欢迎访问爱发表,线上期刊服务咨询

化学学术论文8篇

时间:2023-03-02 15:03:25

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇化学学术论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

化学学术论文

篇1

关键词:数学文化;数学学习;文化认知

《全日制义务教育数学课程标准(实验稿)》在基本理念中充分肯定了数学的文化价值,特别是在“课程实施建议”的“教材编写建议”中指出,教材可以在适当的地方介绍有关的数学背景知识(数学家的故事、数学趣闻与数学史料)。而《普通高中数学课程标准(实验)》则进一步强调:“数学课程应适当反映数学的历史、应用和发展趋势,数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神。数学课程应帮助学生了解数学在人类文明发展中的作用,逐步形成正确的数学观。为此,高中数学课程提倡体现数学的文化价值,并在适当的内容中提出对‘数学文化’的学习要求,设立‘数学史选讲’等专题。”可见,数学文化已逐步从理念走进中小学数学课堂。如何使数学文化真正走进数学课堂,一个比较现实的做法是使之融入到数学学习之中。这不仅要重视数学学科本身的文化价值,还要探讨学生的文化认知特点,对文化、数学、学习三者之间的内在联系做深入的考察。

一、高中学生的文化认知特点

根据维果茨基的“文化发展的一般发生学原理”:儿童的文化发展所有机能出现两次或两个层面,先是社会层面,接着是心理层面。首先它作为心理间的范畴出现在人们之间,然后作为心理内的范畴进入儿童中。[1]可见,从文化的视角剖析数学学习,至少要采用社会学和心理学的观点。

(一)同喻性

一个时代文化环境的形成离不开文化的传递机制。美国人类学家玛格丽特·米德从研究人类社会文化传递的差异出发,将人类的文化变迁划分为三个部分:后喻文化、同喻文化和前喻文化,其中同喻文化是指学习主要发生在同辈人之间,其基本特点是以当代流行的行为模式作为自己的行为准则。今天的高中学生带有同喻文化的特征。

高中学生的同伴影响逐步扩大。我国绝大部分高中学生是独生子女,在家里缺乏可以沟通的兄弟姐妹。而在多数中学,一个班级通常有四五十人之多。家庭和学校之间存在着的差异使他们更倾向于在学校群体生活中表达和交流自己的思想,同龄人的观念、行为对他们产生较大的影响。

中学教师的长辈角色正在淡化。社会的迅猛发展,使教师再也无法通过施加压力来传播旧的文化观念,原来的自上而下的教育模式已失去了部分魅力,许多青年人通过自己摸索和感受萌生了前人未曾有过的想法和期望。特别是高中学生,由于知识的增长及心理的逐渐成熟,开始比较多地从个体存在与发展的角度来思考社会与人生,他们已经不可能也不必完全照搬前辈的经验去刻画自己的人生轨迹。那种后喻文化中说教式的思想教育方式,比以往更不容易为学生所接受。

作为文化的数学正以学生乐于认同的方式被传播。数学具备文化独有的特性:它是延续人类思想的一种工具,是描述世界图式的有力助手,精确的形式化、简洁的符号表征常常被成功地运用到其他科学领域。伴随着科学技术在社会生活领域的不断渗透,学生有更多的机会联系数学。在数学新课程背景下,一些密切联系学生生活的数学知识进入高中教材。网络技术的普及使学生得以快速了解大量知识。不断拓宽的信息通道,活泼平易的呈现方式,使数学有机会向学生展示它人文的一面。

(二)不均衡性

人的认知源于人与大自然、与社会和文化之间的相互作用,其发展又与个体内部的认知因素密切相关。由于学生的大量知识通过学校习得,他们的认知结构在相当程度上取决于学校所传授的知识内容及其形成过程。联系我国目前高中教育的实际情况,学生对“数学文化”的认知存在如下问题。

1.知识结构的不均衡造成学生对“数学”的文化感知产生偏差。学校的学科设置力求体现当代人类知识的主要特征,现代人类知识总体结构中,关于自然科学与技术科学的知识部门已大大超过了人文社会科学。人类6 000余种学科中,属于科技类的知识约占总数的。与之相应,我国普通高中课程虽然设置了政治、历史和地理,但在学校的地位却难以与数学、物理和化学等相比。如果高一阶段有若干可以机动安排的课时,学校更愿意留给数理化等学科。由此造成的一个突出现象是,文、理科学生人数的差距巨大,尤其是经济较为发达的地区,如浙江省的文科学生通常只占同年级人数的左右。人文知识与科学知识的不均衡,使学生文化素养不够全面,对待事物容易就事论事。有不少学生认为数学是确定的,数学问题有且只有一个答案,学校中学到的数学在现实生活中很少有价值。

2.组织结构的不均衡导致学生对“数学”的文化认同出现逆差。人们重视科技教育而忽视人文教育,“不只表现在教育规模、教育结构方面,更表现在课程与教学内容和教学方式方法方面,换句话说,科技文化统治着学校教育,科技知识、理性思维广泛而深入地影响和左右着学校教育教学过程”。[2]造成学生知识结构的组成方式不均衡。在中学界,几乎所有的教师和学生都相当重视数学,但他们对待数学的动机不同,其中不乏出于高考的压力。由此带来的负面影响是:教学中存在着重结果、重应用的现象,忽略数学知识形成和发展的过程,知识的生成是快速的,知识之间连接的链条被机械地焊接,知识的运用中充斥着大量的习题。在“现成的数学与做出来的数学”之间,很难将数学看成是人类的活动。学生数学“学”得越多,对文化的认同反而越少。

二、数学文化在高中数学学习中的表现形态

数学文化与数学学习融合的过程中,文化、数学、学习三者之间的内在关系必以某种形态表现出来,而这些表现形态又将决定我们采取相应的方式。在分析高中学生文化认知特点的基础上,笔者将从数学学习的“文化”特征、文化学习的“数学”课程以及数学文化的“学习”过程三个方面探讨数学文化在数学学习中的表现形态。

(一)群体的活动性

群体与活动是数学文化进入数学教育过程的直接表现。一旦我们以文化的理念开展数学教育,这种表现形态便应运而生。

其一,数学教育的文化观强调学生以活动的方式进行数学学习。

数学作为人们描述客观世界的一种量化模式,它当然是人类文化的一个组成部分。在承认这一“客观性”的基础上,相对于认识主体而言,数学对象终究不是物质世界中的真实存在,而是抽象思维的产物,它是一种人为约定的规则系统。可见,数学的文化观念不仅承认数学在科学技术方面的应用,还强调“人”在数学文化体系形成过程中的能动作用。美国文化学家克罗伯和克拉克洪在文化的界定中指出:“文化体系一方面可以看作是活动的产物,另一方面是进一步活动的决定因素。”这说明人的主观能动性主要表现在活动的参与中,通过活动,使知识学习与精神教化自然地结合起来。并且,数学文化的渗透性具有内在和外显两种方式,其内在方式表现在数学的理性精神对人类思维的深刻渗透力。因而,在数学教育中,教师应当尊重学生的主体地位,通过学生的主动参与,发挥数学在精神领域上的教育功效。

其二,文化意义上的数学教育提倡群体的交流与合作。

文化的概念始终与群体、传统等密切相关。在现代人类文化学的研究中,关于文化的一个较为流行的定义是:“由某种因素(居住地域、民族性、职业等)联系起来的各个群体所特有的行为、观念和态度等。”在现代社会中,数学家显然构成了一个特殊群体──数学共同体,在数学共同体内,每个数学家都必然地作为其中的一员从事自己的研究活动,从而也就必然地处在一定的数学传统之中,个人的数学创造最终必须接受社会的裁决。“只有为相应的社会共同体(即数学共同体)一致接受的数学概念才能真正成为数学的成分。”[3]文化意义上的数学正是关注到了数学与整体性文化环境的关系,数学“不应被等同于知识的简单汇集,而应主要地被看成人类的一种创造性活动,一种以‘数学共同体’为主体,并在一定环境中所从事的活动。”[4]

可见,一个富有生命力的数学知识,蕴涵着一定的“社会性”。教科书上貌似明了的叙述,其实是经过历史荡涤的精华,承载着复杂的文化背景。在学校教育的条件下,教师与学生自然构成了一个“数学学习共同体”,虽然他们未必能发明或创造出新的理论,但面对同一个数学问题,各成员有着不同的行为、观念和态度,这些差异常常在相同的时间聚集于同一个环境。鉴于高中学生文化认知的同喻性,某个学生的见解需要接受共同体的评价才能被承认,教师的教学内容同样需要经过共同体的认同才有可能真正被学生内化。因此,从文化的角度来看,学校中的数学学习实质上是一种微观的数学文化。

由于学生主要通过在教室中获得数学知识,所以,数学文化教育的中心场所应在教室。已有的国内外研究表明,教师和学生所具有的各种与数学教学直接相关的观点、信念等是影响数学教室文化的重要因素,彼此的数学交流与合作是构建教室文化的主体部分。近几年来,现代教育学正将这种相互交换想法的学习(即互惠性学习reciprocal learning)当做未来学习的模式,作为建构新的教室文化的指标。

(二)系统的开放性

群体的活动显然可以贴切地表现数学学习的“文化”特性,但这些活动始终在“数学”范畴内展开。我们有必要探究高中数学课程的特点。

从文化传承上看,高中数学课程具有组织构成的开放性,主要表现为它与社会生活及现代数学的动态联系。作为人类文化的一个子系统,数学并不是一个完全封闭的系统,外部力量对于数学发展也起着决定性作用。例如,二次世界大战就曾促进了系统分析、博弈论、运筹学和信息论等学科的研究。虽然高中数学课程有别于一般意义上的数学,出于教育的目的对数学知识进行了重新整合,但这种“教育加工”仍然要尽量地展示数学科学的原貌,以达到文化传承的目的。我们可以看到现代数学的一些分支等正逐步地进入高中教材。虽然外部力量对基础教育阶段的中学数学课程没有如此巨大的影响,但它们表明了数学的广泛应用价值,从而为高中数学课程结构的开放性给出了有力的证明。例如,教材中的有限与无限、随机与确定、结构与算法等都与现代科学技术有联系,而数列、线性规划等直接地涉及学生的社会生活。

从文化传播上看,高中数学课程具有观念整合的开放性,通过课程的活化促进文化增殖。数学课程中内容的选择、编写乃至实践,不可避免地受到各种社会、文化与观念等要素的影响,从而在传播的过程中产生文化的扩展和延伸。课程作为文化传播的一种手段,并不是简单地复制,更主要的是通过文化增殖起到一种强烈的活化作用。在中学阶段,虽然各位教师面对的是同一本教材,但教师总是要根据具体教学过程的需要进行具体的再加工,而这种加工的过程又必然会溶进每个教师特有的个性因素,渗透着教师本人的世界观,体现他的精神面貌并以此对学习者产生影响。同时,由于学生个体素质的多样性,即使是由同一位教师传递并且传递的文化实质完全相同,对每个学习者来说,文化信息的接受也存在着差异。[3]

从文化传递上看,高中数学课程具有整体效能的开放性,通过系统属性的联合作用,发挥出“整体大于部分和”的功效。在高中数学课程内部,各子系统既保持着纵向的知识序,又维系着横向的方法序。例如,从指数函数到对数函数,三角函数到反三角函数,这些知识被有序地排列着,它们之间借助反函数融为一体,利用数形结合的方法,生动地刻画出函数的性质。在其外部,高中数学课程以工具性学科的地位与其他中学“友邻”课程形成协同关系。“数学课程向‘友邻’课程提供知识和智能方面的储备工具,又从‘友邻’课程那里获得需求信息、实证材料、强化运用数学智能的场所。”[5]例如,函数与物理的势能、立体几何与化学的分子结构、排列组合与生物的基因分析、对称与语文的对偶等。

文化与课程的关系表明,高中数学课程是一个开放的文化体系。作为中学数学教师,要在教学中体现数学的文化价值,要对“数学”有正确的认识,那就是:是整体的数学,而不是分散、孤立的各个分支;是广泛应用的数学,而不仅是象牙塔里的严密体系;是与其他科学密切联系的数学,而不是纯而又纯的抽象理念。

(三)知识的默会性

对群体活动与数学课程的考察,有助于我们把握数学文化表现形态的总体脉络,但数学文化必须通过学习才能被学生领悟。由于文化由外显的和内隐的行为模式构成,作为文化的数学与作为科学的数学在学习过程中也有所不同。

科学的数学追求完全确定的知识、精确的运算与严密的推理,追求用简单且抽象的语言来描述客观世界的规律。在客观主义知识观、科学观的支配下,人们过多地强调知识的客观性、非个体性、完全的明确性等等,出现了“人的隐退”现象。

其实,知识并不是孤立的、静态的、纯形式逻辑的,而是常常与人休戚相关的。“自然科学与人文科学一样,充满着人性因素,科学实质上是一种人性化的科学。”[6]在国际哲学界以创立意会认知理论(Tacit Knowing)而闻名的英国物理化学家和哲学家波兰尼从“我们所知道的要比我们所能言传的多”出发,把人类的知识分为明言知识与默会知识。明言知识指以书面、图表和数学公式加以表述的知识,默会知识是指未被表述的、我们知道但难以言传的知识,例如,我们在做某事的行动中所拥有的知识。波兰尼认为:“在非言传的‘意会’认知层面,科学与人文是相通的。”[7]

既然这种默会知识藏于内心,无法用明确的规则来表达,那么该怎样学习传授呢?波兰尼指出:“通过了解同样活动的全过程,我们才能了解另一个人的内心东西。”基于高中学生的文化认知特点和数学学习的实际情况,我们可以通过以下方式突出数学知识中的“人性”。

1.客观对象“数学化”。弗赖登塔尔曾言:“我们的教育应当为青年人创造机会,让他们通过自己的活动来获得文化遗产。”对学生而言,“学一个活动的最好方法是做。”[8]通过“做”数学,“学生和学生之间的相互作用真实地反映了在数学课堂中形成的文化:具体的教师、具体的学生以及正在形成的具体的‘数学化’。”

2.数学解题“拟人化”。从文化的角度审视数学解题过程,它是策略创造与逻辑材料、技巧性与程式化的有机结合,是一个有序结构的统一体,它与数学的特征相一致,隐含着数学家的思维方式,从而使解题超越了数学思维活动本身的范围,进一步延伸到文化道德、思想修养的素质范畴。G·波利亚的《怎样解题》中包含了程序化的解题系统、启发式的过程分析、开放型的念头诱发及探索性的问题转换等,字里行间不时地涌现出诸如“如果你有一个念头,你是够幸运的了”“好的题目和某种蘑菇有点相似,它们都成串生长”“呆头呆脑地干等着某个念头的降临”这些平和的话语,使读者不知不觉间置身其中,一些解题外的感受也油然而生。优秀学生对解题感兴趣,更多时候像在做游戏,说明数学习题中蕴涵着很多人性化的品质──题中寻趣,在于换个角度看问题。

参考文献

[1]莱斯利·P·斯特弗,杰里·盖尔.教育中的建构主义[M].上海:华东师范大学出版社,2002.120.

[2]刘振天,杨雅文.当代知识发展的不平衡与教育的战略选择[J].现代大学教育,2001,(4):15.

[3]孙小礼,邓东皋.数学与文化[M].北京:北京大学出版社,1990.149.

[4]郑毓信,王宪昌,蔡仲.数学文化学[M].成都:四川教育出版社,2001.5.

[5]张永春.数学课程论[M].南宁:广西教育出版社,1996.184.

[6]钱振华.默会理论的SSK意蕴[J].自然辩证法研究,2003,(9):32.

篇2

当前,高中数学教学中,仍把数学的形式化、逻辑性视为教学重点,忽视对数学的人文价值方面的挖掘与运用,数学文化在高中数学教学中出现偏差,主要表现为以下几个方面:

(一)教学目标形式化,缺乏对数学文化的准确定位

在实际教学中,教师只将数学知识作为目标,不能结合数学文化来设定教学目标,只关注课本上的数学知识,特别是一些公式、定理的应用,过于工具性,没有把数学的知识与数学的人文相融合作为教育的首要目标,不能很好地了解和运用数学的思想、方法、精神等人文价值,弱化了学生数学素养的培养。

(二)教学方法落后,缺乏多样化的教学方式

长久以来,课堂教学以教师为中心,教学没有活力与生机,无法兼顾到个别学生的需要,难以进行师生互动,也不能让学生进行探究和合作学习,使学生的探究精神、合作意识、创新意识和动手实践能力受到捆绑,难以发挥其主动性。数学文化得不到全面体现,很难激发学生的学习兴趣,甚至产生厌学情绪。

(三)教学评价简单化,缺乏对数学文化的考量

教学评价能够根据教学行为形成量化的考评结果,从而给出相应的教学指导意见。传统的数学教学评价不太重视具体学习过程,不能反映学生的心理过程和变化,更无法体现学生的人文素养的提高。而现实数学教学中,很多教师仍然沿用传统的数学教学评价方式,不能从数学文化方面入手,不能凸显数学的人文价值。

二、数学文化与高中数学教学结合在一起的方法

数学教育必须以提高学生能力为目标:第一,是理解能力;第二,是学习能力;第三,是判断能力;第四,是解决问题能力;第五,是创造能力。具体内容包括:

(一)做好文化取向是奠定数学文化的重要基础

站在文化取向的角度来看,数学教学的主要目的是利用数学文化完成对学生知识的提升,所以,将数学文化与教学结合在一起,不仅是考虑到教学安排,同时还考虑到整体目标计划。对于数学文化教学主要围绕以下几个方面开展:第一,是数学意识;第二,是数学思想;第三,是数学精神;第四,是数学品质。

(二)以教育理念为指导,构建新型的高中教学思想

过去一段时间里,大部分教学都将教学重点放在了知识的学习,而忽略了教学的逻辑性和思维性。将数学文化与实际教学内容结合一起,与实际生活融合在一起,使学生产生学习数学的兴趣。学习的过程中,正确引导学生掌握学习方法,鼓励学生积极参加不同形式的教学活动,在活动中历练,不仅掌握知识,还学会团结合作。

(三)以学生的需求为指导构建多元化的教学体系

在整个教学过程中,数学教育是以多元的姿态出现的,因此,对于数学文化学习来讲,不仅要培养内涵,同时还要注意培养学习方法。在高中数学教材中,数学文化的定义学生是不能直观看到的,它是在不断学习中体现出来的。对于数学文化来讲,它不仅是内容丰富多样,同时学习方法也是渠道甚广,既包括了一些隐性的理论教学,同时也可以将整个学习态度直接展现出来,尤其是对学生学习数学的兴趣来讲,更能体现出其潜在的意义。在教学过程中将数学文化融入进去,通过教师生动,简洁的文字叙述,不仅能够使学生将注意力转移到学习上来,同时也可以提升其它知识学习,不仅提升了学生学习成绩,同时也促进了他们对数学的认知度和兴趣度。

(四)实现文化教学,提高高中数学的影响力

“数学文化”作为文化的一个重要组成成分。它的内涵丰富多彩,所以应采取更多、更灵活的教学方式,教师可根据教学内容和个人的教学风格进行选择,要注意教学的深入浅出,尽可能对有关内容作形象化的处理。强调数学非形式化的一面,弘扬数学的人文精神,除了知识的学习外,更应强调数学的思维方式、理性精神及数学在实际生活的应用。将课堂教学与课外指导相结合,让学生到生活中去寻找所需的素材和资料,以此有效的培养学生的动手和实践能力,促进其情感、态度、价值观的发展。

(五)构建先进的教学评价体制

篇3

文化结构由物质文化和精神文化组成。由于一定的社会制度是一定的物质基础上产生的,要受到一定的精神文化制约,因而可将文化结构分成三个层面:“这就是物质文化,制度文化和精神文化”①。数学在建立发展过程中,受到了物质文化、制度文化、精神文化的影响及制约。

东方中国的古代文化的经济基础基本上是农业经济。这种情况决定古代中国的物质文化是农业文化。中国古代数学也与农业经济有着密切的关系。《九章算术》是中国最古老的经典著作,书有九章,包含246个问题。都和农业生产有关,九章分别是方田(土地测量)、粟米(百分法和比例)、衰分(比例分配)、少广(减少宽度)、商功(工程审议)、均输(征税)、盈不足(过剩与不足)、方程(列表计算的方法)、勾股(直角三角形)。这些问题都是用来解决农田的测量、粟米的称量,农业水利工程的测算等。《五曹算经》是一部为地方行政人员所写的应用算术,全书五卷,有田曹、兵曹、集曹、仓曹、金曹五个部分。田曹卷的主题是田地面积的量法;兵曹算术大都是军队的给养问题;集曹问题和《九章算术》粟米章问题相仿;仓曹解决粮食的征收、运输和储藏问题;金曹问题以丝绢、钱币等物资为对象,是简单的比例问题。我国古代大数学家刘徽到祖冲之、祖冲之研究圆周率和圆面积的辉煌成就中,都深深地打着农业经济的印记。农业的交通工具主要是车,车轮是否圆,不仅和车辆行驶中的平稳状况有关,而且还和省力有关,因而农业经济的需要使得我国圆周率的研究在世界数学中占有相当的地位。过去,农业的显著特点是靠天吃饭,天文、节气的测算是农业生产的需要,在中国,古代天文测算的成果是相当辉煌的,“东汉末年天文学家刘洪造乾象历法(公元206年),创立了推算定朔、定望时刻的公式”。“隋朝天文学家刘焯在他的杰作《皇极历》(公元600年)中创立了一个推算日、月、五星行度的比以前更加精密的公式”②。天文学的发展推动了数学的发展。解一次同余式就是由天文测算开始的。天文数学的发展除了物质文化的需要,还受到制度文化的要求,中国数学的重要性在于它与历法有关,“在《畴人传》中很难找到一个数学家不受诏参与或帮助他那个时代的历法革新工作。”③除了中国,古代埃及数学的建立基础也是农业的需要。埃及几何学的起源被史学家们归因于泥罗河泛滥后土地的重新测量;巴比伦的数学起源也是如此,尤其是巴比伦数学的60进位制来自于天文学;印度数学和占星术有关,而占星术又和农业及宗教有关。

东方数学的建立比西方要早,但东方的数学在理论化的道路上行动迟缓。原因何在呢?自给自足的自然经济的生产力状况决定的生产力关系是以家族为中心、以血缘关系为纽带的宗法等级关系,社会制度是宗法等级制度。自给自足的自然经济中分散的家族和农民需要有高高在上、君临一切的中央集权的君主专制制度的统治。在这种社会制度的影响和作用下,形成中国古代稳定的上下尊卑等级秩序的文化心理。主要特点是静态的、和解的、自然的、消极的心理特点。造成安于现状的生活方式、工作方式、管理方式。思想僵化、调和持中,这种文化心理使得数学只停留在实用上。没有就数学而数学,使数学自身的规律没有得到完善。“在古代东方的全部数学中甚至找不到一个我们今天称之为‘证明’的例子,代替论证的只有程序的描述,所讲授的内容只是‘如此这般地做’,而且也不是以一般规则的形式提出来,只不过是在一系列特殊情况下的应用方法。”④这段话虽有失偏颇,但也道出中国古代数学的特征。在中国数学的发展史上曾出现了刘徽、墨子、惠施等天才的数学家,但他们的数学研究和成就不能和西方的阿基米得、欧几里德相比较。这主要是我国古代数学的理论研究不受重视所致。汉王朝建立以后的“重农抑商”政策使数学研究受不到贸易的诱惑。农业经济的财富有限和填饱肚子的生活状况,不允许人们的思想向实用以外的地方延伸;隋朝开始的科举制度也扼杀了大批在数学研究上具有不凡才华的人。在科举制度中数学不是要考的课程,为“学而优则仕”而奋斗的人们,自然不会将数学当作主修课程来学习。另外,农业经济的贫困使得没有多少人来学文化,学数学的人自然更少。在这种情况下,中国古代数学的许多成就只处在应用和描述过程阶段,没有提高到抽象的、系统的理论阶段,从而使数学的发展和升华受到限制,象“勾股定理”、“圆周率”这些值得中国人骄傲的数学成就,没有造成相应的数学的轰动效应。“勾股定理”在我国商高的时代就应用比西方的毕达哥拉斯发现早600年,但由于我们没有给出严格的数学证明,这个定理在现在还认为是毕氏的成果,称为“毕氏定理”。墨子的极限理论也没有引起足够的重视,后来西方数学传入我国时才知西方极限思想和黑子的思想是一致的。“重农抑商”的文化传统的价值观具有明显的伦理性。小农经济的自给自足的环境不需进行商品交换(至少不需要太多的货币介入)。生产中占支配地位的是使用价值,人们关心的是使用价值而不是价值,以不言利为荣,“重义轻利”的思想渗透到人们的思想深处。数学的应用只局限于分配环节中。而在复杂的流通和交换领域中数学没有机会“施展才华”。多农少商没有足够的财富供人们享受,财产的有限性限制了人们的探险精神和“想入非非”,从而限制了数学向理性的发展。

在西方,小亚西亚海岸新兴的商业城市、希腊本土、西西里岛和意大利海滨,由于海上贸易和战争的刺激使得人们的思想活跃,商品贸易发达,对计算要求的提高,财富的增加使人们有更多的时间从事“非实用”的理论研究。古代东方静态的观点和西方动态的观点不一样,表现在数学上唯理论的气氛浓厚起来。人们不但要知其“然”,而且要知其“所以然”。不但要问“什么”,而且要问“为什么”,要解决“所以然”和“为什么”。古代东方的以实践和经验为根据的方法就显得“无能为力”和“后劲不足”。为了知道“所以然”和“为什么”,就得在数学的证明方法上作一定的努力,在这样的文化氛围中现代意义上的数学产生了。东方的几何学只为测量提供方法,而证明的几何学是由公元6世纪前半期米利都的泰勒斯开创的。泰勒斯不是农业经济中的“耕夫”,而是一个商人,他在经商过程中积累了足够的财富后,在后半生从事研究和旅行。他在几何学中的主要成果有“圆被任一直径二等分”,“等腰三角形的两底角相等”、“两条直线相交对顶角相等”,“两个三角形,有两个角和一条边对应相等,则全等”、“内接与半圆的角必为直角”等⑤。这些成果的意义不在于断言的本身,而是提供了一些逻辑推理(象他的第五个问题巴比伦比他早知道近1400年,但没有形成严格的证明)。使得数学被推向抽象、系统化轨道的还有毕达哥拉斯、柏拉图以及他们的继承者形成的毕氏学派和柏氏学派。由于商业的发达、财富的增长,使得人们旅行的欲望越来越高,而旅行和游动的生活方式给数学的发展提供了机遇。前面提到的泰勒斯的后半生就是在旅行和数学研究中渡过的,“他有一段时间住在埃及”⑥。毕达哥拉斯也有旅行和流动生活的经历。“他曾在埃及居住了22年,从埃及神庙的祭司那里了解了古埃及有关数学、天文方面的知识……回国后,又前往希腊的移民地阿佩宁半岛的克罗托纳城定居”⑦。从这两位数学大师的经历看,不能不说旅游这种文化活动给数学的发展提供了条件。商业贸易的发展,可诱导战争的爆发,战争不仅给侵略者掠夺来物质财富,而且也带来了许多精神财富,其中就有数学成就。公元前334年,马其顿国王亚历山大领兵进入埃及,不久挥师东进,横扫了波斯帝国的军队,到了印度河西岸,建立起庞大的亚历山大帝国和亚历山大城,这个城市的建设主要着眼于文化科学设施的建设,吸引了大量的人才,不久就成为当时世界科学文化的名城,欧几里德就是在这个环境中熏陶和成熟起来的伟大的数学家。他对数学宝库的贡献是《几何原本》。他的几何和东方几何的不同之处是,不仅从应用的角度来谈,而是就几何而几何的角度加以研究,运用逻辑推理来证明命题的真伪。而且用几何的方法来解决代数方程。他的著作中的许多公理、定理和定义除了适应当时的经验外,还具有普遍的意义。阿基米得也是当时伟大的数学家,他采用穷竭法来求圆的周长和直径的比值,其指导思想和我国刘徽的计算圆周率的思想是一致的,但不同之点是“刘徽是从圆内接正多边形着手,而阿基米得不仅从圆内接正多边形着手、还从外切正多边形这个角度进行计算”⑧。这就体现出西方数学家多方位的思维方式。另外,阿基米得在研究圆的同时,还研究了球和圆柱的问题,他在《论锥形体和球形体》中使用了近似于现代数学的方法。他的工作不仅涉及到具有很大应用价值的数学问题,而且提出了许多明确的数学概念,在这一点上要比东方数学先进。商业贸易具有一定的风险性、尤其是远航贸易。这种背景下产生了保除业。而保险的兴起又促使了概率论的产生和发展。虽然刺激概率论的是赌博,但起源是商业文化。即使是赌博也是产生于发达的商业文化城。可见,东西方传统文化不仅影响到不同的数学分支和范围,而且在同一数学问题上所体现的解决问题的方法也不同,表述的形式、研究的动机也存在差异。再来看一个事实,《周易》及先天图二分法与菜布尼兹的二进制,两者一个讲对分,一个讲进位。但都“用两个符号表示无限的事物或数学其客观存在的排列法则,决定了先天图与二进制算术的一致”⑧。二进制和先天图没有关系,这是不同时代的东西方数学家,在完全不同的社会背景下的产物,其一致性是令人吃惊的,但思想方法却完全不同。二进制是在西方传统文化中欧洲科学发展的基础上产生的,是有意识地运用十进制知识而创造的一种计数方法。二分图是《周易》众多象数体系中的一个,其中有合理的因素。但其动机不免有些封建意识的糟粕,因为它不是依靠科学的依据推出来的。

总之,东西方传统文化的不同,造成了东西方数学上的差异。东方是数学原始的发祥地,但其发展和科学化、理性化的功劳基本上归于西方。

参考文献:

①张立文等《传统文化与现代化》,中国人民大学出版社。

②钱宝琮《中国数学史》,科学出版社。

③(英)李约瑟《中国科学技术史》,科学出版社。

④⑤⑥(美)H·伊夫斯《数学史概论》,山西人民出版社。

篇4

首先是要对学生进行科学合理的分组.小班化教学中虽然学生规模较小,数量较少(一般控制在30人以内),但学生之间仍旧存在多方面的差异.因此,教师要对班内每名学生的性格、特长、成绩以及能力倾向多方面因素进行认真分析,挖掘个性,寻求共性,对学生进行小组编排.如某班有28名学生,其中女生6人,男生22人,通过分析与调查,可以将学生分成7个学习小组,4人一组.以其中一组学生情况为例:每个小组就是一个小的集体,而集体就不能缺少必要的领导者和组织协调者.因此,在对学生进行科学分组之后,教师应选一个小组长,并对小组长进行培训.培训内容可以侧重于小组长的职责和作用;如何凝聚组员力量,互帮互助;如何通过协调组织来根据每个小组成员的实际情况进行不同分工,从而完成学习任务.从教学实践中我们可以发现,小组长不但会成为教师的最佳助手,还能够成为其他学生的得力帮手,对促进探究性学习有着十分积极而必要的作用.

二、小组合作式小班化数学教学的探究策略

1.把握探究时机,积极引入探究性课题

把握探究时机,适当引入探究性课题,对小组合作式的小班化数学教学十分重要.那么最佳的探究时机是什么时候?笔者认为当某一个课题对学生来说具有一定难度和挑战性,自己无法独立完成时;学生意见无法统一,出现多样化答案时;当数学知识出现某个关键点或者是转折点,需要学生主动探求时;当学生反映出交流欲望时,都是引入探究性课题的恰当时机.如在学习一元二次方程应用时,销售问题是大多数学生公认的难点,每当遇到此类题型,他们就会出现不同程度的错误,这时以这个难点为契机,引入探究性课题“怎样赚钱”让每个小组深入生活进行体验,了解具体的销售情况,通过实践让他们来解决一系列的数学问题.这种抓住学生探究心理,选择恰当的探究时机引入课题,会出现事半功倍的教学效果.

2.构建互动关系,合理组织探究性活动

篇5

计算教学在整个小学阶段的数学学习中占有很大的比重,培养小学生“会计算、懂算理”也是小学数学教学的主要目标。尽管数的运算有各种不同题型不同的运算方法,但每一种运算都是由一步运算演变成二步、三步运算,而且由简单转化为复杂的。在这个过程中,渗透化归思想能很好的帮助学生理解算理,提高运算的正确率,起到事半功倍之效。例如:北师大教材一年级上册中,学生学习20以内进位加法,虽然方法多样但最重要的方法是“凑十法”,即通过将大数拆成小数(或者小数拆成大数)和其它另一小数(大数)凑成十,将20以内进位加法转化成简单的十加几的计算题,如:8+5=13从而使计算变得比较简便。再如,北师大教材五年级上册的异分母分数加减法,北师大教材五年级上册,异分母分数加减法的教学。由于有了同分母分数加减法的铺垫,笔者在教学这部分知识时,直接将异分母的分数加减法式题呈现给了学生:①这些分数与我们以前学过的有什么不同?②不是同分母分数,还能算吗?问题一出,绝大部分学生就意会了,只要把异分母分数转化为同分母就可以计算了。当学生完成转化、计算之后,笔者适时追问:为什么不能直接计算?进一步强化了学生的认知:分数的分母不同就是分数单位不同,而分数单位不同的分数是不能直接相加减的,必须要转化成同分母的分数才能计算。其实在小学阶段很多的计算中,如多位数乘法、小数除法、分数除法等都运用了化归方法,可见化归的方法运用的广泛性。

二、图形教学中的渗透

“图形与几何”是小学阶段重要的学习内容。无论从认识各种图形的特征到探究面积、体积的计算,无处不体现化归的思想方法。尤其在探索面积的计算公式时,渗透化归思想方法是极好的机会。在图形面积计算方法的学习上,北师大教材是分三次安排的:第一次安排在三下学习长方形、正方形的面积计算;第二次安排在五上学习平行四边形、三角形和梯形的面积计算;第三次安排在六上学习圆的面积计算。我们知道长方形面积的计算是平面图形面积计算的起始课,是以后学习平行四边形、三角形、梯形及圆等平面图形面积的基础,而平行四边形面积计算又是学生探究图形面积计算方法的节点,在这个节点上,化归思想方法得到很大体现。所以在探究平行四边形面积计算方法的教学中,引导学生从已有的知识和经验出发,通过数、剪、拼等一系列操作活动把平行四边形转化为我们已知的长方形或正方形,从而很容易的得出平行四边形面积的计算方法。教学中,要通过追问:你是怎样把一个平行四边形拼成了一个长方形?怎么剪的?为什么要拼成一个长方形?什么变了、什么没变?从而使学生明白:沿着平行四边形的任意一条高剪开都可以拼成一个长方形,拼成的长方形和原来的平行四边形相比,形状虽然变了,但面积没变。这样就可以化新为旧、化未知为已知。有了这部分化归方法的渗透,后面的三角形、梯形、圆面积计算方法的探究过程就会水到渠成。从而让学生真正体会到数学学习的成就感,享受数学探究的乐趣。

三、解决问题中的渗透

篇6

1.1传统的数学教学体系结构单一

大专数学教学方法影响到数学教学内容以及课程体系的建立,也影响到数学的教学质量。虽然目前有一些教师对大专数学教学进行了一些积极的探索和实践,有的大专院校还在数学教学中开展了关于数学开展启发式、研究式以及讨论式数学教学的大胆尝试,还有的力求在数学的考试内容、形式以及评分等方面进行了一定的改革。但是从整体上来看,这些做法仅仅是停留在小部分范围内,真正对于数学教学方法以及体系的构建上仍旧没有取得实质性的进展。这样仍旧造成传统的大专数学教学体系出现结构单一的问题。

1.2不适应人才培养目标的需求

目前大专的相关专业不断增加,不同的专业对于人才的培养目标也不尽相同,当下的大专数学教学体系很难适应专业和专业人才的培养目标所产生的需求。如今大专院校招生规模逐渐扩大,让同所院校、同一专业甚至同一班级的学生能力差距愈加拉大,这为数学教师在组织教学中带来了很大的困难。这样不仅难以保证所有的学生的能力都能达到数学教学的基本要求,还束缚着优秀拔尖的数学人才的快速成长,这也是当前数学教学体系中存在的突出问题。虽然近几年来,一些大专院校也针对这个问题进行了一定的改革,比如,数学教学实行按层次分班进行组织教学,适当调整数学教学的基本要求等等。但是,对于根据具体的专业,具体的进行因材施教,让各个专业的优秀人才得以健康成长,尤其是拔尖人才的脱颖而出,还缺少新的思路以及更加有效的措施。

1.3生源差距大

大专院校的学生来源的差距比较大,尤其是在高校录取学生的时候分为一专和二专,这样招进来的学生能力参差不齐,如果大专院校没有能够按照自己院校的实际情况来进行数学教学,盲目地使用或者借鉴其他院校的数学教学体系,就会极大地制约着大专数学教学改革的发展,也不能适应对人才培养的需求。

1.4师资队伍薄弱

有的大专院校由于师资队伍薄弱,导致力量不足,再加上数学学时的减少,不少的院校实际上已经取消了小班的习题课,通过在大课中讲例题来替代。还有的大专院校为了解决师资队伍薄弱的问题,聘任研究生甚至博士研究生来参与到数学的教学辅导工作中去。但是由于研究生的教学水平、责任心等方面的原因,还不能胜任数学教学工作。一部分学位层次以及学术水平比较高的教师因为科研方面的压力比较大,在数学教学方面投入得还不够多,还有的对数学教学的研究以及改革的重视程度不够,这也导致了数学的教学水平不高,甚至有的还缺少数学的基本教学方法训练,降低了教学效果。

2多样化大专数学教学体系的构建策略

2.1教学体系层次化

大专院校应针对本校各个专业对大学数学的教学内容的要求不同,在教学内容需求的基础上,对各个专业所需要的共同的大学数学教学课程进行了分层次设计,让数学教学课程体系呈现层次化,让大专数学教学体系在教学的内容、数学案例分析、教学课时等方面更加有层次,更具针对性。大专数学教学课程体系为必修和选修两大类。必修课程是针对全校所有非数学类各个专业的学生安排的,其更加适合各个专业的性质和需求,在课程构建中可以将这些课程按照学校的专业分类,如《高等数学》可以分为理工科专业、文科类专业这几类型进行教学课时的设置。《线性代数》根据实际教学情况分成三个层次,对理工科专业相应地增加学时,也为文科类专业增加线性代数C。当前大专数学课程的教学内容比较多,但是教学的课时又比较少,有的教师为了完成教学任务,而不断加快教学进度,这样对于一些重点的知识内容不能讲得足够详细。由此通过教学体系构建的层次化,让教师能够针对各个层次的学生的基础状况,设计出不同的教学目标,以此能够充分发挥学生的个性特长,让各个层次的学生能够获得相应的数学知识,也增强教学的实效性,便于全面提升数学的教育质量。

2.2教学体系多元化

目前在大专数学的教学中,使用统一的教材,但是又由大专数学的教学内容所决定,需要有机结合各个专业的实际问题,通过大学数学教学体系来传播数学的基本理论和方法,以此来培养学生的逻辑思维能力以及数学素养。由此通过对学校各个专业对数学教学体系的具体需求,在设置了数学的公共基础课之外,还根据各个专业后续课程的需求以及社会的实际需要,相应地开设了数理方程、积分变换等一些大专数学的选修课目,各个专业能够根据自身专业的特点以及学生的培养目标进行课程的选修。还根据不同专业的具体需求,在相应的数学课程教学内容中补充了适应本专业的典型案例,让学生在数学的学习过程中结合所学的专业知识来提升数学的学习兴趣。

2.3教学体系延伸化

篇7

教师要想在小学阶段运用多元化的解题方式,并充分的发挥多元化的解题优势,首先应该认识到多元化教育发展的未来前景以及教育的价值。在小学数学学习的过程中,学生遇到解题上的困难时,教师要多多的鼓励学生,让学生自己独立的从多个角度去分析问题,要善于发挥自己的思想,这样学生成功的解题之后,学生的成就感就会增强,同时学生的学习兴趣也有所提升,学生的独立自主学生能力也有一定的增强。另一方面,多元化的解题方式注重的是学生的解题方向、解题的角度、解题的深度,在此基础上激发学生的创新思维,培养学生的换位思考能力,同时在解题的过程中学生能进行不断的推敲和反思,掌握多种解题方式,这能有效的避免在以后的学习中过多的依赖于教师,对学生的发展有着深远的影响。

二、多元化的解题方式在小学数学教学中的运用

(一)在教学中首先是要强化学习,不断的增强学生的基础知识,熟练的掌握和运用理论知识,同时教师还要增强对学生的要求,并不定期的对学生进行基础知识的检查,要求学生能够熟练的掌握知识,进而再给学生布置一些开放性的试题,以此来增强学生的理论知识运用能力,只有学生在熟练的运用知识之后才能进行思维的创新,才能创新多种解题方式。如果学生只是有创新的思维,而没有实际的知识作为基础,也不会创新出多种解题方式。所以在多元化的解题过程中,基础理论知识是基础,要不断的强化学习力度,增强学生的基础知识掌握能力。

(二)多元化解题方式在小学数学教学中的运用最重要的一点就是要加强与实际生活的联系。这要求小学的数学教师在教学的过程中一定要加强教材和实际生活的联系,结合实际的生活场景给学生一些暗示,也可以在教学的过程中模拟生活情境,通过情境模式让学生进行推敲和反思,进行思维的发散,能找出多种解题思路。例如:将枯燥的习题进行生活化,小明和小红约好一起去玩耍,两家相距500米,小明到小红家需要5分钟,小红到小明家需要10分钟,那么请问两人相遇时,各自走了多少分钟,走了多长距离呢?学生普遍的都会采用路程公式来运算,这是传统的解题方式,不具有创新性,教师要采用科学的方式积极的引导学生,利用距离的一定性,时间和速度成反比的比例关系来进行解题,这更有创新意义,更有益于学生思维的发展。

三、总结

篇8

整堂课下来,自始至终学生们的注意力都被牵动着,吸引着,对所学的知识也都很感兴趣。这样既解决了学生学习的烦脑,又提高了学生对知识的接受能力。对于每节课的导入过程,必须以学生自身的发展思维为主线去引导及教育,每节课之前都给学生留有神秘,每节课结束同样也留有神秘,这样学生会非常期待下一次课的到来,从而让学生能够从一种环境到另外一种环境,实现“师生共振”。给学生空间间就是给教师自己留有空间,让自己身临其境,也让学生身临其境,可以将课堂变成一个“原始森林”。

二、让数学美丽心灵

一位中科院数学院士曾经在他的演讲中提到了一个很有意思的问题“:到底是想象美重要,还是逻辑理性重要?”或许在我们看来,答案似乎是毫无疑问的,因为他是从事数学研究,讲究思维的理性,严格的逻辑推理。但这位院士却说,想象美比逻辑理性更重要。在这位数学院士看来,即使是数学研究这等枯燥的事,也在追求着美,让我们的生活更有趣味。其实,想象美和逻辑理性孰前孰后这个问题并不重要,数学和美本身就是一体的,在数学中寻求美,在美中进行数学推算。数学家保罗?埃尔德什说:“为何数字美丽呢?这就像是在问贝多芬第九号交响曲为什么会美丽一般。若你不知道为什么,其他人也没办法告诉你为什么。我知道数字是美丽的。且若它们不是美丽的话,世上也没有事物会是美丽的了。”当我们去体会数学之美时,我们才能真正理解数学。艺术品并非只属于艺术家,数学同样有着他们的艺术品,就像毕达哥拉斯的勾股定理、高斯的代数基本定理、祖冲之的圆周率,美在解决问题,美在化繁为简……这些作品就如同米开朗琪罗的《大卫》、凡高的《向日葵》、贝多芬的《命运交响曲》一样,凝聚着人类最闪耀的智慧。数学之美不仅仅是本身的美,更是解决问题之美。和数学有关的电影《美丽心灵》堪称经典,几乎囊括了当年所有著名电影节大奖。该影片改编自数学家纳什的真实故事。纳什与病魔苦苦斗争数十年始终没放弃,依靠在数学生涯中对博弈论的基础研究,获得诺贝尔经济学奖。后来,纳什本人到中国访问,听众中有人问他作为数学家获得经济学奖有什么感受时,他说,用数学去解决问题很美。或许正是这种在数学中寻找的美的信仰,支撑着纳什与病魔抗争,并最终走向诺贝尔领奖台。其实,关于数学解决问题之美,在生活中有着太多案例,不胜枚举。学数学是学的一种思维,这种思维本身充满着令人着迷的魅力,而运用这种思维去解决问题更是一种美。因此,作为教师,应该通过我们的教学,让学生深刻感受到数学之美,真正理解数学,爱上数学,才能真正体会到数学这一学科的大美无疆。

三、结语

推荐期刊