欢迎访问爱发表,线上期刊服务咨询

大学物理质点运动学8篇

时间:2023-03-02 15:04:04

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇大学物理质点运动学,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

大学物理质点运动学

篇1

关键词:大学物理;微积分;微分元;微积分思想

DOI:10.16640/ki.37-1222/t.2017.05.179

0 引言

微积分的主要思想和方法是在分析问题时,可以把复杂的过程予以无限侵害,从而满足理想情形的客观条件,即为微分。将无限多个微分元予以无限累积,即为积分。简单地说,就是“化整为零”之后再“积零为整”,从而解决复杂的问题。

1 微积分思想的构建

尽管中学阶段有物理知识的课程,学生们也掌握了一定的物理学基础和技能,不过大学物理在教学和学习方面都存在着很大的差异,特别是在思想方法及原理方面。大学物理的难度的很大的提升,由中学的常量物理问题转变为变量物理问题,短时间内学生还是以中学时期的思S模式来思考问题,因此无法将微积分思想在大学物理中灵活的应用。大学物理由简至难,微积分思想有着鲜明的辩证性,通过微积分思想来解决物理问题,通常都是“化整为零”之后再“积零为整”,也就是化大为小,将大问题分解成小问题,逐步攻克、解决。这种思路的特点就是将有限转换为无限,将近似变成精确,不仅可以提升解决物理问题的效率,还可以提升物理学习与教学的质量。在物理学中,近似处理是找准问题的关键,忽略次要,将难点变以易点,通过易点来解决难题。有一部分大学生提出,大学物理相对较难,有些内容虽然在课堂上听明白了,不过在实际解决问题时总是答不上来。这就需要教师在大学物理的教学过程中科学合理的运用微积分思想,使作用其得到充分地发挥,将其融入到课堂教学中,与例题相结合,助推学生构建微积分思想,将思想、原理和方法与物理问题相结合,从而使学生能够深入掌握,灵活运用,提升学生的学习效率。

2 微积分在大学物理教学中的应用

2.1 微积分阐明物理量之间的关系及物理理论

利用微积分知识来阐明有关物理量与物理理论,一方面可以提高学生的学习兴趣,另一方面还可以提高学生对问题的判断及逻辑推理。

质点运动学中,由平均速度 ,通过Δt0时取极限得微分关系式 ,整理得关系式,得关系式:

到这学生就能够体会到微积分关系式可以解决的两种问题,一种知位置矢量示速度矢量用微分;一种是知速度矢量示位置矢量用积分。同时,这里的理论可以用来求解质点的任意曲线运动。通过微积分给出物理量之间关系及物理定律定理,就可以较为明朗地梳理出物理过程,从而提升学生的物理思维能力,巩固物理量之间的关系。

2.2 微积分应用于特殊条件

在特殊条件的物理结论中,融入微积分思想,进而导出一般条件的物理规律,从而实现微积分思想理解物理规律的作用。

在电磁感应现象中,条为的直导线处在磁感应强度为的匀强磁场中以速度运动旨,所产生的感应电动势为,其中为速度与磁场强度方向的夹角,而速度与导线长度方向是垂直的,电动势方向由左手定则确定,学生对这些内容的掌握较为熟悉。如图1所示,磁感应强度B为非均匀磁场,此时的感应电动势不适用上面的公式,因此可以将导线进行无限分割,其中元段部分可认为符合上面的公式,仅考虑、三者不互垂直时,投影在垂直于构成的平面上的部分(α为)才产生感应电动势,于是元段产生的元感应电动势为,结合矢量运算有,积分可得整个导线所产生的感应电动势为:。

2.3 微分元的选择

在采用微积分方法解题时,巧妙地选择微分元,能够将积分(求和)计算变得更加简单,微分元的选择十分关键,一元积分与元积分相比更加简单,所以我们可以恰当地选择有利的一元积分进行解题。

如图2所示,示质量为半径的匀质薄圆盘过圆心垂直于盘面的转动惯量。利用微积分来解题,微分元有几种不同的选择,如果取圆盘平面的坐标系,微分元是就是二元积分,如果取的是圆盘平面的极坐标系,微分元是也是二元积分,如果建立图2沿半径方向的一维坐标系,微分元选择半径为,宽为的窄圆环,那么就可以进行一元积分,得出:

因此,在大学物理中,使用微积分解答题目时要选择适用的微分元,这样能够降低解题的难度,从而收到事半功倍的效率。

3 结论

在大学物理中,很大一部分的内容均采用了微积分的语言,因此应特别强调各方面的细节,使微积分巧妙地与物理量、物理定律定理及一些难题结合。应用微积分来解题时,首先要清楚为什么采用微积分的分析方法,怎样的问题可以采用微积分方法来分析;其次应明确分析问题的关键方面,也就是微元内近似成什么;然后根据选择微元的基本原则,也就是正确选取恰当的微元。最主要的是必须要从根本意义上理解物理量微分形式的物理含义,从而形成准确的物理观念。在物理教学在科学地选择微积分来解题,一方面能够调动学生的学习兴趣,另一方面同学可以培养学生的思考能力、解决问题的能力及创新能力,提升教学质量。

参考文献:

[1]朱其明,李耀俊.大学物理微积分思想与矢量思想教学浅谈[J]. 中国西部科技,2011(17):82-83.

[2]王凤艳.中学微积分课程的教学研究[D].东北师范大学,2012.

篇2

1.1研究对象的不同对于研究对象,中学物理一般只讨论自然现象中的简单问题如一维问题,而大学物理讨论的是二维、三维甚至多维等复杂问题。比如对于力学内容,中学力学只研究加速度为恒矢量的质点的运动学和动力学问题,而大学力学则还要研究加速度变化时的质点的运动学和动力学问题,中学力学只研究质点的运动问题,而大学物理力学还要研究刚体的运动学、动力学问题,从研究对象上看更广更趋于一般化。中学物理仅对宏观简单特殊规律作一般性的认识和了解就够了,而大学物理则要进一步研究物质运动的理论本质,要运用数理统计的方法得出自然界一般性的普适规律,更上升了一个理论的高度。

1.2研究方法的不同中学物理因研究对象简单,数学知识基础少,所以研究方法基本是归纳法,讨论的规律基本上是从物理现象出发,通过简单实验总结出来的简单规律,比如中学物理力学中得出动量定理、动能定理的时候都是实验归纳法得出的,并且涉及的力基本是恒定的,只讲恒力的冲量、恒力的功,平均冲力等,在电磁学中只介绍匀强磁场、匀强电场的规律等。而大学物理与自然实际就更接近了,要讨论变力的冲量、变力所做的功、非均匀磁场、电场,而研究这些复杂问题所用工具主要是高等数学的微积分思想、矢量代数,通过数学推导演绎的方法结合物理概念得出物理规律,即大学物理讲的规律比中学物理的规律又上升了一个理论的高度。

1.3教学内容和教学进度的不同从教学内容来讲,中学物理量少,概念、原理、规律简单,对物理基本概念和基本定律只有初步浅层的认识,而大学物理涉及的知识量大,概念、原理多且相对复杂,对物理基本规律和物理基本定律要求更多的是掌握其本质和内涵。从教学进度上讲,中学物理讲的较慢,每个概念,每个公式,每个原理教师会进行全面详细讲解,每一个知识点教师都会讲透讲精,讲课重点放在解题技巧的应试训练上,教师会给学生总结题型,归纳方法,并督促学生为了高考不断学习,学生的学多是跟着教师按部就班。而大学物理教学内容量大,而教学时数非常有限,进度快,教师讲课一般都只着重把握知识整体框架,讲清思路,注重理论性、系统性,不象中学那样讲得精细全面。对于解题方法有总结归纳,但习题课的次数较少,学生运用所学知识解决问题的能力较弱,对习惯于被安排、缺乏学习主动性的中学生,就很难在短时间内适应大学教学过程。

1.4学生学习方法的不同中学生一般课前不预习,课后也很少翻阅知识辅导书,只要课堂上跟着老师听课,课余时间除了完成老师布置的作业外,就是作大量的习题,实行题海战术,重复熟练程度高,认为学好物理的标准就是多做题,解难题,学生自主接受新知识的能力较差,不善于提问题,对教师的依赖性较强。而大学生必须做到课前预习,带着问题去听课,课堂上抓住重点、难点,做好课堂笔记,课后要翻阅大量课外资料,对所学知识要融会贯通,及时复结,做的题目不在多,而在精,要学会自学,善于提出问题,要有比较强的学习主体意识。中学物理由于数学知识的欠缺,很多物理概念、规律都是直接给出,没有经过推导,这就决定了中学生接受物理知识的方式主要靠记忆,而大学由于有了高等数学、矢量代数、数理统计等工具,物理概念、物理规律大多可以做详尽的推理,因而大学物理学习概念更注重概念的理解和掌握,物理过程的分析和论证。

2如何做好大学物理和中学物理教学的衔接

2.1循序渐进,适当放慢教学进度学生已习惯于中学教学慢节奏,少容量,讲练结合的教学方法,若一开始就进行快节奏,大容量的教学,学生一下子不能适应,这不仅影响了大学物理的教学效果,同时也会挫伤学生学习物理的积极性。所以,我们在教学过程中最初应适当放慢教学进度,使学生逐渐适应,慢慢逐步进入正常的教学进度,从而达到让学生适应大学的教学进度,学会大学的学习方法。

2.2通过物理绪论课灌输大学物理的重要性大学教师应充分考虑大学物理和中学物理的区别,从一开始就让学生明白大学物理和中学物理在研究对象、研究内容、学习方法等方面有许多的不同,让学生知道大学物理不是中学物理的简单重复。同时我们在绪论课中,应介绍物理学的发展历史、物理学的发展现状和物理学的发展的未来展望,从而引起学生学习物理学的兴趣,另外对理工科学生来说,可以适当地给他们介绍物理学和自己未来的专业的联系,以提高他们学习物理的积极性,例如对我们纺织专业的学生,可适当介绍量子力学与纺织材料等、质点、刚体力学与纺织机械方面的关系。同时还应强调,大学物理的基础学科性质,学学物理不仅仅服务于后续的专业知识,更重要的是学会一种思维的方法、学习方法以及研究问题的方法。

2.3从中学物理内容过渡导入大学物理课题在教学内容方面,很多大学物理知识是在中学物理内容基础上的提高,教师在物理教学时应简要复习中学教材内容,使学生对所学过的内容做一个简单回忆,随后指出中学物理知识的局限性或特殊性,从而比较自然地引入内容,使学生顺利地从中学物理知识过渡到大学物理知识的学习。要做到这一点,必须了解和研究中学物理教材内容,比如直线运动,中学研究了匀加速或匀减速直线运动,但加速度变化时的直线运动该如何考虑呢?比如圆周运动,中学研究的是匀速圆周运动的规律,但当速率变化时,圆周运动的规律又是如何呢?恒力的冲量的定义式和恒力做功的公式中学里都学过,变力的冲量和变力所作的做功又如何计算呢?这样中学内容过渡导入的话学生会很容易从已学过的知识比较顺利地过渡到大学知识。

篇3

【关键词】大学物理;工程力学;教学结合

0 引言

当今大学生通常要完成几十门课程学习。对应用型本科高校的学生来说,课程大致分为四大类:通识课、专业基础课、专业课以及实训课。各课程构成一个完整的体系,在将来的职业生涯和人生中均占有极及重要的地位。课程间相互联系、相互依赖这是非常常见的。大学物理和工程力学是我院机械类、土木类专业的两门重要课程,大学物理为通识课,工程力学为专业基础课。处理好通识课与专业基础课教学中的结合问题,是解决当前应用型本科处理理论课程课时紧与实训课时需增加的这一矛盾的当务之急,在提高学生学习兴趣方面也可起到积极作用。

1 两课程间的联系与区别

大学物理与工程力学的主要区别体现在性质、任务、研究对象方面;联系体现在数学工具的运用及内容重复方面。

1.1 大学物理与工程力学课程的区别

大学物理课为通识课,即基础课,主要是工科类、农学类、医学类学生学习。课程研究对象广泛,包括物质世界的基本规律、基本原理,涉及力、声、光、电、磁、热、原子物理等多个领域,该课程是许多自然科学、工程技术、新技术的基础。它的目的和任务是:通过学习,学生对物理概念、物理规律、物理原理有全面认识,了解物理学的前沿、了解物理学在新技术中的应用;使学生的运算能力、抽象思维能力、创新能力得到严格的训练;培养学生的以科学思想,用科学方法去分析和处理问题的能力。

工程力学为工科类学生的专业基础课。主要包括理论力学(静力学、运动学、动力学)和材料力学,以研究机械运动规律和构件承载能力为主。该课程理论性强但研究对象与后续专业课程、工程实际联系紧密。课程开设的目的和任务是使学生掌握物体机械运动的基本规律及其研究方法,初步学会用这些规律和方法分析、解决工程中简单力学问题,并为后续专业课的拓展及实际工作处理力学问题奠定坚实理论基础。

1.2 大学物理与工程力学课程的联系

从课程内容来讲,力学为大学物理课程中一个重要组成部分。两门课程在内容上有许多重叠和类同之处,可以说工程力学是从物理学中分离出来的一门内容更详细、与工程技术更接近的课程。它将物理学中的力学部分进行了扩展。

此外,两门课程的联系在于处理问题的科学思想、科学方法。建立理想化模型,抓住问题的主要矛盾在两门课程中反复体现。同时,数学知识的应用,比如向量的运算、微积分的应用是两门课程在问题处理方法上的最大共同之处。

2 两课程教学结合的关键

目前,应用型本科院校对学生的实践能力培养日益重视,实践课时在不断加大,理论课学时不断缩减。在实施大学物理与工程力学两课程的教学过程中,应揣摩两课程的特点,坚持有效的教学结合原则。

2.1 正确处理课程内容衔接问题

两门课程中存在不少重复的内容。以马文蔚的《物理学教程》和谢帮华的《工程力学》为例[1-2],工程力学中的静力学部分,重复内容包括:摩擦定律、力矩、空间力系平衡方程、重心的坐标公式;材料力学重复内容包括:应力、剪切变形、受迫振动;运动学部分重复包括:点的运动、刚体的基本运动、运动的合成;动力学部分包括:质点运动微分方程、刚体绕定轴转动的微分方程、功和功率、动能定理、动量定理、动量矩定理、惯性系(惯性系、非惯性系、科里奥利力、惯性力、非惯性系中的动力学方程)、转动惯量。共18处重复。其中应力、剪切变形这两个概念仅在大学物理机械波传播速度与介质的关系这一部分提到,其余部分内容在两门课程基本都有完整的阐述。

因此,两门课程的授课老师应对相应的重复点熟悉,做到不浪费课时、也不漏讲内容。同时,大学物理具有基础性,且很多内容相对容易理解,应坚持大学物理的主体地位原则。这样,一些大学物理教学大纲要求详讲的内容,工程力学课可以略讲或直接删减,如摩擦定律、力矩、空间力系平衡方程、点的运动、刚体的运动、运动微分方程、刚体绕定轴转动的微分方程、功和功率、动能定理、动量定理、角动量定理、转动惯量这11个内容均为大学物理大纲中的必学内容,工程力学课中可略讲或不讲;而相对运动、惯性系、质心运动定理(重心的坐标公式)这3大内容在大学物理大纲中定为选学内容而又是工程力学必不可少的内容。大学物理老师可补充进行讲解或明示学生该内容的重要性,而不是按照大纲机械地删掉。另外,应力、剪切变形这2个内容在大学物理课程中提及,受迫振动只讲特殊情况的部分,大学物理老师也应让学生明白这些内容在后续课程的重要地位。

2.2 正确处理科学思想、科学方法衔接问题

大学物理研究物理规律、物理定理时,建立理想化模型是常用的研究方法。如质点模型、弹簧振子模型、理想气体分子模型、电荷元模型、电流元模型,这种抓住事物主要矛盾的做法正是辩证唯物主义方法论的具体体现。类似的建模思想在工程力学中有刚体、理想变形固体等多种力学模型。倘若没有科学的方法,问题的分析将变得复杂甚至无法解决。教师应进行类比,将这种各领域研究问题方法上的类比渗透于教学过程中。

在具体问题的计算过程中,高等数学微积分、矢量的运算法则均有广泛运用。这基本贯穿了整个大学物理和工程力学的课程内容。若在教学过程中,教师有意识的将数学工具的应用推广到别的领域,将处理方法进行类比。这必将会减轻另一课程的教学和学习负担,使学生的思维能力、科学方法的应用能力进入新的平台。

3 结语

课程间的教学结合问题,是教育者应加重视的问题之一。合理处理大学物理与工程力学课程中的重叠、类同内容,适当进行类比教学,有利用提高课时利用率、提高学生学习积极性,更能满足当前高校教育培养应用型人才的需要。这一问题的有效实施,需要教师研究教材,相互探讨,不断试验,检查效果,及时总结,不断完善。

【参考文献】

篇4

关键词:学习迁移 学科思想方法 高等数学 大学物理

在大学本科教学中,高等数学与大学物理是工科类学生的两门主干基础课,二者之间关系紧密、相互促进。如果教师在基础学科教学过程中既注重学科知识传授过程中的学习迁移理论的应用,又注重学科思想方法的渗透,那将会使学生能够更好地掌握这两门课程的基本理论、知识及物理问题的数学描述和数学问题的物理解释。领会学科的思想方法对提高学生的科学素质及创新能力具有积极的促进作用。因此,研究高等数学与大学物理课程之间的学习迁移及与学科思想方法的融合,对改进教学方法、提高教学质量、促进学生智能发展是十分必要的。国内许多教育工作者将学习迁移理论分别运用到高等数学和大学物理课程中取得了一定的成效,但关于高等数学与大学物理两门重要基础课之间的学习迁移研究尚不多。本文笔者将从高等数学与大学物理关系、学习迁移与学科思想及教学方法探讨三个方面进行讨论。

一、高等数学与大学物理课程关系

高等数学与大学物理关系密切,数学为物理的定量表达提供语言,而具体的物理问题为数学概念的深化理解提供帮助。在工科院校中,大学物理不仅与高等数学有着密不可分的联系,同时,它还在高等数学与其他专业基础课程之间起到了一个纽带与桥梁的作用,即大学物理不仅对高等数学的灵活应用起到一定的深化理解作用,同时,它又对后续专业课程学习以及近代科学技术的了解与掌握具有基石与源泉的地位。

在工科院校中通常大学物理课程总是安排在高等数学的微积分内容之后。因为教师尽管在没有高等数学基础上也可以把物理讲得很生动,也可以阐述一定的物理思想,但是当回避了必要的数学描述与解决问题的数学手段之后,无论所讲的物理知识有多透彻,也都属于科普的范畴。这显然失去了大学物理课程的作用,所以大学物理课必须使用一定的数学工具。

二、高等数学与大学物理的学习迁移与学科思想

高等数学课程与大学物理课程所包含的概念多、涉及面广。从初等数学和高中物理的概念到高等数学和大学物理的概念在思维模式上有了质的变化,这对刚入校的大学生来说,他们在学习高等数学概念或大学物理概念时出现了理解困难。这造成了高等数学学习效果差、成绩不理想的一个共性问题。许多高校的数学或物理教师针对这种情况开展了高等数学或大学物理课程的教学方法研究,运用学习迁移理论到各自的教学活动中,给出了许多有益的方法与研究成果。

学习迁移的基本过程在于对新旧知识进行概括,找出其共性与联系。从心理学角度来说,如果两种活动在刺激物和反应方面有相似之处,则两种学习活动对人的能力和心理特点有共同要求,这样才能实现迁移。教师关于学习迁移在高等数学中的应用不仅要注重其基本概念、基本理论、基本公式、法则、基本运算和基本应用这些知识间的关联问题,而且更要注重这些知识及其联系之间所反映出来的数学思想方法,这是高等数学知识结构组成中的一个重要部分。数学思想方法不仅揭示了数学知识的一般原理与依据,还深层次地揭示了提出问题、描述问题和解决问题的思路与方法。传统的高等数学教学主要注重具体基础知识和基本技能的传授,由于课时限制等原因往往忽视了对这些知识中所蕴涵的数学思想方法的挖掘;注重学生对数学知识本身的理解与掌握,而忽视了向学生揭示这些知识所反映出的数学精髓。这降低了学生在大学物理等后续课程学习过程中的学习迁移能力。因此,在高等数学教学中加强数学思想方法的渗透也是学习迁移理论在高等数学教学应用中的一个重要方面。

对于大学物理而言,物理由于知识之间的逻辑性、连贯性很强,且与其他学科的联系非常紧密。因此,在教学中教师更须注重学习迁移理论的运用,可采用不同形式来运用学习迁移的方法,以使学生更好地理解与掌握一些物理概念、规律或模型。例如,质点直线运动知识和刚体旋转运动知识之间具有许多共性的物理概念,如速度与角速度、加速度与角加速度、力与力矩等。教师对于这些概念可以运用学习迁移理论将质点的直线运动知识水平迁移到刚体旋转运动知识的学习中,或将质点平动部分的有关规律迁移到刚体定轴转动知识的学习中等。这样可以有效地提高学生对刚体定轴转动规律的理解与记忆。同样,教师在运用学习迁移理论的同时不能忽视唯物辩证法的基本规律在物理学上的体现。实际上,大学物理课程本身始终贯穿和体现了对立统一唯物辩证法的本质与核心思想。比如,在牛顿力学部分,两个物体之间的相互作用是直接以力的方式表达的。也就是说两个物体之间的作用力和反作用力在同一直线上大小相等方向相反,且分别作用在两个物体上。这就是把事物在运动、变化和发展过程的相互作用所具有的两个相反方向,以一种特殊的形式表现出来。

三、教学方法探讨

我们根据前边的学习迁移与学科思想讨论可发现二者在学科思想方面的核心都体现了对立统一这一唯物辩证思想。在实际教学过程中,学科思想方法的渗透可以通过例题选择来弥补各科教学各自为政所带来的问题,取得更好的高等数学与大学物理的学习迁移效果。

1.注重例题选择。工科大学本科一年级学生已具有高中物理基础,完全可以理解一些简单的功能原理、运动学等物理问题以及求解思路所涉及的物理概念。因此,在高等数学微积分部分教学中,教师可以适当地增选一些简单的、用微积分来描述的物理问题的例题,从而体现出“数学的定义与定理回归到物理中,既可使各种物理概念和运动规律得到最明确、最简练的表达”。反之,在大学物理运动学教学过程中,教师可以通过此类例题来引导学生对其数学意境有更深邃的理解,更能体会数学语言的丰富内涵和高度的概括力。在各学科教学中注重例题的选择有利于提高学科间学习迁移的效果。

2.注重学科思想的渗透。在工科本科一年级的基础课教育阶段,高等数学与大学物理教育的目的不仅要使学生掌握数学与物理的基础知识与基本技能,为后继课程学习打下坚实的基础,还要注重培养学生良好的个性品质和学习习惯,发展他们的智力,培养他们的能力。学科知识与技能是学科学习的基础,而学科思想方法则是学科学习的灵魂与精髓。学科知识、学科能力与学科思想构成了学科体系,其中学科思想起着主导作用。教师在学科知识教学活动中不仅要注重本学科知识的讲授,更要注重蕴含在知识背后的学科思想方法的渗透。这样可以增强学生发现问题、解决问题的能力。采用学科思想方法与学科知识辩证统一的教学模式将有利于学生智能的进一步扩展。

参考文献:

[1]罗奇.基于迁移理论的高等数学概念教学分析[J].广西民族大学学报:自然科学版,2010.

[2]唐剑岚.国内对于数学学习迁移的研究及反思[J].广西师范大学学报:哲学社会科学版,2009.

篇5

【关键词】 牛顿第一定律 惯性 绝对空间 相对论

1 引言

在大学物理的教学过程中,一般在讲完第一章质点运动学后,即进入第二章质点动力学内容的讲述。而在质点动力学里重点讲述牛顿三大定律及其应用[1-2]。对于牛顿三大定律的应用部分,因为涉及矢量分析及其计算、微分及积分运算等高中物理基本不涉及的内容,故该部分相对来说内容比较好讲,课堂效果也比较好。但对于牛顿三大定律的阐述部分,因为在高中物理里就对此有比较系统的论述,故大部分学生感觉这一部分内容和高中物理一样,甚至有些老调重弹的感觉。因此,在大学物理课堂里讲述牛顿三大定律的时候,如果不对牛顿三大定律作一些拓展的话,那课堂效果将比较差。本教学论文将从绝对空间、相对论等近代物理知识点出发对牛顿第一定律的拓展作些相关研讨。根据本人的教学经验,这种简要的拓展对课堂效果是会起到良好作用的。它不仅可加深学生对牛顿第一定律的理解,而且也让学生简单了解了近代物理和经典物理的异同。特别是,通过这种简要的拓展,可激发学生对学习物理及探索自然界规律的兴趣。

2 牛顿第一定律的相关拓展

在高中物理里,物理教材一般会对牛顿第一定律的内容作如下描述:如果物体所受的合外力为零,则物体将保持其静止或匀速直线运动的状态不变[1-2]。需要注意的是,经过上个世纪无数物理学家的努力,以相对论和量子力学为基础的近代物理已建立起来。而近代物理表明,牛顿力学体系,即牛顿三大定律及万有引力定律都只是在低速、宏观、弱引力条件下成立的[1-2]。因此,考虑到大学物理里后面也会讲述近代物理的相关知识,故在大学物理里讲述牛顿三大定律时将其与近代物理相关知识联系起来的拓展是可行的。下面我们将重点对牛顿第一定律作一些拓展性的探讨。

对于牛顿第一定律的相关拓展,一般可以先从力与物体的运动状态之间的关系来阐述。在历史上,古希腊的亚里斯多德是第一个对力和物体的运动状态之间的关系进行思考并做出结论的人。他从一些简单的事实如手推车现象中得出力是维持物体运动状态的原因。因为,人推车后即给车力的时候,车就可运动起来即可具有运动状态;而人放手不推车后即不给车力的时候,车将静止下来即将不具有运动状态。因此,在车运动和静止两种状态中,人给车的力是至关重要。简单来说,没力就没有运动,因此力是维持物体运动状态的原因。对于该论点,在接下来的将近两千年时间里直到伽利略的出现,人们一直认为它是正确的。从严格意义来说,伽利略的出现才是科学的真正诞生,因为是伽利略将科学实验带入了哲学思辨里。从而使得科学变成一门实验的科学,进而将科学从哲学里分离出来。在著名的斜面实验里,伽利略发现:当小球在很光滑的毛皮滑行时,抬起毛皮的两边,并固定小球在其中一边下滑时的初始高度而降低另一边毛皮的高度时,小球在毛皮滑行的距离虽然变长,但在另一边毛皮小球能滑到的最高高度却和该边固定的初始高度一致。由这一实验现象启发,如果降低另一边毛皮的高度至零,则小球将永远运动下去。明显,一直运动的小球在水平方向上没有受到力的作用,也就是小球能一直维持运动但却并没有受到力的作用,因此力并不是维持物体运动状态的原因。进一步,伽利略认为力是改变物体运动状态的原因。而物体不受力时,物体具有维持运动或静止状态的惯性,也即惯性定律。因此,牛顿第一定律实际上与伽利略的惯性定律一致,故牛顿定律也常被称为惯性定律。

对于力与物体运动状态的关系的讨论,有些高中作为牛顿第一定律的拓展也做了相关阐述。因此,在大学物理课堂里做上面这些阐述有可能是不够的。实际上,在牛顿第一定律里,还可与近代物理相关知识联系起来作进一步简单的拓展。因为,物体的运动与静止状态是相对的。比如,相对于地面是静止的物体,相对于运动的汽车而言就是运动的。因此,在牛顿第一定律描述里,物体不受力时将保持匀速直线运动状态或静止状态时,实际上隐含着参考系。而我们通常将保持匀速直线运动状态或静止状态的物体称为惯性参考系。而惯性参考系背后实际上又隐含着绝对空间的概念。牛顿本人对此非常清楚,因为他清楚知道他的牛顿第二定律只适用于惯性参考系。因此,牛顿为了很好的定义惯性参考系,他在他的划时代巨著《自然哲学的数学原理》里提出了绝对空间的概念。他认为绝对空间是存在的,而且和绝对时间一样是均匀分布的。而惯性参考系则是相对于绝对空间静止或匀速直线运动的参考系。至此,牛顿第一定律从逻辑来看似乎是完美无缺的。但绝对空间是否存在呢?牛顿本人对此也作了简单的理性思考,如牛顿水桶实验等来验证绝对空间的存在。但是,在近代物理里随着相对论的提出,我们知道绝对空间和绝对时间都是不存在的,即空间和时间都是相对的。在享受创建狭义相对论成功所带来的喜悦的同时,爱因斯坦很清醒的认识到在他的狭义相对论里存在一个严重的困难,即:因为抛弃了绝对空间,惯性系将无法定义[3]。而狭义相对论里的两条基本原理,即光速不变原理和相对性原理也都是在惯性系里定义的。

3 结语

在本教学研究论文里,我们对大学物理课堂里如何讲述牛顿第一定律做了相关的拓展性研讨。本研讨主要基于力与物体运动状态的关系、惯性定律、惯性参考系、绝对空间及相对论等脉络来进行展开。因此,本拓展不仅可展示牛顿第一定律背后丰富的哲学、人文历史、逻辑等内涵,也可展示其背后丰富的物理内涵。需要注意的是,虽然相对论已经取得了巨大的成功,但人类的思考与探索还依然前行。此外,在大学物理课堂里对牛顿第二定律、第三定律作相关性拓展讲述也是值得教学研讨的课题。本教学论文的研讨也算是对此课题的抛砖引玉,希望能对同行有所帮助,从而对大学物理的课堂教学起到绵薄之力。

参考文献:

[1]宋士贤,文喜星,吴平.工科物理教程[M].北京:国防工业出版社,2011.

篇6

关键词 坐标系;大学物理;运动学

中图分类号O4 文献标识码A 文章编号 1674-6708(2013)90-0162-02

微积分有着广泛而重要的应用。用微积分求解物理有关问题,是大学物理教学的重点和难点,不易理解和掌握1。但对刚刚开始学习运动学部分的大一新生而言,最困难的不是微积分本身,而是如何选用坐标系来简化微积分运算的问题。一般而言,一个运动学问题可以用多个坐标系来求解,但选择不同坐标系求解同一运动学问题时,所得到的轨迹方程存在着巨大的差别。

轨迹方程越简单,对其进行求导(求速度和加速度)运算就越简单,列出简单轨迹方程的坐标系就比较适合用来求解这类运动学问题。

可以这么说,在运动学中不同的坐标系适合用来解决不同类型的运动学问题,具体而言就是:直角坐标系比较适合用来求解直线运动问题和轨迹方程为一次函数的曲线运动问题;极坐标系比较适合用来求解轨迹方程无法确定的曲线运动问题;自然坐标系比较适合用来求解轨迹方程为二次函数的曲线运动问题。

下面对提出上述论点的理由和依据进行详细论述。

1 求解直线运动问题时,直角坐标系比较占优势

当物体运动的轨迹为直线时,直角坐标系列出的方程一般比较简单,如y=ax+b;极坐标系和自然坐标系列出的方程是由直角坐标方程转换而来,转换而来的方程又比原来的直角坐标方程复杂一些。

现将直角坐标系、极坐标系和自然坐标系对直线轨迹的描述列表如下:

如表1所示,当运动轨迹为直线时,直角坐标方程非常简单,极坐标方程和自然坐标方程比较相似,比直角坐标方程要复杂得多。

一般来说,方程越简单,对其求一阶导数(求速度)和二阶导数(求加速度)的过程就越简单,对比较简单的直角坐标方程进行求导,无疑要比对极坐标方程和自然坐标方程的求导简单的多。也就是说,运动轨迹为直线的运动学问题,使用直角坐标系求解比较占据优势。

2 解决曲线运动问题时,直角坐标系、极坐标系和自然坐标系各有所长

曲线运动的种类有很多,大致可以分为:轨迹为一次函数的曲线运动、轨迹为二次函数的曲线运动和无法确定轨迹函数的曲线运动3类。直角坐标系、极坐标系和自然坐标系在求解这3类运动学问题时,需要列出的计算公式和有效计算步骤也不尽相同。

下面对什么坐标系适合求解什么曲线运动问题展开详细论述。

2.1求解轨迹方程为一次函数的曲线运动时,直角坐标系比较占优势

当物体曲线运动的轨迹为一次函数时,直角坐标系列出的方程一般比较简单,如:y=sinx,y=cosx。

而要将这些直角坐标函数转换为极坐标函数和自然坐标函数,一般是比较困难的。相当于这种困难而言,对直角坐标函数进行一次求导(求速度)和二次求导(求加速度)并不复杂。这种强烈的反差显示,当曲线轨迹方程为一次函数的运动学问题时,使用直角坐标系求解比较占优势。

2.2求解轨迹方程无法确定的曲线运动问题时,极坐标系比较占优势

有些曲线运动问题中没有给出明确的轨迹的方程,求解这类运动学问题可以用极坐标系和直角坐标系,一般不使用自然坐标系,因为自然坐标系求解运动学问题时一般需要明确的轨迹方程。

这类运动中物体所受的力一般都是有心力,而求解质点受有心力作用而运动的问题时,用平面极坐标系就比用直角坐标系方便的多2。

下面分别使用直角坐标系和极坐标系,对一个轨迹方程无法确定的曲线运动的进行分析,在分析的基础上对求解过程的复杂程度进行比较。

例1、如图,已知速度v在i轴的分量为,j轴的分量为,求沿i、j轴的加速度。

对这道例题分别用直角坐标系和极坐标系,求解其速度。现将解题步骤列表如下:

直角坐标系 极坐标系

如表2所示,极坐标系求解速度是,只有2个计算,有效计算步骤4步;直角坐标系求解速度时,有6个计算,有效计算步骤10步。

经过对比,可以看出极坐标系在求解速度上优势明显,如果在进一步求导(求加速度)的话,极坐标方程求导难度不大,而直角坐标方程求导的难度却大大增加了,极坐标系求解该运动学问题的优势将继续增大。也就是说,极坐标系更适合用来求解轨迹方程不确定的曲线运动问题。

2.3求解轨迹方程为二次函数的曲线运动问题时,自然坐标系比较占优势

当物体曲线运动的轨迹为二次函数时,特别是运动轨迹为圆锥曲线时,直角坐标系列出的轨迹方程一般比较复杂,如:、、等,而极坐标系对圆锥曲线的描述为,当e1时曲线为双极线 。如果参数e和p容易获取的话,对极坐标方程式求一阶导数和二阶导数的过程,要比对直角坐标方程式求一阶导数和二阶导数的过程简单得多。

因此、当物体曲线运动的轨迹方程为二次函数,特别是轨迹方程为圆锥曲线时,比较适合使用极坐标系或自然坐标系求解。求解这类问题,自然坐标系又要略强于极坐标系。

下面分别使用自然坐标系和极坐标系对一个轨迹为椭圆曲线的例子进行分析,写出解题过程,并对解题过程进行详细比较。

例2:质点沿着半径为r的圆周运动,其加速度矢量与速度矢量间夹角保持不变。求质点的速度随时间而变化的规律。已知初速度为。

对这道例题分别用极坐标系和自然坐标系,求解其初速度。现将解题步骤列表如下:

如表3所示,虽然极坐标系和自然坐标系都能够顺利求解,但自然坐标系的求解过程比极坐标系的求解过程要简单很多。也就是说,在同样能够顺利求解的情况下,自然坐标系能更好的求解这类问题。

因此,求解轨迹方程为二次函数的曲线运动学问题时,特别是求解轨迹方程为圆锥曲线的运动学问题时,自然坐标系比较占优势。

综上所述,直角坐标系、极坐标系和自然坐标系在求解运动学问题时,各有各的优势。

具体而言就是:求解直线运动问题时,直角坐标系比较占优势;求解轨迹方程为一次函数的曲线运动,直角坐标系比较占优势;求解轨迹方程无法确定的曲线运动问题时,极坐标系比较占优势;求解轨迹方程为二次函数的曲线运动问题时,自然坐标系比较占优势。虽然在总结这些规律的过程中难免有疏漏之处,但这些规律还是能够大致反映各个坐标系的特点的。在课堂教学中将这些规律传授给学生,对提高学生的解题能力很有帮助。

参考文献

[1]梁小佳.微积分在大学物理中的应用探究[J].甘肃高师学报,2010,2:78.

篇7

【关键词】大学物理 教学模式 可视化

【中图分类号】 G 【文献标识码】 A

【文章编号】0450-9889(2015)09C-0150-02

大学物理课程是一门面向理工科各专业学生的重要的必修基础课。该课程既可以为学生进行专业知识的学习打好必要的物理基础,又可以培养学生分析问题和解决问题的能力,培养学生的探索精神和创新意识,树立科学的世界观。高质量的课程教学对培养高素质人才是极为重要的一个环节。

一、大学物理课程教学改革的必要性

目前,在新升格的应用型本科院校中,大学物理课程教学仍然普遍着重理论讲授、演算推理,实物、动画和图片演示少,忽视理论在具体工程中的应用介绍,许多物理现象和物理过程都无法得到很好的呈现,无法引起学生的学习兴趣。演算推理对数学技能要求较高,且最终的理论结果抽象,难于在实际应用中获得实体感受。另外繁杂的数学过程也增加了学习难度,多数学生的求知欲望受到抑制,进而导致学习效率低下甚至完全放弃。

新升本科的应用型高校与研究型高校不同,对物理课程的需求注重于物理概念理解和规律应用,对定律建立的繁杂计算过程要求不高。在这类高校中,如何重新组合和优化教学内容,采用先进有效的教学方式,改变学生难学、厌学的现状,提高教学效果,使课程高质量地服务于应用型人才培养目标,是目前亟待解决的重要问题。

二、大学物理课程的教学和改革现状

物理学是研究物质结构、相互作用和运动规律的学科,它既是自然科学的基础,也是科学技术,尤其是高新技术的理论重要基础。物理学的知识体系建立已经历了几百年的时间,大学物理课程开设也有一百多年的时间,已经形成了成熟的整套体系。

随着大学教育逐步转入大众化教育,高校各个专业对物理知识的需求和侧重愈发细化,大学物理课程的教学内容和方式与现代科学技术的发展已经不相适应。在此背景下,美国高校从20世纪60年代开始掀起了大学物理课程教学改革的浪潮,改革的思路是普通物理应当尽可能反映当代物理科学的最新成果,应当以现代化的研究方法去组织和传授普通物理的内容,目前取得了瞩目的成就。在国内,已经有许多高校开始了课程改革的探索,比如东南大学、北大等高校在课程内容、教学方式等方面都做了许多工作,编写了一系列新的教材,建设精品课程,开通网络教学等。由于学校和学生都具有差异性,在实践当中,发现这些先行高校的改革成果还是不太适应新升格应用型本科院校的教学需要,为此有必要结合自身实际情况,进行课程改革。

三、大学物理课程教学内容改革

根据教育部的部署,新升本的高等院校应当向应用型学校转型,在这指导方针下,各个应用型本科院校结合自身的发展层次以及各专业培养目标对大学物理课程的需求情况,对大学物理的教学内容适当地取舍整合,科学优化,侧重专业需求。既要贴合教学实际,满足各专业培养的需要,又要反映物理科学的发展新成果,逐渐形成符合本校实际的完整课程教学内容。

(一)课程教学内容的重组优化

大学物理课程的内容十分丰富,涵盖了力、热、光、电和近代物理整个普物体系。以我校为例,目前我校的本科工科专业有电子、机械、能源、通信、汽车等专业,还没有集成电路制造等与量子力学密切相关的专业,考虑到教学内容的相对完整性,节选了力、热、光、电这四块内容作为主要讲授内容,不同专业各有侧重。例如,对电子科学与技术专业应适当加强麦克斯韦方程组的介绍;对车辆专业应适当加强质心、转动惯量、热机循环的介绍,对通信专业应适当加强电磁理论的介绍等,基本上满足各专业的实际需求。近代物理部分内容以专题方式融合在一起,适当地进行扩展介绍,并罗列参考资料,做到点到为止。这种专题内容既能解决部分学生对大学物理的特殊要求,又能进一步介绍物理科学的新成就,给学生留下思考空间。

(二)高等数学内容的补充

大学物理课程的教学进度比高等数学的教学进度快些,会出现部分基础内容的脱节现象,即物理中的一些概念定律,用到某些数学知识概念来表示,而学生还没有学习到这些数学知识。为此有必要通过补充少量的数学内容,这些补充内容不求深入、全面,能达到理解物理概念即可,目的在于克服学生面对新概念和新方法时的恐惧心理,解决进度不一带来的问题。国内一些教材提供了很好的示范。此外,数学和物理教师之间可以打破壁垒,加强沟通与合作,比如数学教师在讲解定积分时,能尽量结合物理问题讲解。

(三)精选例题和练习题

例题是学生模仿的范本,练习是加深理解物理概念规律的手段。教师通过讲解精选的典型例子,能够举一反三解决类似的问题。对于非物理专业的学生,设置难度中等偏易、覆盖面较宽的练习题,就能满足实际的教学需要。从心理学的角度看,当学生能够独立完成一道习题时,获得的成就感也会成为其进一步努力学习课程的动力。

(四)大学物理与中学物理的衔接

物理现象观察和分析以及物理演算是物理学的两大重要部分,中学时期的物理教育着重于演算。大学阶段的大学物理应该强调物理思想、物理方法和启发的讲授和引导,培养学生独立思考和严谨的科学态度。中学物理一般讲授的都是简单的物理问题,大学物理关注的是一般规律。教学内容上要注意中学和大学两个阶段的衔接。讲授的内容应当以中学的简单问题出发,经过逐步延伸从而得出一般规律,不能完全丢弃中学阶段打下的物理基础。

四、大学物理课程教学方式探究

新升格的应用型本科院校中,大学物理课程的课时安排一般是64~80个课时,总体上较少。在这样的情况下,可以从教学方式的转变方面着手,通过形式多样的教学方式刺激学生的求知欲望,增强学生学习兴趣,提高教学效率,提升教学效果。

(一)联系实际,结合多媒体技术和仿真技术,激发学习兴趣

围绕课堂讲授内容,借助多媒体技术和仿真技术,引起学生的学习兴趣,丰富课堂的教学内容。例如在讲授质点运动学中运动方程的内容时,通过介绍当前广泛应用的卫星定位技术,向学生提出如何对质点精确定位的问题,启发学生思考,把学生的注意力集中在课堂中,进行启发式教学。然后引出了空间位置的定量化,即建立坐标,进而建立描述质点运动的运动方程。利用多媒体技术,结合卫星在低轨道上的空中分布,展示地球上任意位置都能接收到最少四颗卫星信号的情形,在此基础之上,利用不同卫星的信号建立四个运动方程,求解质点任意时刻的空间位置。通过这样的教学,学生不仅仅学习到了基本的物理知识,还体会到了物理在高科技卫星定位技术中的重要应用。又比如在讲解位移电流时,先用Electronics workbench仿真软件建立一阶RC电路,观察电容的“隔直流,通交流”特性,呈现电容器的充放电过程,既直观演示了在稳恒电流和非稳恒电流两者中磁场的安培环路定律的矛盾,又为引出位移电流假设做好准备,这样学生就能更直观、更深刻了解麦克斯韦的电磁理论。深入挖掘物理知识在生活中或科学前沿中的应用,以及多媒体和仿真技术的合理应用,将会在教学中起到事半功倍的作用。

(二)实验与理论相结合

实验物理也是物理学中极为重要的部分。把物理实验从实验室搬入课堂,或者利用计算机进行物理实验,把物理实验现象在课堂上重现。例如在讲授系统动量守恒的内容时,演示反冲运动,让一名学生坐在光滑地面的滑板车上,手里抱着灭火器,当向后喷出泡沫时,学生和滑板车向前运动。以此为基础,引导学生分析系统受力和运动特点,总结出动量守恒的条件和守恒定律,进而延伸到反冲运动的应用――火箭的发射。从现象到规律,符合物理的认知过程,在学习相关知识点时,学生就比较容易掌握。

(三)开展合作课堂

通过开展合作课堂,改变知识从教师到学生,知识单方向流动,学生参与度较低的局面。教师把知识内容合理拆分成不同的问题,然后按照某种方式将学生分组,提前给不同组别的同学布置不同的问题,要求他们使用Matlab、Mathematica、Origin等工具将物理规律可视化,并在课堂中讲解。例如在机械波的内容中,将波的叠加和干涉两个知识点分成两组,A组别的学生使用Matlab重现叠加现象,B组别的学生使用Matlab重现干涉现象,并且在课堂中各自介绍叠加和干涉的规律。这种教学方式,不仅让学生发挥出学习的自主性和主动性,也让学生学会了科研工具的初步使用,了解科学研究的过程,而且课堂中学生与学生、学生与教师之间互相学习讨论,学生和老师互相之间有了更多的互动和思想的碰撞,知识的流动变成了双向或者多向流动。在开展合作课堂时,要注意两个问题,一是目标主线要明确,二是设置的问题要考虑学生层次,不能够太难。

当前,物理学在不断地发展,前沿领域也不断取得新成果,在大学物理课程的教学中也会不断涌现新的问题,这就要求我们及时跟踪分析新问题,及时调整改变教学内容、教学模式和教学思维,更好地传授物理学知识,培养学生较强的知识应用能力和科学求真精神,又不断地向学生介绍物理学的新成果和新应用。

【参考文献】

[1] 李元杰,孙威娜.大学物理教学改革应关注的几个重要问题[J].中国大学教学,2009(2)

[2] 赵凯华,罗蔚茵.新概念物理教程学[M].北京: 高等教育出版社,1995

篇8

关键词:大学物理 改革 MATLAB

中图分类号:G642.0 文献标识码:A 文章编号:1672-3791(2013)03(c)-0214-01

大学物理是理工科院校学生必修的一门基础课,一般在大一的下学期开设,这时学生虽然有一定的数学基本知识,但由于物理教学仍停留在理论的层次上,繁琐的数学推导,让学生感觉到大学物理的理论性太强,与实际应用偏离很大,这导致一部分学生失去学习物理的兴趣,这一现象引起物理教师的对如何讲授大学物理做了一系列的探索改革,主要在教学方法上、教学内容上以及教学手段上都做了相应的改革方式,关于大学物理改革方法的文章也很多,如闫玉丽撰写的关于大学物理教学改革的思考[1],管薇的工科大学物理教学改革的思考[2],张明霞浅谈大学物理教学改革[3]等等。

如今,计算机技术的迅速发展,给我们提供了强大的计算能力,如mathematic、matlab等具有计算能力并有作图功能的软件被引入到物理教学当中,尤其是matlab,它集数值分析、矩阵运算、信号处理和图形显示于一体,构成一个方便、界面友好的用户环境[4]。大学物理课程中有许多抽象、复杂的物理规律和现象,用传统的方法讲授会使教学受到一定的限制。本文结合matlab语言特点,对大学物理的教学内容适当运用matlab模拟,让学生体会到学学物理的乐趣,激发他们的学习兴趣。

1 Matlab在大学物理教学内容中的模拟应用

1.1 Matlab在质点力学中的应用

运动学对刚刚进入大学校园的大一学生来说,既熟悉又陌生,内容上都接触过,但计算方法是大学学过的微积分,看似多了这么一点,给学生却带来很大的困扰。一部分学生由于微积分没学好,感觉物理难学,还有的学生觉得是高中的知识,简单,对大学物理也不够重视,等等原因,导致学生对大学物理失去兴趣。如果我们在课堂上,能用其他的方法解决同样的问题,会收到很好的效果。

这里举一简单的例子,用Matlab模拟一下斜抛运动。图1是抛体的射程和射高与抛出角之间的关系。从图1中我们可以直观的看出,抛出角是锐角时,射高随抛出角的增大而增大,而射程是先随抛出角增大而增大,然后随抛出角增大而减小。

1.2 Matlab在声学中的应用

Matlab在机械振动方面的模拟应用也有很多,比如宿刚等写的《Matlab在大学物理课程教学中的应用》[5],代红权所撰写的教学论文《Matlab在物理教学上的一些辅助应用》[6]等等,论文里所列举的Matlab的应用实例,在这里就不在重复了,我们都可以把这些引入到物理课堂上,让学生感到学习物理能够开阔他们的视野,体会到物理与现实处处接轨。比如多普勒效应可以应用在医学上、移动通信和交通上、农业和气象等等方面,下面给出多普勒在声学一种常见的现象。火车人人熟悉,而火车从远而近时其汽笛声变响,音调变尖,相反地,火车从近而远时汽笛声变弱,音调变低这其中的原理未必有人去探究,实际上这就是一种多普勒效应。现在用Matlab模拟一下。如图2上半部分是声源信号的波形图,下半部分是观测者接收到信号的波形图。从图2中可以很清楚的知道,观测者接收到的波像是被压缩了,很明显,其频率大于波源发出的信号频率。这样给学生讲火车汽笛声的变化就很容易理解,易被学生接受。

2 结论

Matlab在大学物理其它方面的应用也很多,光学、热学以及电磁学,我们都可以适当的引入Matlab,比如光学中的杨氏双缝干涉、牛顿环等,热学中的麦克斯韦速率分布,电磁学中电偶极子的电场以及电势分布、电流环的磁场分布等,都可以用Matlab进行模拟演示。总之,巧妙的利用Matlab,不仅对大学物理的教学内容甚至教学手段都做到了适当的改进,这对学生来说,学习物理的积极主动性得到了提高,对教师来讲,不断的去探索教学改革,达到提高大学物理的教学质量。

参考文献

[1]闫玉丽.大学物理教学改革的思考[J].教学研究,2011(6下).

[2]管薇.工科大学物理教学改革的思考[J].新课程研究,2012(4中旬).

[3]张明霞.浅谈大学物理教学改革[J].科技创新导报,2012(9).

[4]王沫然.MATLAB与科学计算[M].电子工业出版社,2003,9.

推荐期刊