相关数学书籍的习惯,没有形成对数学学习的浓厚兴趣,不能自行拓展与加深自己的知识面。本学期将继续促进学生自主学习,让学生亲身参与活动,进行探索与发现,以自身的体验获取知识与技能;努力实现基础性与现代性的统一,提高学生的创新精神和实践能力;体现现代信息社会的发展要求,通过各种教学手段帮助学生理解概念,操作运算,扩展思路。
二、教材分析
本学期的教学内容共计六章,
第5章:相交线和平行线;
第6章:平面直角坐标系;
第7章:三角形;
第8章:二元一次方程组;
第9章:不等式和不等式组;
第10章:数据的收集、整理与描述整个教材体现了如下特点;
1.现代性--更新知识载体,渗透现代数学思想方法,引入信息技术;
2.实践性--联系社会实际,贴近生活实际;
3.探究性--创造条件,为学生提供自主活动、自主探索的机会,获取知识技能;
4.发展性--面向全体学生,满足不同学生发展需要;
5.趣味性--文字通俗,形式活泼,图文并茂,趣味直观。
三、教学目标
知识技能目标:线的有关知识,掌握平面直角坐标系的画法,学会二元一次方程组、不等式及不等式组的解法,能够绘制简单的统计图表。同时进一步提高学生几何作图能力。过程方法目标:学会观察和分析几何图形,发现图形的特征和图形之间存在的关联,学会总结规律。初步建立方程思想,学会使用代数式表示数量及数量之间的关系。态度情感目标:认识生活,感知生活,领悟数学是为生活服务。
四、教研工作
认真学习业务理论,并做好一周一次的业务笔记,提高自己的理论水平,丰富自己的业务知识;积极参加一切课题研究活动,敢想敢干,敢于创新,不怕失败。在学习策略上及时指导学生,培养思维,方法技巧,提升能力。及时对教学活动作出反思,每周写出一至两个教学反思,真正体会自己的优缺点,做到有的放矢,进一步提高自己。每周及时上传四个教案和四个课时作业。认真做到备学生。每周整理出一个精品教案,及时上传。发挥多媒体教学优势,积极利用和制作课件,提高自己电化教学能力。
五、注意事项
1.要由"单纯传授知识"转变为"既传授知识,又培养学生数学思维方式和能力"?
2.要由"教师主导,学生被动接受知识"转变到"以学生为主体,教师组织引导"?
3.教法要灵活,不以教师的讲解代替学生的活动?
4.结合具体的教学内容和学生的实际活动创设问题的情境?
5.给学生留出相应思考余地,自己作出判断,教师先不要急着作出相关的提示或暗示?
6.应设法让学生参与到"观察、探索、归纳、猜测、分析、论证、应用"的数学活动中来并适当搭造"合作、交流"的平台?
7.重点应落在掌握有关基础知识和技能上?
8.要深入钻研,创造性的设计教学过程。
六、课时安排(教学进度)
第一周 5.1相交线;
第二周 5.2平行线;
第三周 5.3平行线性质 5.4平移;
第四周数学活动,小结与单元检测活动;
第五周 7.1与三角形有关的线段;
第六周 7.2与三角形有关的角 7.3多边形及其内角;
第七周 7.4镶嵌 活动小结 期中考试;
第八周 8.1二元一次方程组 8.2消元五;
第九周 8.3再探实际问题和三元一次方程组;
第十周小结与检测;
第十一周 9.1不等式 9.2探实际问题和一元一次不等式;
第十二周 9.3一元一次不等式组 9.4课题学习;
第十三周小结与检测;
第十四周 10.1统计调查;
第十五周 10.2直方图 10.3课题学习;
第十六周进行复习。
初一数学教师下学期工作计划2020【三】为了在七年级下学期里的数学教学工作能够更好地开展,现对下学期的工作计划如下:
一、基本情况分析
1、学生情况分析:
本学期我继续承担七(1)(2)两班的数学教学,两班学生进行了一个学期的学习,虽然期末考试成绩可以,但是发现两班学生尖子生少,中等生较多,差生较多,上课很多学生不认真,学习态度、学习习惯不是很好,学生整体基础参差不齐,没有养成良好的学习习惯,对多数学生来说,简单的基础知识还不能有效掌握,成绩稍差。学生的逻辑推理、逻辑思维能力,计算能力要有待加强,还要提升整体成绩,适时补充课外知识,拓展学生的知识面,抽出一定的时间强化几何训练,培养学生良好的学习习惯。全面提升学生的数学素质。
2、教材分析:
第五章、相交线与平行线:本章主要在第四章“图形认识初步”的基础上,探索在同一平面内两条直线的位置关系:①、相交②、平行。本章重点:垂线的概念和平行线的判定与性质。本章难点:证明的思路、步骤、格式,以及平行线性质与判定的应用。
第六章、实数:了解算术平方根、平方根、立方根的概念,会用根号表示平方根与立方根.会求一个数的平方根与立方根.2.了解无理数、实数的概念,实数与数轴一一对应的关系,能估计无理数的大小,能进行实数的计算.本章重点:平方根、立方根的概念,会用根号表示平方根与立方根.会求一个数的平方根与立方根.本章难点:实数的概念,实数与数轴一一对应的关系。
第七章、平面直角坐标系:本章主要内容是平面直角坐标系及其简单的应用。有序实数对与平面直角坐标系的点一一对应的关系。本章重点:平面直角坐标系的理解与建立及点的坐标的确定。本章难点:平面直角坐标系中坐标及点的位置的确定。
第八章、二元一次方程组:本章主要学元一次议程(组)及其解的概念和解法与应用。本章重点:二元一次方程组的解法及实际应用。本章难点:列二元一次方程组解决实际问题。
第九章、不等式与不等式组:本章主要内容是一元一次不等式(组)的解法及简单应用。本章重点:不等式的基本性质与一元一次不等式(组)的解法与简单应用。本章难点:不等式基本性质的理解与应用、列一元一次不等式(组)解决简单的实际问题。
第十章、数据的收集、整理与描述:本章主要学习收集、整理和分析数据,并根据数据对调查对象作出正确的描述。本章重点:调查的意义、特点及分类,利用扇形图、频数分布直方图和频数拆线图描述数据。本章难点:绘制数据统计图及如何利用各种统计图对调查对象作出正确的描述。
二、教学目标和要求
(一)知识与技能
1、获得数学中的基本理论、概念、原理和规律等方面的知识,了解并关注这些知识在生产、生活和社会发展中的应用。
2、学会将实践生活中遇到的实际问题转化为数学问题,从而通过数学问题解决实际问题。
体验几何定理的探究及其推理过程并学会在实际问题进行应用。
3、初步具有数学研究操作的基本技能,一定的科学探究和实践能力,养成良好的科学思维习惯。
(二)过程与方法
1、采用思考、类比、探究、归纳、得出结论的方法进行教学;
2、发挥学生的主体作用,作好探究性活动;
3、密切联系实际,激发学生的学习的积极性,培养学生的类比、归纳的能力。
(三)情感态度与价值观
1、理解人与自然、社会的密切关系,和谐发展的主义,提高环境保护意识。
2、逐步形成数学的基本观点和科学态度,为确立辩证唯物主义世界观奠定必在的基础。
三、提高教学质量的主要措施
1.本学期教学工作重点仍然是加强基础知识的教学和基本技能的训练,在此基础上努力培养学生的分析问题和解决问题的能力。
所以要抓好课前备课,这就要求我要认真研究教材,把握每节课的教学重点和难点,课堂上注重教学方法,努力让不同的学生都学到有用的数学。
2.依据课程标准、教材要求和学生实际,设计出突出重点,突破难点,解决关键的整体优化教学方法。
教学方法的运用要切合学生的实际,要有利于培养学生的良好学习习惯,有利于调动不同层次的学生的学习积极性,有利于培养学生的自学能力、思维能力和解决问题的能力。采取多种教学方法,如多让学生动手操作,多设问,多启发,多观察等,增加学习主动性和学习兴趣,体现学生的主体性。教学过程中尽量采取多鼓励、多引导、少批评的教育方法。这样通过多种教学方法,充分调动学生的学习积极性,使学生形成主动学习的意识,教学中通过鼓励性的语言激励学生,使水同层次的学生都能得到鼓励,以此增强他们的学习信心。
3.根据学生的不同学习状况,给不同的学生布置不同的作业,对于学习比较的学生,给他们留一些与课堂教学内容相关的基础性的作业,检验他们对当堂教学内容的掌握情况;
对于学习成绩比较好的学生,留一些综合运用或拓展能力方面的作业,检查他们对知识的灵活运用和综合运用情况。
4.利用课堂教学培养学生养成良好的学习习惯。
要求学生课前自学,通过预习“我”知道了什么,还有什么不知道或还有什么我看不懂,在书上做出记号。以便上课时重点听讲。课堂上,要求学生养成良好的听课习惯:课前做好上课的准备,听课时要集中精神,专心听讲,积极思考问题,认真回答问题,不懂的及时提出来。要求课后养成复习的习惯,每天都要把所学的知识进行复习,可在头脑中回顾当天所学知识,对于忘掉的或回想不起来的,可翻书重新记忆。另外,隔段时间还要把前面所学的知识再行回顾,以免时间长了忘记了。要求学生每天认真完成作业,作业要书写工整,解题规范,杜绝抄袭现象,使学生养成良好的做作业习惯。
5.关注待进生,不歧视待进生,尊重、关心、爱护他们,使他们感到老师和同学对他们的关心。
设置一些简单的问题,由他们回答,增强他们的自信心。利用中午休息时间或课外活动时间为他们辅导,尽量使他们跟上教学进度。另外,对他们要有耐心,对于他们提出的问题,耐心解答。
6.培优补差。
对于中上等生,利用课后阅读材料和课外资料丰富他们的头脑,增加他们的知识面,通过专题训练,提高他们的综合分析问题的能力和解决问题的能力。鼓励他们利用课余时间通过课外资料或上网学习等方式拓宽他们知识面和视野,不懂就问,养成勤学好问的习惯,以提高他们的各方面的能力。对于待进生多关心和帮助,在课堂上多提问他们一些简单的问题,多鼓励他们,以增强他们的信心。
初一数学教师下学期工作计划2020【四】一、指导思想:
本学期教学,要使学生扎实透彻学好基础知识与基本技能,进一步培养自学能力、运算能力、思维能力和空间观念:能够运用所学的知识解决简单的实际问题,初步培养学生的数学应用意识、创新意识、良好个性品质及初步的辩证唯物主义的观点。
二、教学目标:
1、知识目标:掌握整式的加、减、乘、除运算,平方差、完全平方公式、平行线的特征,角的运算,一次方程组的运算;
平面图形的认识及位置与坐标的了解。
2、能力目标:
(1)会进行整式的加、减、乘、除运算,会推导平方差、完全平方公式,解一次方程组,平行线及角的计算。
(2)会用尺规做平行线和角,了解位置与坐标。
3、情感目标:培养学生了解数学的价值,发展用数学的信心。
三、教材分析:
本学期内容共分七章:第八章,主要讲角的表示;角的比较;角的度量;对顶角;垂直;第九章,讲了有关平行线的性质定理;第十章讲了一次方程组的解法及应用;第十一章主要讲了掌握整式的加、减、乘、除运算;第十二章主要讲了平方差、完全平方公式;第十三章讲了平面图形的认识;第十四章讲了位置与坐标。
教学重点:整式的运算、一次方程组、乘法公式。
教学难点:平行线与相交线、一次方程组的应用、位置与坐标。 突破重、难点的措施:引导探究、合作交流。 教学方法:引导探究,多媒体辅助教学。
四、学情分析:
本人本学期继续担任初一(1)班的数学教学工作。根据上学期平时课堂表现和期中期末考试的情况来看,学生的数学成绩不算理想,总体的水平一般,尖子生不突出、低分的学生又较多,整体感觉学生学习欠缺思考和训练,自觉性不高,表面看参与积极,但投入度不够,对基本概念的把握不够透彻。根据上述情况本学期的工作重点将扭转学生的学习态度,指导学生数学学习方法,强化学生的透彻意识,激发学生学习数学的热情,培优补差,同时强调对数学知识的灵活运用,进一步推动数学教学中学生素质的培养。
五.进度安排:
1-2周 角 3-4周 平行线 5-6周 一次方程组 7--9周 整式的乘除 10 期中复习考试 11-12周 乘法公式与因式分解 13-14周 平面图形的认识 15-16周以后 位置与坐标 17周以后期末复习
六、具体教学措施:
1、创造性地整合使用教材。
在教学中必须以生为本,适合学生发展的选择就是最好的,重基础深挖掘透理解。
2、在课前课中尽量充分调动学生的积极主动性,发挥学生的主体作用及科代表的组织作用。
3、设计好导课尽量以激趣的形式引入课题,集中学生的注意力,在课前以自主预习为主,在课中以展示交流为主。
4、进一步扭转部分学生的厌学情绪。
利用课余时间对他们进行座谈辅导,在平时的课堂中多给予追问和表现机会,给后进生树立信心。对优生要严格要求,端正他们的学习态度,抑制他们产生骄傲情绪。
5、用好课堂小组评价,以点带面,以先进带后进,让后进生自动自觉不掉队,发挥帮扶的力量。
6、坚持因材施教原则,逐步实施分层教学、作业,向基础不同的学生提出相应的要求,力求使中下生吃得上,中等生吃得下,优生吃得饱,即课堂练习、作业及要求等进行分层要求。
初一数学教师下学期工作计划2020【五】本期我继续教授初一(8)班和(9)班的数学教学工作。新的学期,新的开始,学校呈现出一派生机勃勃的新面貌。为了搞好本期工作,兹制定教学工作计划如下:
一、指导思想:
新学期里,本人将积极接受学校分配给自己的各项教育教学任务,以强烈的事业心和责任感投入工作。遵纪守法,遵守学校的规章制度,工作任劳任怨,及时更新教育观念,实施素质教育,全面提高教育质量,保持严谨的工作态度,工作兢兢业业,一丝不苟。热爱教育、热爱学校,尽职尽责、教书育人,注意培养学生具有良好的思想品德。认真备课上课,认真批改作业,不敷衍塞责,不传播有害学生身心健康的思想。
二、学情分析:
8班和9班在素质上差距不大,纪律整体比较差.现在的学情与现实决定了并不是付出十分努力就一定有十分收获。但教师的责任与职业道德时刻提醒我,没有付出一定是没有收获的。作为新时代的教师,只有付出百倍的努力,苦干加巧干,才能对得起良心,对得起人民群众的期望。
三、素质教育:
我注重推行素质教育,坚决把实施素质教育落实在行动上。关心爱护全体学生,尊重学生的人格,平等、公正对待学生。对学生严格要求,耐心教导,不讽刺、挖苦、歧视学生,不体罚或变相体罚学生,保护学生合法权益,促进学生全面、主动、健康发展。
导学案是老师讲课的依据,不仅写明教学要求和教学目的,也写清能力训练的内容、要求、目的及教学措施等,不仅体现教学大纲的要求,也保证将大纲要求落实到实处。这样做就能使素质教育在整个教育教学中成为一项必不可少的内容,避免了盲目性,随意性,增强了计划性。在编写教案时注意选择教育的方法和时机,达到既给学生传授知识,又开发学生思维能力,促进学生全面发展。在具体的教学过程中,结合所学内容,使学生学习数学知识的同时,也吸取其它方面的“营养”,开阔他们的视野,拓展他们的知识面,培养实事求是和刻苦学习的科学态度。
四、教研工作:
我将积极参加教学研究工作,不断对教法进行探索和研究。谦虚谨慎、尊重同志,相互学习、相互帮助,维护其他教师在学生中的威信,关心集体,维护学校荣誉,共创文明校风。对于素质教育的理论,进行更加深入的学习。在平时的教学工作 中努力帮助后进生,采取各种措施使他们得到进步。
五、出勤:
在工作中我一定要做到不迟到、不早退,听从领导分配,不挑肥拣瘦讲价钱,平时团结同志,尊老爱幼,做到互相关心,互相爱护。作为一名教师,我一定自觉遵守学校的各项规章制度,以教师八条师德标准严格要求自己,工作严肃认真,一丝不苟,决不应付了事,得过且过,以工作事业为重,把个人私心杂念置之度外,按时完成领导交给的各项任务。
六、本期数学的能力要求
1、基本技能:能够按照一定的程序与骤进行运算、作图或画图,进行简单的推理。
2、逻辑思维能力:会观察、比较、分析、综合、抽象和概括;
会用归纳、演绎和类比进行推理;会准确地阐述自己的思想和观点,形成良好的思维品质。
3、运算能力:不仅会根据法则、公式等正确地进行运算,而且理解运算的算理,能够根据题目条件寻求合理、简捷的运算途径。
4、分析问题和解决问题的能力:能够解决实际问题,是指解决带有实际意义的和相关学科中的数学问题,以及解决生产和日常生活中的实际问题。
在解决实际问题中,把实际问题抽象成数学问题,形成用数学的意识。
七、教学常规:
我将积极从提高课堂教学效益的各个侧面探讨提高课堂教学效益的因素。我将积极学习,翻阅有关资料,对教育理论、目标教学、教学方法、学法指导、智力因素和非智力因素等进行再认识,提高用理论来指导实践的能力。积极实行目标教学,根据教材和学情确定每节课的重难点。平时备好课,上好课,向40分钟要质量。坚持周前备课,努力做到备课标、备教材、备学生、备教具,备教法学法。从知识能力两方面精心设计教案,并积极地使用各种电教器材,提高课堂教学效益,坚决杜绝课堂教学的盲目性和随意性,在课堂教学方面我力争课堂解决问题,在教学中抓关键,突重点,排疑点,讲求教法,渗透学法,既教书更育人,使学生的身心得到全面和谐的发展。
八、学期工作目标:
一、素质教育目标
(一)知识教学点:
1.了解根的判别式的概念.
2.能用判别式判别根的情况.
(二)能力训练点:
1.培养学生从具体到抽象的观察、分析、归纳的能力.
2.进一步考察学生思维的全面性.
(三)德育渗透点:
1.通过了解知识之间的内在联系,培养学生的探索精神.
2.进一步渗透转化和分类的思想方法.
二、教学重点、难点、疑点及解决方法
1.教学重点:会用判别式判定根的情况.
2.教学难点:正确理解“当b2-4ac<0时,方程ax2+bx+c=0(a≠0)无实数根.”
3.教学疑点:如何理解一元二次方程ax2+bx+c=0在实数范围内,当b2-4ac<0时,无解.在高中讲复数时,会学习当b2-4ac<0时,实系数的一元二次方程有两个虚数根.
三、教学步骤
(一)明确目标
在前一节的“公式法”部分已经涉及到了,当b2-4ac≥0时,可以求出两个实数根.那么b2-4ac<0时,方程根的情况怎样呢?这就是本节课的目标.本节课将进一步研究b2-4ac>0,b2-4ac=0,b2-4ac<0三种情况下的一元二次方程根的情况.
(二)整体感知
在推导一元二次方程求根公式时,得到b2-4ac决定了一元二次方程的根的情况,称b2-4ac为根的判别式.一元二次方程根的判别式是比较重要的,用它可以判断一元二次方程根的情况,有助于我们顺利地解一元二次方程,也有利于进一步学习函数的有关内容,并且可以解决许多其它问题.
在探索一元二次方程根的情况是由谁决定的过程中,要求学生从中体会转化的思想方法以及分类的思想方法,对学生思维全面性的考察起到了一个积极的渗透作用.
(三)重点、难点的学习及目标完成过程
1.复习提问
(1)平方根的性质是什么?
(2)解下列方程:
①x2-3x+2=0;②x2-2x+1=0;③x2+3=0.
问题(1)为本节课结论的得出起到了一个很好的铺垫作用.问题(2)通过自己亲身感受的根的情况,对本节课的结论的得出起到了一个推波助澜的作用.
2.任何一个一元二次方程ax2+bx+c=0(a≠0)用配方法将
(1)当b2-4ac>0时,方程有两个不相等的实数根.
(3)当b2-4ac<0时,方程没有实数根.
教师通过引导之后,提问:究竟谁决定了一元二次方程根的情况?
答:b2-4ac.
3.①定义:把b2-4ac叫做一元二次方程ax2+bx+c=0的根的判别式,通常用符号“”表示.
②一元二次方程ax2+bx+c=0(a≠0).
当>0时,有两个不相等的实数根;
当=0时,有两个相等的实数根;
当<0时,没有实数根.
反之亦然.
注意以下几个问题:
(1)a≠0,4a2>0这一重要条件在这里起了“承上启下”的作用,即对上式开平方,随后有下面三种情况.正确得出三种情况的结论,需对平方根的概念有一个深刻的、正确的理解,所以,在课前进行了铺垫.在这里应向学生渗透转化和分类的思想方法.
(2)当b2-4ac<0,说“方程ax2+bx+c=0(a≠0)没有实数根”比较好.有时,也说“方程无解”.这里的前提是“在实数范围内无解”,也就是方程无实数根”的意思.
4.例1不解方程,判别下列方程的根的情况:
(1)2x2+3x-4=0;(2)16y2+9=24y;
(3)5(x2+1)-7x=0.
解:
(1)=32-4×2×(-4)=9+32>0,
原方程有两个不相等的实数根.
(2)原方程可变形为
16y2-24y+9=0.
=(-24)2-4×16×9=576-576=0,
原方程有两个相等的实数根.
(3)原方程可变形为
5x2-7x+5=0.
=(-7)2-4×5×5=49-100<0,
原方程没有实数根.
学生口答,教师板书,引导学生总结步骤,(1)化方程为一般形式,确定a、b、c的值;(2)计算b2-4ac的值;(3)判别根的情况.
强调两点:(1)只要能判别值的符号就行,具体数值不必计算出.(2)判别根的情况,不必求出方程的根.
练习.不解方程,判别下列方程根的情况:
(1)3x2+4x-2=0;(2)2y2+5=6y;
(3)4p(p-1)-3=0;(4)(x-2)2+2(x-2)-8=0;
学生板演、笔答、评价.
(4)题可去括号,化一般式进行判别,也可设y=x-2,判别方程y2+2y-8=0根的情况,由此判别原方程根的情况.
又不论k取何实数,≥0,
原方程有两个实数根.
教师板书,引导学生回答.此题是含有字母系数的一元二次方程.注意字母的取值范围,从而确定b2-4ac的取值.
练习:不解方程,判别下列方程根的情况.
(1)a2x2-ax-1=0(a≠0);
(3)(2m2+1)x2-2mx+1=0.
学生板演、笔答、评价.教师渗透、点拨.
(3)解:=(-2m)2-4(2m2+1)×1
=4m2-8m2-4
=-4m2-4.
不论m取何值,-4m2-4<0,即<0.
方程无实数解.
由数字系数,过渡到字母系数,使学生体会到由具体到抽象,并且注意字母的取值.
(四)总结、扩展
(1)判别式的意义及一元二次方程根的情况.
①定义:把b2-4ac叫做一元二次方程ax2+bx+c=0的根的判别式.用“”表示
②一元二次方程ax2+bx+c=0(a≠0).
当>0时,有两个不相等的实数根;
当=0时,有两个相等的实数根;
当<0时,没有实数根.反之亦然.
(2)通过根的情况的研究过程,深刻体会转化的思想方法及分类的思想方法.
四、布置作业
教材P.27中A1、2
五、板书设计
12.3一元二次方程根的判别式(一)
一、定义:……三、例……
…………
二、一元二次方程的根的情况……练习:……
(1)…………
关键词:第一轮复习; 作业设计; 原则; 方法
中图分类号:G633.6 文献标识码:A 文章编号:1006-3315(2016)02-029-003
一、问题的提出
第一轮复习非常重要,它是整个九年级复习的基础和关键,起着承上启下的作用。在这一阶段主要抓好对基本概念准确记忆和实质性的理解,抓基本方法、基本技能的熟练应用,抓公式和定理的正用、逆用、变用、巧用,抓基本题型的训练。教师会根据作业情况对自己的教学方式和教学内容作及时的调整和反思,归纳和总结典型错误,并在以后的教学中加以改进,所以我们必须精心设计有效的作业,提高效率。通过问卷调查和目前教学现状表明,由于数学作业设计质量不佳的原因会普遍引起以下几个问题:
(一)课堂教学中习题质量不高,导致学生基础知识掌握不扎实
在第一轮复习过程中,教师没有很好选取课堂习题,片面的追求复习进度来完成了对知识内容的复习。这样似乎节省了很多时间,但实际上学生在复习过程中,对于很多知识尤其是七年级和八年级的知识已经不熟悉甚至遗忘,这样的复习会导致学生第一轮复习过后对基础知识的掌握仍然不扎实,从而影响第二轮的复习。
(二)教师布置作业比较随意,导致学生降低对学习数学的兴趣
新课改实施以来,大部分教师以新课改理念为指导,不断地优化自己的教学行为,学生的学习逐渐成为一个快乐的过程。但有不少教师在设计和布置作业时没有明确的目标和清晰的意图,缺乏必要的思考,如教师通过各种方式让学生购买教辅资料,如当堂检测,孟建平数学,优化与提高,中考模拟等等,利用这些资料让学生强化性做题,不仅浪费学生的时间,不能很好的促进学生的发展,还会降低甚至失去对数学学习的兴趣。
(三)作业的设计缺乏实践性和创造性,导致学生缺少解决实际问题的方法
数学源于生活,也应用于生活。教师要善于联系生活实际进行作业设计,充分展现数学的应用价值,让学生在生活中体会“处处有数学”。应考虑让学生用所学的数学知识解决实际生活中的问题,锻炼学生的创新思维。在实际复习过程中教师由于多方面的原因,作业中很多掺杂了些繁、难、偏、旧、机械的、滞后的题目,缺乏联系生活实际,教师和学生可能很辛苦,但是复习效果较差。
二、数学复习课作业设计的原则
(一)作业设计要体现基础性
每年的中考题安排了较大比例的试题来考查“双基”,所以复习中要紧扣教材,夯实基础。要在这部分试题上保证得分,就必须结合教材,对整个初中阶段需要掌握的内容心中要有清晰的脉络;其次,复习应配备适量的练习,习题的难度要加以控制,以中等题和简单题为主。
案例一:在复习到平方根和算术平方根概念之后,设计了这样一组题:
1. 2的平方根是( )
A.4 B.C. D.±(12年江苏)
2. 4的算术平方根是
A.±2 B. 2 C.-2 D.(15年浙江湖州)
3. 化简:=( )
A.2 B.-2 C.4 D.-4(12年甘肃)
4. 化简=_________。(13年安徽)
通过精选近几年中考题中涉及相关章节知识点的中等题和简单题,让学生有针对性地进行适量训练,既巩固了当天复习的内容,也能使学生进一步了解中考命题特点,激发兴趣,增强数学学习的信心。
(二)作业设计要体现趣味性、实践性
教育和发展心理学巨匠皮亚杰说:“所有智力方面的工作都要依赖于兴趣。”兴趣是最好的老师。但长期以来,由于教学任务比较重或受习惯性思维影响,教师在设计作业时没有多加思考,缺乏明确的目标和清晰的意图,使很多的学生降低了学习的兴趣,同时也失去了学习数学的灵气和创造的激情。要想改变这种状况,在作业设计中,必须要适当增强作业的趣味性、实践性。这样才能让学生在作业中集中注意力,并保持饱满的热情,从而提高作业的质量,使其形成良好的兴趣和爱好。
案例二:当学生复习有理数的加、减、乘、除混合运算后,设计了如下题目:有一种“二十四点”的游戏,其规则是这样的:任意四个1~13间的自然数,将这四个数(每个数用且只能用1次)进行加、减、乘、除运算,使其结果等于24。如对1、2、3、4所作运算:(1+2+3)×4=24。
(1)现有四个有理数3、4、-6、10运用上述规则写出三种不同方法的运算,使其结果等于24。
(2)现有四个数3、-5、7、-13仍运用上述规则,写出一种运算式,使其结果等于24。
算24,这是生活中的扑克游戏,学生在这类似游戏的快乐作业中,加强了“双基”,增强了阅读能力和按规律研究的意识,也提高了对数学学习的兴趣。
(三)作业设计要体现层次性
对于第一轮复习必须坚持作业设计体现基础性,但不同的学生肯定是有差异的,那么在关注中等及以下同学发展的同时,我们还应该重点关注那些数学尖子生,让尖子生仍能积极思考,激发其兴趣,所以笔者认为在作业布置时必须有层次性。
案例三:笔者把作业分为三个层次。A组――基本题。重在“双基”训练,适合“学困生”;B组――变式题。培养学生的迁移能力,适合“中等生”;C组――创新题。培养学生创造性解决问题的能力,适合少数“尖子生”。下面举例说明:
第一层: A组 基础性题目
1.已知:在RtABC中,∠C=90°, AC=4 AB=5,求cosA的值。
2.已知:在ABC中,∠C=90° E是AC边任一点,且EDAB,垂足为D,交AB于D。求证:ADE∽ACB。
第二层:B组 提高题
1. 已知:在RtABC中,∠C=90°,如果sinA是方程2x2+3x-2=0的根,求cosB的值。
2.已知:在ABC中,∠C=90° AC=8 BC=6,点D、E分别在AB、AC边上,且DE垂直平分AB,求DE的长。
第三层:C组 开放性或探究性题
1.在某海域中有一海岛A,它的四周20海里范围内为暗礁区。一艘轮船由东向西航行,在B处见岛A在北偏西60°,航行24海里到C处见岛A在北偏西30°,货轮继续向西航行,有无触礁危险?
这样,不同层次的学生能比较轻松地完成他们的相应作业,使他们的数学基础都能在原有的基础上得到较大的提高。同时,我还适时鼓励大家向更高层次的作业挑战,培养他们战胜困难的勇气。教师要树立“只有差异,没有差生”的观念,让不同水平、不同层次的学生能体验到成功,尤其是创新成功。
三、数学复习课作业设计的形式与方法
(一)知识性作业的设计
1.按知识结构设计作业层次。一般可以有三类,A级为基本练习:重在基础知识和基本技能的操练,浅显易懂,紧扣当天所学的内容;B级为提高练习:重在对知识的理解和运用,难易尺度是学生“跳一跳,够得着”;C级即创新练习:重在对概念的深刻理解和灵活运用,这种题目有一定的难度。
案例四:如在复习一次函数的概念后,可以设计这样一份作业:
一、填空题
(A)(1)已知函数y=(m+1)x+2m-4当m_______时,它是一次函数;当m______时,它是正比例函数。
(B)(2)若一次函数y=2m(x+1)-4表示正比例函数,则m=_____。
(B)(3)已知函数y=(m-3)x +m+1是关于x的一次函数,则
m=___。
二、解答题
(B)(4)已知函数y=(k2-4)x-k
①当k为何值时,这个函数为正比例函数?并求解析式;
②当k在什么范围内取值时,这个函数是一次函数?
三、探究题
(C)(5)观察表中,y与x是否成一次函数关系?如果是,求该一次函数的解析式,如果不是,改动尽量少的数字,使其成为一次函数,并写出解析式。
(C)(6)已知2y-2m与3x+4n成正比例,证明:y是x的一次函数。
这样,通过基本的、提高的、创新的不同层级的题组作业,不同程度的学生能够对一次函数以及正比例函数的概念得到最大程度的理解和掌握,并在实际问题中灵活运用。
2.同一类问题设计有梯度
对有一些题由易到难的设置问题,使学生踏着阶梯一步一步探索,让每一位学生都能获得不同程度的成功尝试,激发学生的潜能。从教学效果的角度看,设问的多梯度性可以帮助学生发掘问题的各个方面,达到深层次认识问题的本质,有利于培养学生的纵向思维。
案例五:在复习等腰三角形时,设计如下作业:
(1)如果等腰三角形的一个底角为70度,那么它的顶角是多少度?
(2)如果等腰三角形的一个为顶角70度,那么它的底角各是多少度?
(3)如果等腰三角形的一个内角为70度,那么它的其余的角各是多少度?
(4)如果等腰三角形的一个内角为100度,那么它的其余的角各是多少度?
(5)如果等腰三角形的一个内角为n度,那么它的其余的角各是多少度?
这样,通过以上由易到难的题组作业,学生按照有顺序的、可预测的方向进行纵向思考,在逐步体验数学成功的喜悦的同时,加深了对问题的本质理解。
3.根据易错题设计矫正型作业
通过精心设计典型的作业易错题,及时渗透所学的数学思想方法,能使学生掌握知识的学习任务所需的时间大为减少,学习的达成度就越高。笔者曾经在2010年编写了校本课程二次函数矫正型作业设计,以下是部分内容:
案例六:基于性质的《二次函数》矫正型作业
例1:已知函数y=3x2-4x+1,当0≤x≤4时,求y的变化范围。
【错解】当x=0时,y=1;当x=4时y=33
当0≤x≤4时,y的变化范围是1≤y≤33
【剖析】错解是由于对求二次函数值的范围缺乏实质性的认识而造成的,事实上,抛物线在对称轴的左侧时,y随x的增大而减小,抛物线在对称轴的右侧,y随x的增大而增大,于是x=-=时,函数取到最小值-。
【正解】当x=-=时,函数最小值-,所以y的取值范围是-≤y≤33
【矫正练习】
1.若A(-,y1),B(-,y2),C(,y3)为二次函数y=x2+4x-m的图像上的三点,则y1,y2,y3的大小关系是_____。
2.心理学家发现,在一定的时间范围内,学生对概念的接受能力y与提出概念所用的时间x(分钟)之间满足函数关系式y=-0.1x2+2.6x+43(0≤x≤30),y越大,表示接受能力越强。那么,学生在0≤x≤30这段时间内,接受能力y的取值范围是_____。
3.y=-x2+8x-12,在当x≤4时,y有最大值_____。
4.如图,在一面靠墙用长为8米的铝合金制成如图窗框,问窗框的宽和高各为多少米时,窗户的透光面积最大?最大面积是多少?若墙的最大可用长度为3米,则求窗户的透光面积最大?最大面积是多少?
通过易错题的练习,可以提高学生的审题、解题能力和题后反思能力,以起到事半功倍的效果,从而进一步提高数学学习效率。
(二)生活型作业的设计
数学源于生活,又必须回归于生活。联系生活实际进行作业设计,让学生体会到从自己身边的情景中可以看到数学问题,还可以运用数学解决实际问题。学生觉得学习数学有较高的实用价值,这样会使他们对学习数学更有兴趣。
案例七:复习“函数的表示法”时,可这样布置:
如图1所示是小刚骑自行车回家的路程与时间的关系,请你想象小刚回家路上的情景吗?请根据图表来构思一个简单的故事,描述小刚在这段时间内的活动情况。
把数学同生活情境联系起来,不同生活经历的学生会得出不同的描述,激发学生兴趣的同时,又使创新意识得到了培养。同时,学生的参与意识,收集处理信息的能力,提出问题、解决问题的能力也都得到了不同程度的提高。
(三)学案式校本作业的设计
很多学校都开发了适合本校学生学习的校本作业,以达到提高教学质量之功效,然而校本作业也存在较多的问题,需要与时俱进。以学案式校本作业来取代目前的作业形式,更有利于减轻学生负担,提高学习效率。以下是笔者在2015年12月从八上课本探究活动改编的专题课学案(有配套的教案):
案例八:三角形分成两个等腰三角形的条件(学案)
1.课前作业
4.问题拓展,自主学习
同学们能再提出类似的进一步的问题么?
5.作业
(1)如果一个等腰三角形可以分成两个等腰三角形,试确定等腰三角形的三个内角。
(2)三角形可以分成三个等腰三角形的条件是什么?(挑战极限)
学生以“学案式校本作业”为载体先行去探究学习的相关内容,尝试去发现问题、思考问题、解决问题,形成一种属于自己的学习能力,真正学会学习。学生先行自主学习,知道了教师的授课意图,有备而来,克服了过去学习时的被动与盲目,找到了主动学习的支点,在合作学习、探究学习的有力依托下,确立了学生在课堂上的主体地位,培养了学生的分析问题、解决问题的能力。
九年级第一轮复习非常重要,好的作业设计将为提高第一轮复习的质量和效果提供重要的指导和帮助,还为第二轮、第三轮复习打下一个好基础。本文就九年级第一轮复习作业设计的原则、形式及方法等方面作了探究,取得了良好的复习效果。
参考文献:
[1]《数学课程标准》,北京师范大学出版社,2012.1
[2]严育洪著.《新课程评价操作与案例》,首都师范大学出版社,2006.4