欢迎访问爱发表,线上期刊服务咨询

光电技术8篇

时间:2022-10-01 05:48:21

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇光电技术,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

光电技术

篇1

【关键词】光电技术,侦察,光电干扰,发展趋势

光电技术(PhotoelectricTechnology)是一门以光电子学为基础,将光学技术、电子学技术、精密机械及计算机技术紧密结合在一起的新技术,它为获取光子信息或借助光子提取其他信息提供了一种重要手段。它将电子学中的许多基本概念与技术移植到光频段,解决光电信息系统中的工程技术问题。这一先进技术使人类能更有效地扩展自身的视觉能力,将长波延伸到亚毫米波,短波延伸至紫外线、X射线、γ射线,乃至高能粒子,并可在飞秒级的速度下记录超快现象的变化过程。

光电技术的研究内容可以分为光电基础技术和光电信息技术两部分。光电基础技术体系是多门学科为基础,以器件物理技术为依托,如高光电转换效率的太阳能电池、高速低噪的PIN与APD二极管、高像素与高图像质量的CCD与CMOS图像传感器等基础光电器件的研制。光电信息系统技术包括了光电信息的产生、获取、变换、传输、处理和控制等过程。光电技术在现代科技、经济、军事、文化、医学等领域发挥着极其重要的作用,以此为支撑的光电子产业是当今世界各国家争相发展的支柱产业,是竞争激烈、发展最快的信息技术产业的主力军。随着光电技术的迅速发展,半导体激光器、千万像素的CCD与CMOS固体图像传感器、PIN与APD光敏二极管、LED、太阳能电池、液晶显示等在工业与民用领域随处可见,红外成像技术已经广泛应用于军事和工业领域。

光电技术的基本功能是将光学参量或非光学参量进行光电转换,完成工业检测、军事光电对抗、红外探测、控制跟踪等。光电技术在光通信、大容量光存储、生物工程与医学、工业在线检测、危险环境检测、遥测遥感、光纤传感、精密计量、太赫兹波技术等方面有着广泛应用。下面着重介绍光电技术在光电对抗上的应用及发展趋势。

各种基于光电技术的武器系统被应用于现代信息化战争中。在光电武器装备的较量中,出现了一种全新的作战手段,这就是――光电对抗(Electro-opticalCountermeasure)。敌对双方在光波段范围内,利用光电器材和设备,侦查告警光电制导武器和光电侦查设备等光电武器,并实施干扰,使敌方武器降低、削弱或完全丧失作战效能。同时,利用光电器材和设备,从而有效地保护己方光电设备和人员免遭敌方的侦查告警和干扰。光电对抗是技术可以分为光电侦察与反光电侦察、光电干扰与抗光电干扰等,如图1。

1光电侦察

光电侦察(PhotoelectricDetection),主要是搜索、截获、测量、分析、识别以及光电设备测向、定位敌方辐射或散射的光谱信号,以获取敌方光电设备类型、位置、参数、功能、用途,及时提供情报并发出警告。光电侦察分为被动、主动侦察。利用各种光电探测装置截获和跟踪敌方光电装置的光辐射,并加以分析识别,从而获取敌方目标信息情报的一种手段,叫做光电被动侦察(PassiveDetection),如激光告警、红外告警、紫外告警和光电综合告警等。利用敌方光电装备的光学特性而进行的侦察,称为光电主动侦察(ActiveDetection),即向敌方发射光束,再对反射回来的光信号进行探测、分析和识别,从而获得敌方情报,如激光雷达、激光测距机。

2光电干扰(PhotoelectricityInterference)

采取某些技术措施可以破坏或抑制敌方光电设备的正常工作,其称为光电干扰,这种手段同时也可以保护己方目标。光电干扰分为有源干扰(ActiveJamming)和无源干扰(PassiveJamming)两种方式。有源干扰是利用己方光电设备发射或转发敌方光电设备相应波段的光波,对敌方光电装备进行压制或欺骗干扰。如红外干扰机、红外干扰弹、强激光干扰和激光欺骗干扰。无源干扰是利用特制器材或材料,反射(Reflection)、散射(Scattering)或吸收(Absorption)光波能量,或人为改变己方目标的光学特性,使敌方光电装备效能降低或被欺骗而失效,以保护己方目标为目的的一种干扰手段,如烟幕(Smokescreen)、光电隐身(Electro-opticStealthy)和光电假目标。

3反光电侦察

反光电侦察就是抓住光电系统的薄弱环节,使敌方的光电侦察装备无法看见己方的军事设施。主要方法有遮挡和欺骗、伪装与隐身。反光电侦察的具体技术包括烟幕、假目标、伪装(Camouflage)、隐身、摧毁与致盲、编码技术和改变光束传输方向等。

4抗光电干扰

抗光电干扰是在光电对抗环境中为保证己方光频谱而采取的行动。其在己方目标上,通过采取光电防护材料、抗干扰电路等措施,衰减或过滤敌方发射的强激光或其他干扰光波,保护己方设备或作战人员免遭干扰和损伤。它包括反多光谱技术(MultispectralTechnique)、隐身技术、信息融合技术(InformationFusionTechnology)、自适应技术(AdaptiveTechnology)、编码技术、选通技术等。

篇2

关键词:光电互感器;罗夫斯基线圈;泡克而斯效应;法拉第效应

中图分类号:TP183文献标识码:Adoi:10.3969/j.issn.1003-6970.2010.10.006

The Analysis of Optical Transformer Technology

Lv PengHuang YuanliangJin Zhuoyun

(Electric automatization institute of Jinan University, Zhuhai,519070)

Abstract:Optical Transformer bases on Photonics technology and optical fiber sensing technology, it is fit for the constantly developing and progressing of the voltage degree and current quality in electrical industry due to its perfect performance. In addition, it will take the place of traditional transformer gradually. Optical transformer is constituted of Optical Current Transformer, Optical Voltage Transformer and the Combined Optical Transformer. This paper mainly introduces the principle, current problems, solutions and the usage of Optical Transformer, and prospecting the future develop trend.

Key words: Optical Transformer; Rogowski coil; Pockels effect; Faraday effect

1.引 言

光电互感器是利用光电子技术和光纤传感技术来实现电力系统电压、电流测量的新型互感器它是光学电压互感器、光学电流互感器、组合式光学互感器等各种光学互感器的通称。随着电力工业的不断发展,电网电压等级的不断提高,电力工业对电压、电流的测量要求也在不断提高。互感器作为输电线路中最基本最重要的检测设备,其暴露出来的一系列缺点迫使一种安全、可靠、理论完善性能优越的新方法来实现高电压和高电流的测量。基于光学传感技术的光学电流互感器(Optical Current Transformer, OCT)和光学电压互感器(Optical Voltage Transformer, OVT)能有效地克服传统电磁式互感器所固有的缺点,同时更适应电力系统的智能化,并为计算机高速网络在实时系统中的开发利用,为变电站信息的采集、传输实现数字化处理提供了条件。光电互感器的诸多优点,近三十年来引起了世界各国的关注,尤其美国、法国、日本和中国的学者和工程技术人员都进行了深入的研究。

2.光电互感器的产生与历史

早在20世纪60十年代,国外的诸多电气公司就开始了对光电互感器的相互研究,最早研制成功的是美国的西屋电气公司。但当时研制的基于法拉第光效应(电流互感器)和电光效应(电压互感器)的光电互感器还仅仅是纯光学式的光电元件,他受到温度限制无法达到户外环境下0.2级精度的要求。到了60年代,在世界范围内兴起了对光电式电流互感器应用的研究,70年代一度形成,但当时仍处于初级阶段,温度等影响仍未得到较好的解决,精度比较低。直到上世纪80年代,随着电子技术的飞速发展,光电子技术、PC微机、单片机及数字处理器技术的兴起与成熟,为研制出高性能的光电互感器奠定了坚实的基础,电子式光电互感器得以研制成功,并逐渐开始投入使用。

1992年ABB公司的光电互感器在巴西电力系统投入应用,至今运行良好。SIMENS、ALSTOM等公司也相继研制成功并投入运行。到2000年,ABB公司已经研制出可用于69kV到765kV电压等级的光电电流互感器,测量电流范围为5A~2000A,准确度达到±0.2%。同时,他们研制了用于GIS中的复合电子式电压、电流互感器,电流测量范围为5A~2000A,电压测量范围为69~500kV,准确度都达到±0.2%,电压测量是直接使用电容环测量,不用分压器。法国的Alstom公司利用Faraday效应研制了一套电子式电流互感器,在-30~50℃的范围内准确度达到±0.2%。

我国最早对光电互感器的研究是在20世纪80年代的一些大学进行的,当时也是以光学式的光电互感器为研究方向,目前已改为主攻电子式的光电互感器。尽管一些高科技公司的某些产品已经进入挂网试运阶段,但是对光电互感器的研究仍处于初级阶段,与国外还有一定的距离。国内许多科研机构和大专院校的研究人员也正致力于新型光电互感器的研究,从事这方面的主要研究单位有清华大学、华中科技大学、上海大学、西安同维公司、广州伟钰光电科技有限公司等,经过几年的努力,研制工作已逐步向实用化阶段发展。光电互感器的高压以及电气绝缘特性使得它更加适合我国电力工业的发展,在将来的超高压以及特高压系统中将发挥巨大的作用。

3. 光电互感器的工作原理及其分类[1]

简单的来说OCT工作原理是Faraday磁光效应,OVT工作原理是Pockels线性电光效应,光学电流传感头和光学电压传感头位于绝缘套管的高压区,控制室内的发光二极管发出光信号经绝缘材料制成的光缆传输至两个传感头,经高压母线和电压调制后,光信号又经光缆从高压区传输回主控室,最后经光电转换、数据采集和信号处理系统得出被测电流、电压信号。根据高压部分是否采用有源器件将光电互感器分为两类:高压部分不采用有源器件的称为无源型光电电流(电压)互感器,采用有源器件的称为有源型光电电流(电压)互感器。

3.1 有源型OCT工作原理[2]

有源型OCT又称混合式光学电流互感器,它的原理是利用有源器件调制技术,把罗夫斯基线圈测量出的信号经过积分运算得出电流模拟信号,模/数转换(A/D)电路将积分器输出的信号转换成数字信号,然后通过电一光转换装置将电信号转换成光信号,再通过光纤传输。到互感器低压侧信号处理电路,有源型OCT原理示意图如图1所示。

有源型OCT的关键部件为罗夫斯基线圈及积分器。罗夫斯基线圈是一种绕制在非磁性骨架上的空心线圈,具有精度高、稳定性好、抗干扰能力强、动态范围宽、体积小、重量轻、造价低廉、线性度好等一系列优点。其工作原理如图2所示。

罗夫斯基线圈直接套在被测量的导体上,从而导体中流过的交流电流在导体周围产生一个交替变化的磁场,从而在线圈两端感应出一个与电流变化成比例的交流电压信号e(t):

其中,di/dt则是电流的变化率, 而L为线圈的电感,i(t)为还原电流,通过对交流电压信号积分并运算得出所要测量的电流值,其数学表达式为:

有源型OCT的传感器和A/D转换部件是需要电源供电的,目前常用的供能方式主要有利用特制电流互感器(CT)或电容分压器从母线上取电能,激光供能,太阳能供电及蓄电池供电等。

3.2 无源型OCT的工作原理

无源型OCT与有源型OCT不同,其传感器部分无需电源供电。无源型OCT以法拉第磁光效应理论为基础,其实质是光波在通过磁光材料时,电流产生的磁场使光波在通过磁光材料时其偏振面会发生旋转,测量其旋转角度的大小即可确定被测电流。法拉第旋转角θF的表达式为:

其中,V为代表光纤材料特性的维尔德常数;H为光传播方向上的磁场强度;L为光路长度线;μ0为磁导率;N为绕载流体的光圈数;I为被测电流。

无源型电流互感器的存在问题是其本身的光学系统折射效应随环境因素而变化,光学传感头中存在着各种形式的双折射,影响了整个系统的精度和稳定性。

3.3 有源型OVT工作原理

有源型OVT的传感头部分仍采用传统的传感技术,即电容分压技术。如图3所示,被测对象通过电容分压测量单元后形成一较低的电压,刀转换单元对电容分压测量单元的输出信号进行模拟量与数字量的转换,形成光电信号,由于电容分压测量单元和A/D转换单元都需要供电模块提供工作电源,有源型OVT的名称由此而来。

有源型是当前挂网运行时间最长而且最为常见的光电电压互感器,一方面其原理相对简单,与传统的电压互感器结构相近,容易实现另一方面其生产成本较低,便于制造。但是这种型式的光电互感器只是把传感器的模拟信号转换为光电信号,不是真正意义上的光电化产品,它一方面没有充分体现光学传感的优越性,另一方面电容分压器的长期运行会引进额外的测量误差,因此具有一定的局限性,是一种为了实现光电信号传输的过渡性产品。

3.4 无源型OVT

无源型的原理是将高电压直接加在电光晶体上,应用先进的光学传感原理一效应来测量电压的全光纤型光电电压互感器“泡克尔斯效应”是描述电场对透明晶体影响的电光效应,某些透明的光学介质也称压电晶体在外加电场作用下,晶体将变为各向异性的双轴晶体,从而导致其折射率和通过晶体的偏振光特性发生变化,产生双折射,使一束光变为两束相位不同的直线偏振光。图4为无源型的原理图,一束线性偏振光照射到压电晶体表面时分裂成振动方向相互垂直的两束光,其相位差大小与所加电压和材料有关。

双折射后两束偏振光的相位差可用以下公式计算:

其中:U=Usinωt,λ为入射光波波长;n0为晶体的折射率孔, γ41为晶体(BGO)线性电光系数口为被测电压是电压幅值。ω是角频率。

通常利用偏光干涉的方法将转变为输出光强的变化来检测它,利用1/4波片使两束光的相位差增加90°,总的相位差为δ+π/2。出射光强可以表示为:

其中,I0是入射光强,U0为半波电压。

可见,利用出射光强和电压的关系,通过光电变换和信号处理就能得到被测电压。

3.5 光学组合式互感器工作原理

光学组合式互感器是基于电光晶体的Pockels效应和磁光玻璃的Faraday效应研制出的可以同时测量高压输电线电流及电压的组合式互感器。它绝缘结构简单,电压测量与电流测量间无相互干扰。非线性误差小于0.3%,在24~33℃温度范围电压传感器24h内的波动在±0.3%内。

4.光电互感器的优点[3]

与常规的电磁式互感器相比较,光电互感器的突出优点是:

(1)高低压完全隔离,安全性高,具有优良的绝缘性能和优越的性价比

由于光电互感器是通过由绝缘材料制成的光导纤维将高压信号传输到二次设备,巧妙的避开了传统互感器绝缘性能差的缺点,大大简化了绝缘结构,节省资源的同时,提高了互感器电气绝缘性能。它的适合高压的特性使它在不断提高电压的电力工业中显示出越来越高的性价比。利用光缆代替电缆作为信号传输工具,又实现了高低压的彻底隔离,不存在电压互感器二次回路短路或电流互感器二次开路给设备和人身造成的危害,安全性和可靠性也大大地提高。

(2)没有铁芯,不存在磁饱和铁磁谐振等现象

光电互感器在原理上与传统互感器有着本质的区别,它一般不用铁芯完成磁藕合,因此,不存在传统互感器磁饱和及铁磁谐振现象,使得互感器运行暂态响应好,稳定性好,确保了系统运行的高可靠性。

(3)功能齐全,可靠性高

光电互感器能不但可以用于电压电流测量,还可以用作保护功能。不必使用多个不同用途的铁芯线圈,便可同时满足计量和继电保护的需要,同时还可以将电压、电流组合在一起,构成组合式光电互感器。这些对于传统互感器是无法达到的。目前,光电互感器的测量精度最高可以达到0.2级和0.2S级。

(4)频率响应宽,动态范围大

光电互感器传感头部分的频率响应取决于光纤在传感头上的渡越时间,实际能测量的频率范围主要决定于电子线路部分。光学传感部件已经用于测量高压电力线路上的谐波和脉冲暂态电压。

(5)没有因充油而潜在的易燃、易爆等危险

由于光电互感器的绝缘结构相对简单,一般不采用油作为绝缘介质,不会引起火灾、爆炸等危险.

(6)体积小、重量轻、减少占地面积

因无铁芯及绝缘油等,光电互感器的重量一般只有电磁式CT、VT重量的1/10,且体积小,占地面积小,便于运输和安装。

(7)无污染、无噪音,具有优越的环保性能

由于光电互感器中信号是通过光来传输的,因此不会产生噪音、电磁波等污染源,同时,可采用硅橡胶绝缘子和SF6气体作为绝缘介质,替代传统的磁套绝缘子和绝缘油,甚至可以做成无油无气的OCT,这样可大大降低这些配套设备生产过程中带来的环境污染,具有优越的环保性能。

(8)适应了电力系统数字化、智能化和网络化的需要

光电互感器可以根据需要输出低压模拟量和数字量,这可直接用于微机保护和电子式计量设备,而且能实现在线检测和故障诊断,在变电站综合自动化中具有明显的应用优势。综上所述,光电互感器以其优越的特性以及明显的经济效益和社会效益,使得它在电力工业中占据了一席之地,同时对于保证日益庞大和复杂的电力系统安全可靠运行,并提高其自动化程度具有深远的意义。光电互感器是世纪电力系统的更新换代产品,尽快使其实用化已经成为电力系统发展的迫切需要。

5.光电互感器的缺点及目前的改进方法

5.1OCT的缺点[4]

根据我国第一台OCT挂网运行数据显示,在小电流时OCT输出的读数波动较大,线性度较差,准确度也略超出计量要求。一方面是由于小电流引起的法拉第旋转角非常小,有限的传感器灵敏度导致被测信号被噪声所淹没;另一方面机械振动、温度变化以及由于光纤偏振特性等因素使得输出光强的变化,降低了检测的灵敏度,不过可以通过检测电路的交直流分离等办法消除此影响。然而对于有两种特殊情况会使光强发生很大的变化,因而会对测量产生很大的影响:1.光强波动较快时,直流通道的响应时间远远慢于交流通道,采用交流除以直流的方法明显存在不同步的问题2.当光强急剧下降衰减而超过PIN光电管的探测灵敏度时,OCT无法正常工作。

5.2OCT的改进方法

针对以上诸多影响光电互感器的不利因素,我国许多研究人员做了大量的工作,并取得了一定的成果。

降低温度影响:为了克服温度对互感器带来的影响,清华大学对种8国产光学玻璃磁光系数和温度特性进行了深入的研究,ZF6在降低温度影响方面最能满足OCT的要求。

提高系统抗外场干扰能力:在提高系统抗外场干扰方面有几种方法,改进由Sato等人提出的双正交反射方案,将原光路设计中的第三角上第一次反射由向上改为向下(见图4),使传感头内光路在小载流导体平行及垂直的两个面上的投影形成闭合回路来改善系统抗外场干扰能力。相比而言,镀膜技术在此方面具有的优点是简化传感头使之易于加工,同时光路在任何平面内的投影均及接近完全闭合,传感头厚度比双正交反射方案减小一半以上。目前的保偏膜有两种:多层介质膜和单层介质膜,多层介质膜可以有效的解决相移问题,但对传感头的加工与安装需十分精细,单层介质膜在具有镀膜技术的共同有点之外,相比多层介质膜,更节省膜材料和膜加工所需时间,但此方法对膜厚度的控制要求更高的镀膜工艺。利用多模光纤的消偏与消除相干扰性能,同时结合选用低相干光源,可以有效的一直有振动引起的光线中的噪声干扰。

Rogowski线圈在OCT中的应用:Rogowski线圈能够很好的解决以上由于温度、外场以及振动引起的光电互感器灵敏度以及准确度降低等问题。国内外都已有0.2级Rogowski线圈,清华大学开发了以DSP为核心,集合光纤、通信、微机技术的实用化设计方案。OCT集电流测量和谐波分析于一体,同时还提供远程计算机接口和继电保护接口。试验表明,此种结构简单、安装方便、抗干扰能力强和准确度高(优于0.5%)。

5.3OVT的缺点

光电电压互感器晚于光电电流互感器,经过各国的不断努力,在理论上和技术上都取得了很大的进展,与光电电流互感器类似,光电电压互感器也遇到了温度影响稳定性问题,和长期运行的可靠性问题。其中运行环境的温度变化是影响光电电压互感器稳定性和可靠性的重要因素。

5.4OVT的改进方法

目前主要采用双光路检测技术来消除热力效应对光电电压互感器的温度稳定性的影响,但是仍然存在无法改变晶体的热光效应。晶体的热光效应使得互感器在工作温度范围内的准确度只有2.1%,距离实用所需的1%要求还有一段距离。为了避免因晶体的旋光性和自然双折射会直接对光波引入的附加相位差,目前一般选用立方晶体的BGO材料,它稳定性好,无旋光性和自然双折射。研究发现,BOG晶体的纯度越高,光电电压互感器的稳定性越好。对于光源发射的光波波长由温度影响而造成的系统稳定性减弱情况,采用软件补偿技术消除波长变化的影响,明显的提高了光电电压互感器的稳定性。通过对光线受到振动和其他机械扰动产生线性双折射,且单模光纤产生噪声更为严重的现象发现,光线的芯径越大,噪声越小,通过使用低相干光源和线偏振光沿光纤的偏振轴输入,来达到有效抑制噪声对系统稳定性带来的严重影响

6. 光电互感器在电力工业中的应用[8]

基于西昌地区多高耗能用户,该类用户的电炉设备功率大,负荷波动大,产生大量大功率低次谐波污染,同时冲击电流造成电磁式互感器铁心饱和,有可能造成继保误动作,并使二次电流、电压产生畸变,影响计量的准确性等情况,2006年4月,安装了35kV数字式光电互感器及其保护和计量装置及其二次系统的设计、安装、运行和运行效果的对比分析,来为西昌地区寻找一条可靠先进的电网技术革新之路。将该组光电互感器安装于一个对电铁及高耗能工业园区供电的110kV变电站内一条35kV出线间隔,该线路对冶炼企业供电,日均负荷为1.2万KW。该线路原装有电磁式电流互感器,准确级0.2级。35kV母线电压互感器亦采用JDJJ2-35型电磁式电压互感器。在出线间隔安装了一组组合式光电电流电压互感器,并装配一套线路保护和一块具有光纤以太网接口的电能表,以便将光电互感器的采集数据与电磁式互感器采集的模拟量在数据采集、电量及所接保护功能等方面进行对比。同时,南自厂在合并器报文读取中加进了谐波分析部分,采集了当地的谐波污染情况。截止2007年的数据显示,该组光电互感器运行状况良好。

母线保护由于其保护特殊性,需要接入大量的交流量。基于OET700数字式光电互感器的母线保护采用光纤接入来自多个合并器的电流量、电压量。开入量(接入母线保护的隔离刀闸辅助接点、失灵启动开入节点等)和开出量(包括出口跳闸接点、信号接点等)则仍采用传统的输入输出方案,如图2所示。

若一次系统采用光TV,则电压模拟量同电流输入类似。若采用光TA与传统电磁式混用则通过合并器进行采集一并打包给保护。在技术成熟条件下,开关量输入、开关量输出也可通过光纤进行传输,以实现整个变电站全部设备的数字化。

同传统的微机母线保护一样,基于光电互感的母线保护配置以下保护:差动保护、母联失灵保护、母联死区保护、母联充电保护、母联过流保护、母联非全相保护、断路器失灵保护、复合电压闭锁等。所有保护功能均为逻辑图设计,保护流程可视化、图形化、模块化。可根据系统接线要求进行选择配置,配置和维护方便灵活。

7. 光电互感器的发展趋势

随着电力系统智能化、数字化的产生和发展,人们对所采集数据的准确度要求越来越高,新型的OCT都将向着灵敏度更高的方向发展,同时更简单更节约能源。全反射结构的OCT比相同尺寸的金属膜结构OCT的输出响应更加灵敏。全光纤结构的OCT将是未来发展的方向,目前,日本已经开发出0.3级的全光纤OCT。

光电电压互感器的主要发展方向也是新型全光纤OVT,因为不论从稳定性准确性以及能源的节省和环境的保护方面,它都较传统电压互感器有很大的优势。采用石英晶体和光纤作为敏感元件,通过光纤来检测和传输信号,生产工艺更为简单,不再需要自动聚焦透镜、起(检)偏器、波片、电光晶体等光学元件,节省资源的同时提高了系统的稳定性。全光纤OVT的诸多有点引起了广泛的关注,在光电互感器方面起领头作用ABB公司已经开发出类似的产品,我国很多高校也投入了积极的研究。

8. 结 语

经过三十余年的发展,国内的光电互感技术不断进步。但是相比于国外上世纪60年代就开始研究,90年代就开始挂网运行并将产品推广到市场还有很长的一段路要走。随着现代电力工业对电压级别、电流强度要求的不断提高,光电互感技术作为一种新技术越来越引起研究人员的关注。电力系统的数字化、智能化、网络化也都促进了光电互感技术的快速发展。当然光电互感技术目前还存在着很多问题,但随着测量要求逐步提高,测量技术的逐渐成熟,光电互感技术必定有着非常广阔的发展空间。光电互感器将作为下一代互感器的主流产品,其不可替代的技术优势和价格优势已经凸现出来,随着当前光电互感器的市场化进程,必将带来电力系统测量、保护和监控的革命性变化。

参考文献

[1] 崔文广.光电式互感器的研究探讨.中国科技信息广东输电与变电技术[J],2007,8(2),2005,6(9).

[2] 许斌斌.光电互感器的原理及应用前景[J].

[3] 叶妙元,肖霞.光电互感器(一)―21世纪电力系统电压电流测量的基本设备[J].

[4] 平绍勋,于波,黄仁山.光电互感器的现状和发展[J].高电压技术,2003,29(1):21-23.

[5] 易本顺.光电式互感器的研究和发展及其在电力系统中的应用[J].武汉大学学报(信息科学版),2002, 27(2):57-63.

[6] 李旭光,秦松林,肖登明.光电互感器在特高压电网

中的应用技术分析[J].高电压技术,2007,

6(33):13-15.

[7] 于蓬勃.光电互感器.天津电力技术[J],

2005,1:30-32.

[8] 范寿宁,黄琼辉.数字式光电互感器的应用[J].四川电力技术,2008,31(3):60

篇3

    关键词:平板显示;显像管技术;液晶显示技术;等离子显示技术; 发展现状;前景。

    An Analysis of the Current Situation and Development Trend of

    FPD Technology

    LIU gui-liang

    (Class 3,College major of Electronic Science and Technology,SCAU.)

    Abstract:Differents between the FPD and CRT technology.Introduce the main technology and mainstream products of FPD.Summary of the current stage and development trend of FPD.Some suggestion.

    Keyword: flat panel display; television picture tube technology; liquid-crystal display; plasma display panel; situation of development; future prospect.

    目录

    一.引言 ??????????????????????3

    二.平板显示技术概述 ????????????????3

    2.1.阴极射线管(CRT) ?????????????3

    2.2.液晶显示器(LCD) ?????????????5

    2.3.等离子显示器(PDP) ????????????6

    2.4.其他平板显示产品 ?????????????6

    三.中国平板电视行业的发展现状 ???????????7

    四.中国平板行业前景 ????????????????7

    五.发展规划 ????????????????????8

    六.结论 ??????????????????????9

    参考文献 ??????????????????????9

    一.引言

    从1999年-2009年,中国平板行业走过了不平凡的十年。十年来中国平板电视行业经历了从无到有、从小到大、从弱到强的成长历程。在这波澜壮阔的发展进程中,造就了一批行业明星,同时也倒下了一些辉煌一时的品牌。

    10年对于中国平板电视行业,是一段曲折崛起的峥嵘岁月。总结过去经验,我们可以很清楚地看到自身优势与不足;立足现在,我们可以坦然地面对困惑与问题,寻找突破之道;展望未来,我们期待中国的平板电视行业能突破瓶颈,取得关键性进展。

    本文立足于各种显示技术特点以及中国平板显示行业自身特点,对此行业目前的境况作出较为客观的分析。 二.平板显示技术概述

    平板显示(FPD)技术,顾名思义,就是采用平面屏幕显示的技术,它是相对于传统阴极射线管作比较而言的一类显示技术,主要包括液晶显示(LCD)、等离子显示(PDP)、有机电致发光显示(OLED)、表面传导电子发射显示(SED)等几大技术类型的相关产品。

    平板显示器与传统的阴极射线管(CRT)相比,具有薄、轻、功耗小、辐射低、没有闪烁、有利于人体健康等优点。下面将分类简单介绍几种主要显示技术的主要原理。

    2.1阴极射线管(CRT)

    阴极射线管的关键部件是连在荧光屏后部成为一体的电子枪。电子枪发射出一束经过图像信号调制的窄电子流,经过加速、聚焦、偏转后打在荧光屏的荧光粉上使之发光。电子枪以一个相当快的速度发射电子流,同时偏转线圈控制电子束方向,逐行在屏幕上扫过,达到显示图像的目的。CRT显示图像是是不断连续刷新着的,因此此类显示器看上去给眼睛一种“闪烁”的感觉。容易引起眼睛疲劳损坏视力。

    CRT有黑白和彩色两种,黑白的显像管构造相对简单。图1.为黑白显像管的构造示意图。

    图1.阴极射线管

    彩色显像管与黑白显像管的区别是前者有三个电子枪,前端多一个布满微小孔洞的“荫罩”,以及荧光粉是红绿蓝三种原色排列的。彩色显像管显示图像时,三个电子枪发射出三束电子,在同一个荫罩小孔上通过,分别打在三种颜色的荧

    光粉上,人眼看到的效果会自动把三种色光混合,组成一幅图像。如图2.

    图2. 彩色显像原理

    荫罩的作用就是保证三个电子共同穿过同一个荫罩小孔,以激发荧光粉,使

    之发出红、绿、蓝三色光。不同形状的荫罩有不同的透光率、对比度、分辨率等

    参数。制造成本也不同。有一种栅条状的荫罩其透过率达到95%。如图3.

    图3. 孔状荫罩(左上)、沟槽状荫罩(右上)以及栅条状荫罩(下)

篇4

面对问题,直面出击

随着工业的飞速发展和社会文明的长足进步,环境问题已经成为21世纪人类必须面临的重大课题之一,其中,空气和水体中的有机物污染尤为显著。而半导体催化技术因为可利用部分太阳光能,在常温常压下进行快速反应,且对污染物治理彻底、无二次污染而成为国际环境净化处理研究的前沿领域之一。的确,半导体催化技术是十分符合我国在环境污染治理中的高效率低消耗要求的。而由于具有价廉无毒、氧化能力强、稳定性好等优点,TiO2已经成为目前研究最多和应用最广的金属氧化物半导体光催化剂。

“该技术能够有效消除空气和水体中的有机污染物,但其中的TiO2存在光生电子一空穴复合率高和只能利用紫外光的缺陷,在一定程度上制约了该技术的工业应用,而光电催化技术则弥补了这一缺陷。”北京大学环境科学与工程学院副教授尚静说,“近年来,光电催化技术引起了广泛关注。光电催化技术,又称为电助光催化技术,其主要原理是通过外加电场促进光生电子与空穴的分离,从而提高光催化处理效率。”

经过研究发现,目前所采用的电助光催化技术还存在很多弱点。比如,现在来看,一般的电助光催化技术均采用的是光电化学池。根据电化学体系的电极数目,可分为两电极系统、三电极系统甚至多电极系统。在典型的三电极体系中,一般是用负载在导电基底上的光催化剂膜作为光阳极,Pt电极作为对电极,饱和甘汞电极作为参比电极,反应体系需借助电解质来形成回路,因此,不能应用于气相光催化降解体系,同时,也不可避免地增加生产成本和使生产工艺复杂化。而在应对促进电子空穴对分离的问题上,已知的光电催化技术均采用直流电源来解决,而不能直接、有效地利用交流电,这在很大程度上限制了光电催化技术的推广应用。另外,目前的光电催化技术主要是利用光生空穴的氧化能力,广泛用于氧化处理废水中的有机污染物,而利用光生电子的还原能力,将光电催化技术应用于还原废水中重金属的研究非常少。

诸如此类问题,不可避免地制约着光电催化技术的发展。既然看好该技术的前景,尚静自然全心投入,为改进和完善光电催化技术体系努力着,付出着。

具体问题,具体分析

面对这些问题,尚静针对其各自的特点进行了具体分析,并先后提出了3项专利申请。

针对传统光电催化体系装置复杂,不能应用于气相有机污染物降解的局限性,尚静发明了一种可应用于气、固、液三相体系来降解有机和无机污染物的全固态平面型光催化器件及其制备方法。“我们在绝缘基底上固定一对或多对条形电极,并在该基底和条形电极上负载半导体光催化剂,就可得到高活性的全固态平面型光催化器件。当在条形电极两端接通电源后,两电极之间产生的电场就可以促进两电极之间的半导体光催化剂薄膜中电子和空穴对的分离,从而达到提高光催化剂作用效率的目的。”

这样一来,这种全固态平面型光催化器件的优势就十分明显了。首先,它不需要工作电极和电解质,只要利用条形电极,就可以在施加微小电压的情况下,使光生电子一空穴对充分分离,从而使光催化效率大大提高;其次,它可以广泛应用于气、固、液三个体系,利用此平面型光电催化器件可以探讨污染物和催化剂之间的电荷迁移过程,是一种研究光催化反应中光物理过程的手段。总而言之,就是活性高、成本低、工艺简单、应用广泛、兼容性高,易于推广使用。

“在研究中,我们还发现,如果采用交流电源来促进电子空穴对的分离,将会更直接、更有效。”通过一番尝试,尚静发明了一种节能、易于推广应用、能够100%利用交流电,而且光电催化效率高的光电催化装置。其工作原理如图所示,即利用二极管单向导通的性质。使交流电压的负半部分被滤掉,所以,TiO,光阳极交替处于正向偏压和无偏压状态。这样的驱动特点,使施加在TiO2光阳极上的偏压连续变化,导致TiO2薄膜中的光生空穴很难有效地累积,能够提高光生激子的利用效率,从而加快液相污染物的光降解过程,实验结果表明,其光电协同效果比直流条件下的提高7倍以上。研究中还发现,二极管整流的交流电下TiO2光阳极的稳定性要好于直流电下。

该项发明利用交流电结合二极管为驱动方式,其优势是不容小觑的。将传统的直流电源替换成为一交流电源,同时,增设了一个或四个廉价的二极管,在这一思路下所增设的二极管,分别对应着半波整流和全波整流,这样可以使电流从TiO2阳极通过电解质溶液流向对电极,从而促进半导体催化剂产生的光生电子和空穴的分离效率,解决TiO2薄膜内空间电荷的累积问题,进而提高光催化效率。“采用交流电还有一个比较直接的好处,那就是可以直接应用,而不必再加上额外的装置进行转化。”尚静解释道,“这不仅是节约资金、降低成本的问题,还可以增强装置的稳定性,进行推广使用也比较方便。”

篇5

【关键词】 光电检测技术 课程设计 教学方法 评价与效果

《光电检测技术》将光学技术和电子技术相结合,是一门应用性很强的学科,与人类的生产和生活紧密联系,是光信息科学与技术专业学生必须掌握的一门知识。为了加强课程的实践性,使学生在学习课本上基本的理论知识外能够学以致用,组织《光电检测技术》课程设计就凸显出其必要性,而在课程设计中选题尤为重要。在课程改革和提倡素质教育的背景下,传统的满堂灌的教学方法早已不适用。为了在教学过程中提高课程教学的质量,就需要教育者们在教学内容、教学方法及教学手段的选择方面进行探索和改革。

1 《光电检测技术》课程设计的选题

《光电检测技术》是一门理论性和应用型都很强的学科,学生在学习起来比较难,但它的应用范围很广,与人们的生产和生活密切联系。如果能加强《光电检测技术》课程的实践性,在教授理论知识同时,让学生自己动手实践,亲自体验光电检测技术的奥妙,这将大大提高学生的学习积极性,既能巩固理论知识,又能把理论和实践紧密地结合起来。组织《光电检测技术》课程设计对于提高《光电检测技术》课程的实践性,培养学生的创新能力具有重要作用,而在进行课程设计时课程设计的选题尤为重要。

首先,老师应该提供可供学生选择的题目。很多老师都有自己的科研项目,在组织课程设计时老师可以把科研和教学结合起来,把与科研项目有关的内容作为学生课程设计的题目。

第二,学生在选题的时候,要把老师提供的题目范围、自己的兴趣和实践能力三者结合起来综合考虑,这对促进课程设计的成功意义重大。

最后,学生根据自己的选题,利用图书馆、互联网中的资源结合自己的所学,按照老师的设计要求在规定时间内完成课程设计。

2 《光电检测技术》课程教学方法

2.1 合理选择与安排教学内容

光电检测技术内容多而复杂,不仅涉及到光学和电子学,还与计算机等其他学科紧密联系。在学校规定的课时内完成这门课程的学习,时间紧、任务重,学生学习起来难度很大。只有合理选择和安排教学内容,才能在有限的时间内完成教学任务。

首先,在授课的开始,就应该让学生从整体上把握光电检测技术,让学生理解各章节之间的内在联系,形成完整的知识结构体系。

其次,光电检测技术知识面太广,在教学中如果“胡子眉毛一把抓”,学生们会觉得知识乱而杂,所以,在教授这门课程时要采取“弹钢琴”的办法,去粗取精,少讲精讲,突出教学重点。

最后,光电检测技术与最新技术的发展密切相关,但是课本上的知识比较陈旧,与时展脱节,这就对授课老师提出了新要求。老师不仅要精通于课程内的知识,还要与时俱进,了解最新科研结果和光电检测技术的发展方向,并及时给学生进行补充。另外老师自己也可以申请科研项目,提高自己的科研能力,把自己的教学科研结合起来。

2.2 加强理论教学,开展启发式教学

光电检测技术本身理论性很强,而且它涉及的知识面广,知识点多而零散,学生理解和记忆起来很有难度。为了提高教学效率,老师应当能够帮助学生建构光电检测技术知识的整体框架,在讲解具体知识时要能够去粗取精,把复杂的知识简单化,巩固学生的理论知识基础。另外,老师应该认真地组织教学活动,设计教学活动的各个环节,使原本枯燥的课堂富有趣味性。

启发式教学中,老师只是起到指向性作用,老师从课堂的主导者转变为课堂的参与者,学生由被动学习转变为主动学习,这充分体现了学生的主体性,符合新课改的要求。另外,启发式教学由老师提出问题,并引导学生思考,一步步接近正确答案,这个过程本身有利于让学生养成自己动脑思考和自主学习习惯。

2.3 借助多媒体手段,提高学生学习兴趣

多媒体技术与传统的板书相比具有其独特的优势。传统板书的书写占用了课堂的大量时间,且主要起到书写提纲的作用;多媒体技术本身方便快捷节省了书写板书的时间,提高了教学效率。另外,多媒体技术具有图、文、声、像等多种效果,一方面可以增加课堂的趣味性,提高学生学习兴趣,把抽象知识具体化,方便学生理解和记忆,大大改善教学效果;另一方面,又可以扩大教学的信息量,丰富课堂内容。例如,通过多媒体动画来介绍和演示光电效应能够让学生通过自己的感官来亲自体验光电效应,使原本抽象的知识形象生动,既能激发学生学习兴趣,又能加深学生对课本理论知识的理解和记忆。

2.4 加强实践环节,巩固理论知识

真理必须能够经受得起实践的检验,《光电检测技术》具有很强的应用性,所以在教学活动中加强实践环节,这对学生学以致用意识的形成和学生动手能力的培养具有重要意义。例如,学生进行实验时,除了让学生按照课本上写好的内容和实验原理进行验证实验外,老师还可以让学生根据自己的兴趣选择一个主题进行实验,这样既能完成教学任务又能使课本上的理论知识得到巩固,还能培养学生用学到的知识解决实际问题的能力。另外,老师在教授理论知识时,可以举一些与实际生活相联系的例子,或者给学生布置任务,让学生通过自己实践来验证课本上的理论知识。总之,在课程实施中应该把理论和实际紧密联系起来。

3 《光电检测技术》课程探索的评价与效果

笔者认真研读了相关学者文献资料,并根据自己教学实践,认为进行课题设计,合理组织安排教学内容,选择科学的教学方法,进行启发式教学,把理论应用于实践对于激发学生的学习兴趣,提高课堂的教学效率,改善教学效果具有重要意义。在实践中,学生改变了对《光电检测技术》的刻板印象,在学习的过程中感受到了《光电检测技术》的神奇性和课程的活力。

4 结语

《光电检测技术》课程是一门理论性和应用性很强的课程,也是广大理工科学生应当掌握的专业知识。针对这样一门内容广,知识点多的课程,众多学者们一直在探索如何从教学内容、教学方法、教学手段上进行改革,使《光电检测技术》课程具有活力和吸引力。

参考文献:

篇6

[关键词]雷达;光电子技术;要点;前景;方法;分析

中图分类号:TU584.2 文献标识码:A 文章编号:1009-914X(2017)15-0043-01

光电子技术与其他的电子信息技术合成能够形成信息产业新的核心技术,并广泛应用于光存储、光显示和激光等领域。光电子技术在雷达中的应用改变传统雷达应用模式,充分发挥了光电子技术信息化、科技化和先进化的优势。关于现代雷达中的光电子技术应用主要可以分为以下几个方面:

(一)信号传输

光电子技术在雷达中的应用可以通过光纤链路的组成,完成光纤、二极管等要素的调制,在进行信号传输时可以在光波调制中将微波信号传输上,完成这些工作以后需要使用光纤模拟传输微波信号。光纤链路在雷达信号传输中的应用对现代雷达技术应用和信号光纤传输具有重要意义,这项技术在国外发展相对成熟,显示意义明显。雷达传输中使用光纤,传输消耗和传输频率相较于电缆传输较低,并且在这种频段下,光w产生的调制信号和传输消耗具有一致性,从而进一步促进雷达信号传输,达到对雷达系统远程控制的目的。[1]

由于使用的雷达天线还含有一个辐射源,在受到反辐射的影响时,控制中心和天线之间的距离应该设置好。通常情况下,使用同轴电缆传输信号消耗较大,传输指令与天线之间的距离也要控制好,而关于电缆铜量的消耗,会随着频率平方根的增大而增大。同轴电缆传输微波信号的前期,需要在一定的频率范围内完成转变,将信号电平在线路放大器内进行放大,指令中心传输的信号则不需要进行变频,线路放大器不使用也能使信号电平提高,光滤波器和光纤的使用效率也能够提高。要进一步保证其基本的使用性能,增强雷达的抗电磁能力可以通过光缆改变电缆,保证雷达天线远程传输的功能。这种应用方法在军事上具有重要使用作用,提升经济效益的同时创造军事价值。此外,光纤重量轻、体积小,灵活度高,在一些限定空间或场合使用方便,保证雷达信号的传输有效。[2]

(二)信号处理

雷达信号处理一般是利用光纤延迟线,其主要构成要素包括调制器和激光器等,属于新型的信号处理器件,在微波射频领域应用较多,光纤延迟线的使用能够促使多种不同信号处理器件的生成。例如在横向匹配滤波器和编码发生器以及相关处理器中可以通过雷达系统的处理充分发挥带宽极宽系统的作用,声波器表面频率较高,功能优越性明显,在雷达信号处理中要控制其频率需要同步使用信号处理器,提升雷达信号处理效果。处理宽带雷达信号时由于雷达信号接收机的分辨率较高,电子情报信号处理时,可以选用大时间的带宽积器件,使用成本相对较低,体声滤器件和同轴电缆也可以用于雷达信号的处理。光纤延迟线不同于其他延迟线,性能更先进,并且同时具有工作频率高和任何延时的特点,其中延迟的介质是单模石英光纤,成本低、性能高,使用价值较高,并且具有综合性优势。因而在雷达信号处理过程中使用光纤延迟线能够充分发挥其在不同处理器件中的构件作用,雷达系统中使用光纤延迟线实现价值最大化,不仅能够在海洋卫星雷达和随机程序发生器中应用,同时还能够在雷达信号处理系统和相控阵天线系统中应用。因而雷达信号处理中使用光纤、光电子技术能够充分发挥信号处理器件和通信系统的实际价值,使用过程中的经济效用显著,总体应用前景较好。[3]

(三)达波束光控制

相控阵雷达系统在控制雷达的达波束光时要使用有源单位,继而形成一种具有跟踪效用的尖锐波束,这种波束对电子调控方法具有一定的控制作用,并且能够将辐射单位予以改变,保证相对相位的实现。由于单个单元的控制器件属于电子移相器,这种类型的器件在传统意义上的使用通常可以分为铁氧体移相器和二极管。二极管的工作频率相对比较低,而铁氧移相器的工作频率则较高。铁氧移相器和二极管的体积较大,因而产生的损耗量也比较大,但是在相位连续控制上和在线性度上仍旧存在较大的差异。分配射频功率可以使用光学方法来进一步完成相移,这种优势比较明显。[4]

例如在实现微波相移的过程中可以使用线性连续的方法,在此过程中还能够将相位的体积予以减少,保证及能耗度降低,促进波束的灵活控制。在一般的大型相控阵天线使用中需要多个MMIC收发模块来完成雷达达波束光控制,在一定的自由空间内能够与振荡器形成不同模块的主振荡器锁定,关于参考信号的改动则需要使用同轴电缆的光纤链路,这种有利于在很大程度上减少体积和降低重量。光电技术在雷达达波束光控制中具有重要的使用意义,并且能够促进雷达电子器件的使用功能进一步完善,总体应用前景广阔,在此过程中使用光电子技术促进了新时期下雷达技术变革、发展和使用的经济效益提升。[5]

结语:

从目前情况分析来看,光电子技术应用在微波领域主要以光纤通信为主,且这种应用技术已经相对普及,但是在雷达中的应用尚且不如通信光纤应用普及程度高,随着我国光电子技术研究、发展水平不断提高,将进一步在现代雷达中实现充分使用,总体应用前景乐观。其中光电集成电路和光纤等在雷达数据处理、雷达信号处理、多基地雷达和相控阵天线中使用具有高互联性等多重优点。光电子技术在现代雷达中的应用包括雷达信号传输、雷达信号处理和雷达达波束光控制等几个重要的方面,体现了现代雷达应用光电子技术的先进性和必要性。

参考文献:

[1] 沈东.浅析现代雷达中的光电子技术[J].科技经济导刊,2016,32:80.

[2] 金林,刘小飞,李斌,刘明罡,高晖.微波新技术在现代相控阵雷达中的应用与发展[J].微波学报,2013,Z1:8-16.

[3] 徐艳国,李国刚,倪国新.雷达系统未来发展趋势探析[J].中国电子科学研究院学报,2013,05:474-480.

篇7

提高教师知识水平在教学过程中,教师具有主导作用,因此提高教师知识水平可以有效地提高教学质量。这可以通过以下几个方面来实现:(1)要求教师多看书、多查资料来了解光电子技术的基本内容,并时常关注光电子技术领域的新进展,做好与时俱进;(2)送教师到光电子技术水平较高的院校进修、参加光电子技术方面的国内国际会议或到相关的企业学习,通过向他者交流学习来提高自己;(3)鼓励教师进行光电子技术方面的科学研究,这可以使教师对该方面的知识有更深入的了解。适当变更授课内容光电子技术发展迅速、学生的知识需求也在逐渐变化,这就需要不断的对授课内容进行调整,具体来说就是删旧和增新:(1)册l旧,册l除或压缩己学过的或陈旧的内容。如《光电子技术》课程一般都是开设在《光学》后的,所以有些光辐射的知识在《光学》中己经讲过的就可以删除。一些陈旧的光电子如阴极射线管,现今应用比较少,讲解的时候就可以压缩课时和授课内容。(2)增新,增加相关的新技术。摘取国内外期刊上发表的最新技术进展进行讲授,既丰富了课堂内容,又拓宽了学生视野,还可以培养学生的科研意识。

改革教学方法课堂教学是所有的教学环节中最重要的一环,用什么方法进行教学是非常值得我们探讨的。讲课不仅是对己有知识的简单阐述,而且是教师的一种再创造过程。“一块黑板加一支粉笔”这样的传统教学方法己经不适合现代化的今天了,现今的教学方法应该更趋多元化:(1)引导学生建立长远学习动机。由院系组织,请往届毕业生返校或知名工程师做光电子技术方面的学习和研究体会报告,让学生知道为什么要学光电子技术,学好了以后可以干什么,帮助学生明确自己的学习目的,建立长远的学习动机。也可以在讲课过程中举一些生活中的光电子技术应用实例,如PPI是怎么投影到屏幕上的,光电池怎么把光能转化成电能的等等,让学生对“学了这个有什么用”有个直观的认识,促使他们主动去学。(2)运用多媒体,增加授课的信息量。多媒体课件有形象、直观的优点,可以增加学生学习的趣味性,因此作为现代化的教学手段,它可以大大提高教学的效率。但是也不能一味的依赖多媒体,要注重与板书的结合。如在讲解电光调制时,用多媒体展示电光调制的示意图,再配合黑板板书推导进行讲解,才能够更有利于学生对授课内容的理解。(3)增强实验教学。实验有助于学生对所学知识的深入理解,还可以增强学生的动手能力,因此,《光电子技术》作为技术性较强的课程更离不开实验教学。可开设的实验有很多「生,如:光源与光辐射度参数测量实验、光敏电阻、光电池及光电二极管特性参数测试实验、LED角度特性参数实验等等。改进考核办法将平时成绩、实验成绩及期末考试成绩按照20%、20%及60%的比例均纳入总成绩的评定,促进学生理论学习和实践学习两手抓。

增强师生互动教学中的教和学是两方面的,除了老师教,更重要的是学生学。增强师生互动,一方面可以让老师体会到学生对所学的课程有兴趣,老师会更愿意教;另一方面,也可以让老师对学生的知识需求及掌握程度有很好的了解,以调整讲授的内容和进度,使得教学效果达到最好。

要想上好《光电子技术》这门课,首先要明确教学目的,再在双重考虑教学目的和本专业实际情况的条件下,选取授课内容。在教学过程中,要注意提高教师知识水平、改革教学方法、改进考核办法及增强师生互动,以得到最好的教学效果。

作者:张颖颖 单位:南京晓庄学院物理与电子工程学院

篇8

纳米光电子主要是研究在所有纳米结构中各个电子以及光子存在的相互作用。将光电子以及纳米电子的相关技术相互结合共同组成了纳米光电子技术。传统的半导体硅并不具备发光的基本功能,但是引进了纳米技术以后,能够发出一种非常耀眼的光,同时开设了一门新兴的纳米光电子。

二、纳米光电子技术的发展

新时代的纳米电子技术能够快速的制作各种单电子存储,同时还可以制作一些非常精巧完美的微电子机械以及电机械系统。随着现代纳米技术的不断进步与发展,集成电路也将成为一种比较先进的半导体器件,并成为了未来发展的新方向。如今的信息社会对于所有使用的集成电路具有的集成度的各种要求也逐渐增高,这就导致人们不断突破尺寸具有的极限途径。在新的社会形势下,纳米电子以及纳米电子光技术应运而生,并成为了半导体科学以及各种工程研究的重要领先技术。光电子技术属于电子技术以及光电子技术的结合体。二十世纪以后,光电子技术逐渐发展,并取得了一定的进步。将光电子技术以及纳米技术巧妙的相互融合最终形成了纳米光电子技术,成为了未来电子技术不断发展的新领域。如今的二十一世纪,也为光电子技术以及纳米光电子技术发展提供了新的机遇。

三、纳米光电子各个器件的具体分类

3.1纳米光电技术探测器

如今的纳米光电技术探测器主要是利用纳米光电子的基本材料进而不断发展而来。这种微型的探测器主要由纳米丝以及各种纳米棒共同组成,例如,超高灵敏度红外探测器等。

3.2纳米发光器件

引进纳米光电子的相关技术并利用纳米光的基本材料,利用纳米光刻技术,最终研制出新兴的纳米发光器件。主要有利用纳米粒子等材料制作完成的一种硅发光二极管,使用各种纳米尺寸制成的可以实现调谐的纳米发光二极管。

3.3纳米光子器件

纳米量子机构以及量子电路等各种集成技术都蕴含着非常深奥的研究内容。例如,利用三维光电子自身的晶体天线,还可以利用光子晶体技术二极管,以及无损耗产生的光电波,光开关等,这些都属于先进的纳米光子器件,在量子保密通信中的各种重要的关键器件,都是利用纳米光子器件完成的。

3.4纳米显示器

纳米显示器主要包括碳纳米管显示器,还有一种碳纳米发生显示器等。如今的纳米电子学还有纳米光子学以及先进的磁学微电子,自身具有的极限线宽都是70nm,这种先进的技术通过几十年的研究就完成了。为了能够在最短的时间内完成新兴的器件,使用单原子具体的操作方式成为重要的研究方向,并且,利用这种先进的技术能够制成计算机,并且能够有效的提升计算机自身的计算能力,甚至可以提高上千倍,但是需要使用的功率只有现在计算机的使用功率的百万分之一。如果使用先进的纳米磁学,计算机具体的信息存储量甚至能够达到上千倍。使用纳米光电子能够提升通信带宽的上百倍。另外,除了以上介绍的各种器件,还可以从广义上分析,纳米器件还有分子电子器件,这种器件无论是在材料上还是在使用的原理上都与上述的半导体量子器件存在较大的差异。

四、结束语

热门文章
推荐期刊