时间:2023-03-02 14:59:18
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇函数教学,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
一、打靶原则与函数定义的理解
初中学习过程中函数的定义是:在某变化过程中设有两个变量x,y,按照某个对应法则,对于每一个给定的x值,都有唯一确定的y值与之对应,那么y就是x的函数。其中x叫自变量,y叫因变量。
然而在学生的理解中,函数是抽象而不具体的,他们普遍认为所谓的函数就是y=kx+b(k、b为常数,k≠0),而不能准确认知函数的定义。那么如何对函数进行理解和定义呢?
经过我长时间的思考,我认为可以教授给学生一个原则:打靶原则。
打靶原则:自变量x的所有取值是你的子弹,应变量y则是你打的靶子。那么很容易的就可以按照打靶的原则来理解函数了(一是不能脱靶、不可不打。二是不可一颗子弹打多个洞,但可以多个子弹打一个洞)。
打靶原则的应用:
例1:y2=x
经过仔细观察,很容易发现当x取1时,y有两个值与之对应,1或-1。那么这就是一颗子弹(x=1)打了两个洞(y=1或-1)。所以显然y不是x的函数。
例2:y=x(x取任意实数,y>0)
仔细观察,当x取-1时,y没有值与之对应,这显然不符合打靶原则。子弹有(x=-1),却没有打出去(没有y与之对应)。
例3:y=|x|(x取任意实数)
这一题是学生的盲点。学生在考虑的过程中,总认为x取1和-1时,y都是等于1。这个时候x取不同值时,却又相同的y与之对应,这个貌似不符合定义中唯一的定义。其实定义中的唯一的y与x的对应是指x取任意值时都已唯一的y与之对应即可,并不要求x取不同值y也得取不同值。可是从定义上看实在不好理解,学生的能力往往达不到要求,那么使用打靶原则的第二条,可以多个子弹打一个洞,就可以很轻易地理解x=1或-1时,为什么可以y都等于1了。
二、一次函数的图形结合
在函数的教学过程中,曾经遇到过这样的题目。如图是y=kx+b的图象(k、b为常数)请根据图象求kx+b>0的解集。
学生对这类题目有着两个盲点。一是图形如何看。二是如何利用图象求解kx+b>0。在以往的教学过程中,我采取了两个手段,取得了相对比较好的效果。
1.图形的看法:对图形如何看我采取了遮挡的方法,以一根三角板或直线型的遮挡物水平遮挡图象。这时你可以采取询问的形式,当y=1时,对应的x取何值?学生观察发现时函数图象此时在y轴上,对应的x取0,当y=0时,x取何值?学生很容易从图中看出对应的x取-1。此时对图象的基本认知已经达成。
2.对kx+b>0的理解。因为函数的解析式是y=kx+b,那么对于我们来说kx+b就等于y。所以kx+b>0就被我们转化成了y>0。那么所谓的问我们kx+b>0的解集,也就是当y>0时x的取值范围了。
当这两点都完整达到的时候,学生对图形的理解和对题目的转换都达到要求了,就可以很容易的看出x的取值范围是x>-1。即kx+b>0的解集为x>-1。
三、反比例函数的增减性分析
反比例函数定义:形如函数y=k/x(k为常数且k≠0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。
对反比例函数增减性的分析中,常常让学生去记忆。当k>0时,y随x如何变化;当k0时,图像如何,当k
关键词 教学策略 指数函数 对数函数 CAI 分层次教学
中图分类号:G424 文献标识码:A
Talking about Mathematics Teaching Strategies from the Teaching of the Exponential Function and Logarithmic Function
Abstract Research on teaching strategies can improve teaching efficiency and realize the optimization of teaching. Mathematics teaching in many subject characteristics teaching strategies. In this paper, the exponential function logarithmic function of teaching, talking about mathematics teaching strategies.
Key words teaching strategy; exponential function; logarithmic function; CAI; hierarchical teaching
所谓教学策略即为达到预期目标打算如何进行教学,也就是选择要达到预期目标所需要的资源、程序和方法。众所周知,教学探索的研究内容包含三大方面。教什么?如何教?为什么这样教?教学策略应该属于第二个范畴。即如何教?但如何教的背后必须有为什么这么教的系列教学理论作为其支撑。也就是要建立在教学原则的基础上,以教学原则为指导的具体的活动措施。这样设计的教学策略才是科学的。数学教学策略从数学角度去划分大概可以分成这么几方面,设置数学学习情景的策略,呈现数学教学内容的策略,选择数学教学方法与教学辅助手段的策略,教学效果的检查和评价的策略等。它是教学设计的重要内容。数学知识本身有两种,一种是陈述性的知识,一种思想性的知识。这二者都需要用策略来解构。策略是知识本体和教学对象之间的一座桥梁,通过它可使知识完整清晰地呈现给学习者,使抽象的知识变具体,深奥的定理变浅显,因此对于教学者和学习者都具有重要的意义。教师需要对教学模式、教学策略等进行系统的研究,以指导其教学实践,教师只有知道如何运用得当的方式有效地促进学生学习,开发学生的潜能,师生间的知识沟通才会变得顺畅起来。
教学策略作为策略性的知识在教学实践中通过教师不断地累积经验,形成案例,再通过教学反思逐步形成。教师在使用教学策略前要先钻研教学大纲、熟悉教材内容、体系结构、目的要求、重难点等,然后以此为出发点进行教学策略设计。设计出的策略要符合学生实际,其中既包括传统的教学方法,也包含针对不同教学内容的特点所进行的特定设计,这样教学策略才能发挥它的功效,作为教学手段才能达到它的教学目的。指数函数和对数函数作为初等函数的重要组成部分,它的教学本身亦可窥见数学教学中的一些常用的教学策略,下面就该部分内容教学环节中所涉的一些教学策略进行探讨。
1 应用比较策略加深概念理解
指数函数和幂函数都具有指数幂的外形,因此在指数函数的教学中学生很易混淆,教师在讲解指数函数概念时应把它和幂函数放在一起进行比较,指出它们形式上的区别,让学生认清幂函数特征是底数是自变量,指数是常数,指数函数特征是底数是常数,指数是自变量。
这种教学策略便是比较教学策略,不仅在数学课堂上经常被应用,在其他学科教学中也经常被使用。通过比较教学策略可以揭示事物的某些共性,还可以揭示事物的某些不同点以及揭示事物之间的联系,防止知识间的割裂与混淆。有意识地应用这一策略可以加深学生对概念的理解、公式的记忆。如讲函数的奇偶性时,可将奇函数偶函数进行比较。归纳函数性质时可将不同底的图像进行比较。同时数学的许多知识块之间也可以进行比较,比如学过平面解析几何后可与空间解析几何进行比较,学过一元微分后可与多元微分进行比较等等。
2 应用CAI教学策略对指数函数与对数函数导入部分进行情景创设
随着多媒体进入课堂,教师要充分利用计算机辅助工具进行情景教学。好的生动的情景创设可以起到事半功倍的效果,而且能最大限度地调动学生的兴趣,学生一旦有了兴趣之后,大脑就会形成优势兴奋中心,引起学习的高度注意,为参与学习提供最佳的心理准备。
讲指数函数概念时可通过两个实例导入,一个是细胞分裂。一个是《庄子·天下篇》讲到的“一尺之棰,日取其半,万世不竭”。上述实例教师均可借助flash或3D等软件工具将细胞分裂及截取木棍做成动画,在多媒体上进行展示,使教学更具直观性和生动性。学生也很容易得出细胞的分裂次数X与细胞个数Y的函数关系,截取木棍次数X与木棍长度Y的函数关系。当学生推导出这两个有代表性函数后就为后面的画图观察抽象函数性质埋下伏笔。
这一系列的课堂活动符合学生从特殊到一般从具体到抽象的认知特点。实际上教师在数学教学上的一项重要工作是把抽象的数学符号和形象的图形进行互译,而计算机多媒体的介入又使这种互译更上一个层次。
3 营造课堂活动归纳函数性质
函数的性质是函数教学中的重点,这方面的教学应该在一系列的课堂活动中完成。首先要建立在学生观察图像的基础之上,观察前教师要先让学生动手画出有代表性的指数函数和对数函数图像,如以2为底和以1/2为底。可先要求学生按初中的作图顺序取值列表描点连线。后面熟悉函数的性质后逐步过渡到只画草图,让所画的草图准确体现指数函数和对数函数的性质即可。当学生画完后教师用几何画板等工具软件向学生展示更多的不同底的函数图像,让他们进行比较,比较图像的共同点和不同点,让学生分组进行讨论。最后教师和学生一起从图像抽象归纳出函数性质。这种探索交流形式的课堂活动恰恰体现了教学中以学生为主体,教师为主导的教学原则。把教学变成了学生自主活动、合作活动、探究活动,教师启发、点拨为基础动态的、互补的教学过程。这种过程也是学生自我建构的过程。所谓自我建构的学习不是学生被动地接受教师授予的知识,而是学习者以自身所有的知识经验的主动建构活动,让学生把新的学习内容纳入已有的认知框架。显而易见这种建构能充分调动学生积极性、主动性、创造性使学生最大限度参与教学中来,比起教师单纯的讲解效果要好得多。而且不仅问题得到完整的解决,还使学生从中体验成功和协作的乐趣。
以上探索活动还可推广到其他形式。比如让学生自我设计问题、提出问题、类比猜想、试误实验、调查设计等都属于以学生为中心的教学活动。
4 应用分层次策略破解底的规定
对于指数函数,为什么底数要规定>0且不等于1呢?这是一个教学难点。这个知识点教材未加以说明。教师可通过举例说明来向学生解释,如当<0时,可取值 = -2, = , = (-2) = 显然是没有意义的。也即当自变量取某些分母为偶数的分数时无对应的函数值,这时候画出的图形就不连续,由于我们研究的初等函数都是连续的函数,所以我们排除研究这种情况。
同样对于对数函数,教师在建立对数的概念时,应让学生明确对数式是由指数式转换而来的,由于<0时有些幂运算是无意义的,所以规定只有底数>0且不等于1的指数式才能写成对数式。经指数式转换而来的对数式当然底也同样要满足这个规定。这样环环相扣,层层铺垫,学生易于理解。当然以上数学材料的理解绝不是直线型的而是需要多次返回,只有多次重新返回内侧水平,才能扩充和加深外侧水平。前述例子当学生掌握了反函数知识之后也可从反函数角度来加以分析。
由于学生认知的差异,对于这个难点的处理上教师可采用先破或后破两种方式,先破即一开始就向学生加以详细的解释说明,它适合程度好的班级和学生。后破即点出来不解释,把它作为一个识记内容,待后面时机成熟,学生对教材内容熟悉后再加以讲解。这种策略可看作是一种分层次教学是符合因材施教的原则的。教学中教师根据自己的领悟、经验和技巧对教学内容进行适当剪裁取舍,给予不同认知水平学生螺旋式帮助,不急于把所有的问题讲得清清楚楚明明白白,以一种水到渠成的方式使不同层次的学生都能得到发展。
5 应用数学实验和数学建模达到课外拓展
随着计算机的普及,数学向各学科的迅速渗透,作为一名教师不能仅满足培养学生逻辑推理能力、空间想象能力、运算能力等,还要及时地让这些能力向实践能力和创新能力转化,也就是学以致用。数学实验和数学建模是很好的能力转化渠道。通过这两种方式使数学的思想、方法、技能、技巧(特别是计算机技术)得到淋漓尽致的发挥。如本节课可让学生用指数函数和对数函数的知识去刻画具体问题,如折旧问题、碳14的衰减问题等。也可通过给人口增长、考古真假画鉴定等问题建模实现学生对该部分知识的课外延拓。这些均可促进学生在学习和实践中形成和发展数学应用能力,使知识得到进一步的升华。
6 将数学思想、数学方法渗透入教学
数学思想方法是数学知识转化为数学能力的重要方式。而且数学思想是数学的灵魂。学习数学的重要目的是把握数学思想,把数学思想方法迁移到其他领域。
日本数学家和数学教育家米山国藏曾说过:学生在初中和高中所学过的数学知识在进入社会后几乎没有什么机会应用,因而这种作为知识的数学通常在出校门不到一两年就忘掉了,然而不管他们从事什么业务工作,那种铭刻于头脑中的数学精神和数学思想方法却长期地在他们的生活和工作中发挥着重要作用。所以衡量学生学会了没有时不该只看学生会不会做题,还应在教学中引导学生去领悟数学思想、数学方法。要把数学思想和数学方法贯穿在整个教学中。但是数学思想方法的教学相对数学知识言缺乏系统性、明显性只能渗透其间。所以关键让学生利用数学思想、方法去探索问题、解决问题。如在指数函数和对数函数的学习中涉击到的许多数学思想,比如数形结合、分类讨论、函数模型、数学符号化和变元、归纳法等。教师要让学生围绕着数学素材展开持续观察、比较、分析、判断,大胆尝试、联想、想象和猜想,从而领悟并逐渐学会用数学思想方法去解决问题形成较强的数学能力。
从以上可看出在教学中数学的教学策略是多元化的。教师在教学中不能按部就班而要灵活应用各种策略来优化学习过程和教学过程。没有单一的策略能够涵盖各种情况,有效的教学必须有可供选择的各种策略来达到不同的教学目的。教师在教学中还要善于总结新的策略。当然不管什么样的教学策略皆应以素质教育理论为指导,依据课程标准,同时重点关注如何发挥学生的主动性、积极性和创造性,变被动学习为主动学习。使教师由知识的传授者转变为学生主动学习的组织者、指导者和促进者,实现教学中知行统一和谐发展。
参考文献
一、激发学生学习兴趣,使学生主动学习数学知识
中职学生的学习欲望不强烈,尤其是对于理论性和抽象性较强的数学,他们更是缺乏学习的兴趣,因此,在教学中,教师通过一切手段提高学生学习数学的兴趣,使学生主动参与学习活动是很重要的.特别是函数教学,又是数学教学中的重点和难点,培养学生的学习兴趣就显得尤为重要.
要激发中职学生数学学习兴趣,就要对学生进行动机教育.中职学生都要面临就业压力,找个好工作是他们进入中职院校进行学习的主要目的.教师可以利用学生的这一心理对学生进行关于数学学习价值的教育,使学生认识到数学学习,函数学习可以有效地促进自己职业知识的学习,使自己具备较高的职业素养,为自己在未来能够找到一份好工作打下基础.这样学生学习函数的积极性就会得到显著提升,学生学习数学的兴趣也能得到不断培养.
二、中职函数教学要与学生的职业课结合起来,使学生学以致用
在函数教学中,教师就要把函数教学与学生的职业课结合起来,使学生能够通过函数学习更好地解决职业课中存在的问题,更好地促进学生职业课的学习,使学生能够在数学基础知识学习的基础上培养良好的职业素养.
在教学中,教师要选择好教学内容,重点培养学生利用函数知识,解决实际问题的能力,使学生能够学以致用,成为真正具有较高职业素养的人才.比如,任意角的三角函数知识几乎每个职业学科的学生都能用上,因此,教师对这部分内容要精讲、细讲,使学生真正理解,学会应用.正弦型函数曲线对于电工类职业的学生而言是重点,正弦定理和余弦定理对于测量工建类职业学生而言是教学重点,等等.教师要结合学生的职业知识,选择学生需要的函数内容进行重点讲解,将函数教学与职业课教学结合起来,使学生能够学以致用.
三、通过有效的教学方式,降低学生函数学习的难度
中职学生数学基础普遍较低,他们不喜欢数学学习很大程度上是因为学生无论如何努力都学不好数学知识,更学不会函数知识.因此,在教学中,教师要通过有效地教学方式,降低学生学习函数的难度,使学生成功掌握函数知识.
在函数教学中,教师要注意做好以下几点:1.加强新旧知识的联系.对于刚入学的学生,在函数教学中,教师如果只是讲解新知识,新内容,学生根本就听不懂,他们会产生厌学情绪.这时,教师可以通过对初中数学知识的复习,使学生掌握一定的计算知识,并引导学生做一些练习,使学生的动手能力和数学素养得到一定的发展,这时教师再讲解函数知识,他们就有了一定的基础,学生可以较为容易地理解掌握这部分内容.
2.在教学函数知识的过程中,教师要遵循一个原则,少讲抽象的理论,多做具体的练习;少讲技巧性的内容,多讲一些基本知识.
比如,函数问题一般按照分析题意――引进数学符号――建立模型――解模――回归实际的过程来解决.分析题意.要将问题出现事物的现象和过程的主要特征主要关系仔细研读并大胆猜测,它属于哪类函数;在此基础上,借助数学符号把这一关系表述出来;然后用数学方法解决这个问题.如问题:如图:在平面直角坐标系中;O为坐标原点,四边形OABC是矩形,A,C点的坐标分别是A(10,0)C(0,4),点D是OA的中点,点P是BC边上的一动点,当ODP是腰长为5的等腰三角形时,点P的坐标为.
在这里,分析题意要让学生明确求P点坐标,就是要找到P在BC上的位置,即知道CP的距离;在解决问题时,要考虑到以O和D为顶角的两种情形,然后运用勾股定理建立方程,就能求出P点坐标.
这样,学生才能听懂学会,函数学习才能更为有效.
3.选择有效地教学方式,用通俗易懂的语言进行讲解.比如,在讲解角概念的推广的内容时,学生对于“终边相同的角”这个抽象概念很难理解,教师就可以把学生带到操场,使学生通过跑步的方式掌握这个内容.再比如,关于函数的公式很多,学生对这些公式不能准确识记,教师可以利用口诀的方式使学生有效掌握.比如,在识记象限符号时,教师可以为学生编一个口诀“一全正,二正弦,三切正,四余弦”使学生有效掌握象限中符号的变化.总之,只要教师利用合适的教学方法,有效降低函数教学难度,学生是有能力把函数知识学好的.
关键词:二次函数;问题情境;探索精神
一、创设问题情境,诱导学生探索
初中生一般都有好奇、求知的欲望,有动手、动脑的积极性,创设良好的问题情境是激励学生学习兴趣的源泉。
问题:你知道函数y=2x2、y=-2x2、y=■x2的图象是什么吗?请你画出来并指出它的开口方向、顶点坐标、对称轴。
全班分为四组,每组解决一个问题,独立思考7分钟后,每组派两名代表在黑板上合作完成自己的题目。合作中,可以互相发现问题,取长补短,可以互相依存,克服紧张、恐惧的心理。答完题后进行课堂评论,先由每组学生发表意见,评价本组答题情况,如果还有问题,再请其他组的学生回答,最后教师作出评价。这样,在探索过程中学生会养成自主学习的良好习惯,也培养了学生科学的探索精神。
二、小组合作交流,促进学生发现
解决上述问题后,教师引导学生在相关问题中排异取同,发现规律,形成概念,推出公式。让学生深入体会概念,掌握公式,请学生尝试归纳出二次函数y=ax2的性质。一般的,二次函数y=ax2的图象是 ,其顶点坐标是 ,对称轴是 ;当a>0时,开口向 ,当a
当学生填完空后,请小组讨论,此时学生表现出极强的好奇心和求知欲。当讨论声音越来越小时,可以鼓励小组派代表发言,答对者加1分,将学生的争强好胜心理调整为解决问题的积极性,使每个学生踊跃发言,至此,课堂交流过程中学生参与率达100%。
三、科学设计练习,整体提高能力
练习是对知识的巩固,也是一种信息反馈。设计三组练习题,目的是帮助学生理解、掌握函数y=ax2的图象和性质,逐步融入数形结合思想。第一组练习题帮助学生直接领会二次函数y=ax2的性质;第二组练习题启发学生理解数形结合思想;第三组练习题利用数形结合思想,帮助学生进一步总结二次函数y=ax2的有关性质。
1.分别说出抛物线y=4x2与y=-■x2的开口方向、对称轴与顶点坐标。
2.已知二次函数y=ax2的图象,x1
3.每个组观察自己画的图象回答:
(1)在对称轴右边y随x的增大而____
(2)在对称轴左边y随x的增大而____
(3)函数有最大值或最小值吗?如果有,是多少?
教学目标
1、知道一次函数与正比例函数的定义.
2、理解掌握一次函数的图象的特征和相关的性质;体会数形结合思想。
3、弄清一次函数与正比例函数的区别与联系.
教学重、难点
重点:初步构建比较系统的函数知识体系,能应用本章的基础知识熟练地解决数学问题。
难点:对直线的平移法则的理解,体会数形结合思想。
教学过程
1、一次函数与正比例函数的定义 :
一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0,那么y是一次函数
正比例函数:对于 y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2. 一次函数与正比例函数的区别与联系:
(1从解析式看:y=kx+b(k≠0,b是常数是一次函数;而y=kx(k≠0,b=0是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2从图象看:正比例函数y=kx(k≠0的图象是过原点(0,0的一条直线;而一次函数y=kx+b(k≠0的图象是过点(0,b且与y=kx平行的一条直线。
基础训练一:
(1、指出下列函数中的正比例函数和一次函数:①y = x +1;②y = - x/5;
③y = 3/x ;④y = 4x ;⑤y =x(3x+1-3x ;⑥y=3(x-2;⑦y=x/5-1/2。
(2、下列给出的两个变量中,成正比例函数关系的是:
A、少年儿童的身高和年龄;B、长方形的面积一定,它的长与宽;
C、圆的面积和它的半径;D、匀速运动中速度固定时,路程与时间的关系。
(3、对于函数y =(m+1x + 2- n,当m、n满足什么条件时为正比例函数?当m、n满足什么条件时为一次函数?
3、正比例函数、一次函数的图象和性质:
k,b的符号与直线y=kx+b(k≠0 的位置关系:
k的符号决定了直线y=kx+b(k≠0 ;b的符号决定了直线y=kx+b与y轴的交点 。当k>0时,直线 ; 当k<0时,直线 。
当b>0时,直线交于y轴的 ;当b<0时,直线交于y轴的 。
为此直线y=kx+b(k≠0 的位置有4种情况,分别是:
当k>0, b>0时,直线经过 ;当k>0, b<0时,直线经过 ;
当k<0,b>0时,直线经过 ;当k<0,b<0时,直线经过 。
基础训练二:
1. 写出一个图象经过点(1,- 3的函数解析式为 。
2.直线y = - 2X - 2 不经过第 象限,y随x的增大而 。
3.如果P(2,k在直线y=2x+2上,那么点P到x轴的距离是 。
4.已知正比例函数 y =(3k-1x,,若y随x的增大而增大,则k是 。
5、过点(0,2且与直线y=3x平行的直线是 。
6、若正比例函数y =(1-2mx 的图像过点A(x1,y1和点B(x2,y2当x1y2,则m的取值范围是 。
7、若函数y = ax+b的图像过一、二、三象限,则ab 。0
8、若y-2与x-2成正比例,当x=-2时,y=4,则x= 时,y = -4。
9、直线y=- 5x+b与直线y=x-3都交y轴上同一点,则b的值为 。
10、将直线y = -2x-2向上平移2个单位得到直线 ;
将它向左平移2个单位得到直线 。
综合训练:已知圆O的半径为1,过点A(2,0的直线切圆O于点B,交y轴于点C。(1求线段AB的长。(2求直线AC的解析式。
一、导数教学中对函数概念的再认识
导数,即导函数,它的引出和定义始终贯穿着函数思想,为什么这么说呢?首先要看一下高中数学中对导数的定义.我们首先定义一个函数y=f(x)在点x0处可导,且x0处有唯一的导数f(x0),然后定义函数y=f(x)在开区间(a,b)内可导,因而对于开区间(a,b)内每一个确定的值,都对应着一个确定的导数f(x0).根据函数定义,在开区间(a,b)内就构成了一个新函数,这个新函数就是导数.此处提到了根据函数的定义,那么函数的定义或者说函数的概念又是什么呢?
函数是数学中的一种对应关系,是从非空数集A到实数集B的对应.精确地说,设X是一个非空集合,Y是非空数集,f是个对应法则,若对X中的每个x,按对应法则f,使Y中存在唯一的一个元素y与之对应,就称对应法则f是X上的一个函数,记作y=f(x),称X为函数f(x)的定义域,集合{y|y=f(x),x∈R}为其值域(值域是Y的子集),x叫做自变量,y叫做因变量,习惯上也说y是x的函数.对应法则和定义域是函数的两个要素.
由于函数的学习在高中阶段要远早于导数,因此这样旧话重提,不但是一种对函数概念简单的复习,而且结合着导数的定义,我们对函数的概念又有了新的认识.因为学习函数的时候,我们已经习惯了将函数的定义域局限于一个集合里面,定义域中的任意数都对应着它的唯一值,而没有想到过,当将定义域缩小到某一个连续可导的区间时,会产生一个全新的函数,而且这个全新的函数拥有函数的一切特性,也遵循着一一对应的法则.通过这种定义层面的对比与教学,我们在导数的教学过程之中,就实现了对函数概念的再认识.
二、导数教学中对函数性质的再教学
1.导数与函数的图像
导数在物理上有着应用价值,在几何上同样有意义:函数y=f(x)在点x0处的导数f(x0),就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率k,即:k=tanα=f(x0).相应的切线方程为y-y0=f(x0)(x-x0).这就将导数与函数的图像联系了起来,导数在有关函数图像解题上的运用,既丰富了函数的解题方法,也深化了我们对导数与函数相互关系的理解.
结合具体的题目进行讲解:
已知曲线C:y=x3-3x2+2x,直线l:y=kx,且直线l与曲线C相切于点(x0,y0)(x0,0),求直线l的方程及切点坐标.
在求解这道题目的时候,首先引起我们注意的是“相切”这个词眼,自然而然我们会想到导数.将曲线C的方程还原为一个函数,那么这个题目就转变为求函数在某处的导数这个简单的问题.
2.导数与函数的单调性
用导数来确定函数的增减区间相对于学习函数单调性时所采用的定义法和图形法,更为直接,更为简便.导数的引入,使函数的单调性在另一个层面得到了体现,也为我们判断函数的单调性提供了一个更加快捷的途径,也便于我们更好地理解函数的性质.函数的单调性也称为函数的增减性.通常的在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)0,解集在定义域内的部分为增区间;(4)解不等式f′(x)
已知函数f(x)=4x+ax2-23x3(x∈R)在区间[-1,1]上是增函数,求实数a的取值范围.
题目中已经给出了函数的单调性,要求得出某个未知数,那么可以将利用导数求解函数单调性步骤反过来运用,由已知推算未知.
关键词 函数 概念
回顾函数概念的历史发展,函数概念是不断被精炼,深化,丰富的。初中时函数的定义是一个变量对另一个变量的一种依赖关系。在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。高中时,是用集合与对应的语言描述了函数概念。函数是一种对应关系,是函数概念的近代定义。
设A,B是非空数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数,记作y=f(x),x∈A。函数近代定义与传统定义在实质上是一致的,两个定义中的定义域与值域的意义完全相同。两个定义中的对应法则实际上也一样,只不过叙述的出发点不同,传统定义是从运动变化的观点出发,近代定义的对应法则是从集合与对应的观点出发。
函数的概念这一节课,内容比较抽象,概念性强,思维量大,为了充分调动学生的积极性和主动性,教学中通过典型实例来启发和帮助学生分析,比较,以达到建构概念之目的。
引出函数的概念,先是举出了生活中的三个实例。第一个实例是关于物体做斜抛运动的,和初中学习过的二次函数相联系。第二个实例是关于臭氧空洞的问题,给出了函数的图像,按照图中曲线,发现了两个集合之间的一种特殊的对应关系。第三个实例是关于恩格尔系数的经济实例。列表给出了恩格尔系数和时间(年)的关系。三个实例共同反映了变量之间的相互依赖的关系,同时反映出两个非空集合之间的一种特殊的对应关系。这样,自然而然地给出了函数的概念,并且这三个实例中的函数恰好是用了三种表示方法:解析法,图像法,列表法。
以实际问题为载体,以信息技术的作图功能为辅助。通过三个实例的教学,师生共同发现了函数概念中的对应关系。教师在归纳出函数定义后,可以在全班进行交流。结合初中函数的定义,指出两个定义的区别和联系。关于“y=f(x)”这一个函数符号的理解,教师可以提问:y=f(x)一定是函数的解析式吗?回答是不一定,可以举出实例二和实例三。函数的解析式,图像,表格都是函数的表示方法。即:y=f(x)表示y是x的函数,但f(x)不一定是解析式。当f(x)是一个解析式时,如果把x,y看作是并列的未知量或者点的坐标,那么y=f(x)也可以看做是一个方程。
函数的核心是对应法则,通常用记号f表示函数的对应法则,在不同的函数中,f的具体含义不一样。函数记号y=f(x)表明,对于定义域A的任意一个x在“对应法则f”的作用下,即在B中可得唯一的y.当x在定义域中取一个确定的a,对应的函数值即为f(a).集合B中并非所有的元素在定义域A中都有元素和它对应;值域 。教师引导学生归纳并总结,函数的三要素是定义域,值域和对应法则。
然后,教师给出同学们所熟悉的三种函数,一次函数y=ax+b(a≠0),反比例函数 ,以及二次函数 。教师演示动画,用几何画板显示这三种函数的动态图像,启发学生观察,分析,并请学生们思考之后,填写对应关系,定义域和值域。通过三个熟悉的函数加深学生对函数近代定义的理解。教师引导学生归纳总结出:函数的三要素是定义域、值域及对应法则。在函数的三要素中,当其中的两要素已确定时,则第三个要素也就随之确定了。如果函数的定义域,对应法则已确定,则函数的值域也就确定了。
连续的实数集合可以用集合表示,也可以用区间表示。利用多媒体课件展示怎样用区间表示集合。区间可以分为闭区间,开区间,半开半闭区间。特别地,实数集R记作(-∞,+∞), ∞ 读作无穷大;-∞ 读作负无穷大;+∞ 读作正无穷大;“∞”不是一个数,表示无限大的变化趋势,因此作为端点,不用方括号。
例1和例2的编排,是为了进一步地加深理解函数的三要素。函数的定义域通常由问题的实际背景确定.对于用解析式表示的函数如果没有给出定义域,那么就认为函数的定义域是指使函数表达式有意义的自变量取值的集合。在例1中,要注意f(a)与f(x)的联系与区别:f(a)表示当自变量x=a时函数f(x)的值,它是一个常量;而f(x)是自变量x的函数,在一般情况下,它是一个变量。f(a)是f(x)的一个特殊值。例2是来判断两个函数是否相等的。如果两个函数的定义域相同,并且对应关系完全一致,这两个函数就是相等的。
数学概念是构建数学理论大厦的基石;是导出数学定理和数学法则的逻辑基础;是提高解题能力的前提;是数学学科的灵魂和精髓。因此,数学概念教学是高中数学教学的一项重要任务,是“双基”教学的核心、是数学教学的重要组成部分,应引起足够重视。正确理解概念是学好数学的基础,概念不清往往是导致学生数学成绩差的最直接的原因。
关键词 函数 概念
回顾函数概念的历史发展,函数概念是不断被精炼,深化,丰富的。初中时函数的定义是一个变量对另一个变量的一种依赖关系。在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。高中时,是用集合与对应的语言描述了函数概念。函数是一种对应关系,是函数概念的近代定义。
设a,b是非空数集,如果按某个确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有唯一确定的数f(x)和它对应,那么就称f:ab为从集合a到集合b的一个函数,记作y=f(x),x∈a。函数近代定义与传统定义在实质上是一致的,两个定义中的定义域与值域的意义完全相同。两个定义中的对应法则实际上也一样,只不过叙述的出发点不同,传统定义是从运动变化的观点出发,近代定义的对应法则是从集合与对应的观点出发。
函数的概念这一节课,内容比较抽象,概念性强,思维量大,为了充分调动学生的积极性和主动性,教学中通过典型实例来启发和帮助学生分析,比较,以达到建构概念之目的。
引出函数的概念,先是举出了生活中的三个实例。第一个实例是关于物体做斜抛运动的,和初中学习过的二次函数相联系。第二个实例是关于臭氧空洞的问题,给出了函数的图像,按照图中曲线,发现了两个集合之间的一种特殊的对应关系。第三个实例是关于恩格尔系数的经济实例。列表给出了恩格尔系数和时间(年)的关系。三个实例共同反映了变量之间的相互依赖的关系,同时反映出两个非空集合之间的一种特殊的对应关系。这样,自然而然地给出了函数的概念,并且这三个实例中的函数恰好是用了三种表示方法:解析法,图像法,列表法。
以实际问题为载体,以信息技术的作图功能为辅助。通过三个实例的教学,师生共同发现了函数概念中的对应关系。教师在归纳出函数定义后,可以在全班进行交流。结合初中函数的定义,指出两个定义的区别和联系。关于“y=f(x)”这一个函数符号的理解,教师可以提问:y=f(x)一定是函数的解析式吗?回答是不一定,可以举出实例二和实例三。函数的解析式,图像,表格都是函数的表示方法。即:y=f(x)表示y是x的函数,但f(x)不一定是解析式。当f(x)是一个解析式时,如果把x,y看作是并列的未知量或者点的坐标,那么y=f(x)也可以看做是一个方程。
函数的核心是对应法则,通常用记号f表示函数的对应法则,在不同的函数中,f的具体含义不一样。函数记号y=f(x)表明,对于定义域a的任意一个x在“对应法则f”的作用下,即在b中可得唯一的y.当x在定义域中取一个确定的a,对应的函数值即为f(a).集合b中并非所有的元素在定义域a中都有元素和它对应;值域 。教师引导学生归纳并总结,函数的三要素是定义域,值域和对应法则。
然后,教师给出同学们所熟悉的三种函数,一次函数y=ax+b(a≠0),反比例函数 ,以及二次函数 。教师演示动画,用几何画板显示这三种函数的动态图像,启发学生观察,分析,并请学生们思考之后,填写对应关系,定义域和值域。通过三个熟悉的函数加深学生对函数近代定义的理解。教师引导学生归纳总结出:函数的三要素是定义域、值域及对应法则。在函数的三要素中,当其中的两要素已确定时,则第三个要素也就随之确定了。如果函数的定义域,对应法则已确定,则函数的值域也就确定了。
连续的实数集合可以用集合表示,也可以用区间表示。利用多媒体课件展示怎样用区间表示集合。区间可以分为闭区间,开区间,半开半闭区间。特别地,实数集r记作(-∞,+∞), ∞ 读作无穷大;-∞ 读作负无穷大;+∞ 读作正无穷大;“∞”不是一个数,表示无限大的变化趋势,因此作为端点,不用方括号。
例1和例2的编排,是为了进一步地加深理解函数的三要素。函数的定义域通常由问题的实际背景确定.对于用解析式表示的函数如果没有给出定义域,那么就认为函数的定义域是指使函数表达式有意义的自变量取值的集合。在例1中,要注意f(a)与f(x)的联系与区别:f(a)表示当自变量x=a时函数f(x)的值,它是一个常量;而f(x)是自变量x的函数,在一般情况下,它是一个变量。f(a)是f(x)的一个特殊值。例2是来判断两个函数是否相等的。如果两个函数的定义域相同,并且对应关系完全一致,这两个函数就是相等的。
数学概念是构建数学理论大厦的基石;是导出数学定理和数学法则的逻辑基础;是提高解题能力的前提;是数学学科的灵魂和精髓。因此,数学概念教学是高中数学教学的一项重要任务,是“双基”教学的核心、是数学教学的重要组成部分,应引起足够重视。正确理解概念是学好数学的基础,概念不清往往是导致学生数学成绩差的最直接的原因。