欢迎访问爱发表,线上期刊服务咨询

信号自动化论文8篇

时间:2022-09-05 15:08:41

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇信号自动化论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

信号自动化论文

篇1

关键词:PLC,皮带运输机

 

0 引言

选煤厂皮带运输机是选煤厂生产的关键设备之一,一旦其电控系统出现故障,将影响选煤厂整个生产,带来重大的经济损失和安全隐患。由于选煤厂皮带运输机的电控大多为继电器控制系统,存在线路复杂、故障点多、可靠性低、稳定性差等缺点,不能满足煤矿安全生产的需要,因此,笔者采用PLC控制系统取代原来的继电器控制系统,并用组态王实现对整个皮带运输机的运行过程进行监控。

1 系统构成及控制过程

该皮带运输机控制系统由两级系统构成:一级基础自动化系统,二级完成监控和操作的人机界面系统。

基础自动化系统采用SIEMENS S7-200系列PLC,由完成控制功能的PLC、完成系统监控和操作的人机界面操作员站、现场执行机构和传感器组成;上位机监控系统采用亚控的组态王软件进行设计。论文参考。

一级基础自动化控制主要控制出现异常情况时进行报警和紧急停车,二级主要用来进行参数设定,启动和人工紧急停止。

2系统设计

皮带运输机系统是以PLC为核心、对皮带运输机的运行情况进行实时在线控制和监督的自动化系统,通过PLC和组态王。该系统可以实现对所有现场在线设备的程序控制管理、安全联锁控制等功能,并显示各种操作画面和模拟现场,对事故信号进行报警以及打印报表等。

该系统主要特点:

(1) 开放式的结构,具有极大的灵活性、可扩展性;

(2) 便利的维护手段,可在线维护;

(3) 先进的硬件控制设备,具有高抗干扰能力、高可靠性;

(4) 高可靠性的检测仪表;

(5) 集中操作,分散控制的思想;

(6) 通用的软件开发平台,智能的设备管理和监控软件。

该系统主要功能具有检测皮带机速度、温度、撕裂、烟雾、跑偏等功能,当出现异常情况时,PLC控制电机紧急停止,同时报警并把信息传到上位机,由操作人员进行分析检修,完成后重新启动。

2.1 系统硬件设计

SIEMENS S7-200系列PLC适用于各行各业,各种场合中的检测、检测及控制的自动化论文参考。S7-200系列的强大功能使其无论在独立运行中,或相连成网络皆能实现复杂控制功能。此处选用CPU226模块(集成24输入/16输出共40个数字量I/O点,且可连接7个扩展模块)和模拟量扩展模块EM231(4路模拟量输入)、EM232(两路模拟量输出),它们的特点如下:

(1) 6个独立的30KZ高速计数器和2路独立的20KZ高速脉冲输出;

(2) 实现分布式系统和扩展通信能力都很简便,组成系统灵活自如;

(3) 随着应用的扩大,系统扩展无任何问题;

(4) 具有更快的运行速度和功能更强的内部集成特殊功能;

(5) CPU可以高速处理指令并且具有友好的参数设置功能。

CPU模块:负责程序的运行等工作,电源不仅向CPU模块供电而且还要满足与CPU模块相连的其它模块的用电需求。

数字量输入模块DI:将外部采集到的信号输入到PLC,例如保护PLC的DI将皮带撕裂、烟雾、跑偏等信号采集进来;以完成监视保护功能。

数字量输出模块DO:将PLC内部运算结果输出,例如保护PLC的DO将正常启动,自动控制、手动控制、综合故障等输出;操作PLC的DO输出来控制继电器,以完成监视、控制和保护功能。

模拟量输入模块AI:将外部的模拟量采集进来送给PLC,如皮带的速度和温度,以完成监视保护功能。

模拟量输出模块AO:将PLC计算好的数字量,如皮带的速度等转换成模拟量输出到上位机上,以完成监视功能。

2.2 系统软件设计

该系统中,PLC程序执行变频器的启动/停止控制和皮带机的行程和速度监控任务,变频器根据给定的信号和反馈的信号控制皮带机的速度;PLC通过传感器得到信号来控制皮带机是否停止、报警器是否报警。为了更加安全可靠运行,本设计还设置了自动手动切换,自动/手动程序如图1所示。

2.3 PLC与上位机之间的通信

在现场环境恶劣的条件下,采用上位机监控措施可直接将故障显示出来,从而提高整个系统故障的诊断效率,减少故障的维修时间,提高整个电控系统的可靠性。论文参考。本系统利用CAN总线与上位机进行通信,可将各种信息传输到上位机,从而实现对系统的实时监控。部分子程序和中断程序分别如图2、图3所示。

3 结束语

根据选煤厂皮带运输机系统的实际情况,研制开发了选煤厂皮带运输机智能控制系统。该系统经过严格的选型、合理的配置及完善的程序设计,使系统维修方便,自控功能强,可以自动显示故障,可靠性高、稳定性好,极大的改善了皮带运输机的运行状况,确保矿山安全生产。

参考文献:

[1]廖常初 . PLC编程及应用. 北京:机械工业出版社,2002.9

[2] 罗宇航,罗建国等. 流行PLC实用程序设计.西门子S7-200系列.西安:西安电子科技大学出版社,2006.12

篇2

【关键词】 射频指标 仪器通信 自动化测试

一、引言

随着通信产业的发展,产品系列的多样化,组网的复杂性,以及用户对产品质量的高标准要求,设备测试的重要性愈发凸显。

传统射频指标测试,质检和测试人员对系统(设备)的测试只能使用频谱仪、信号源及辅助工具进行手动测试,对测试结果的判断完全凭借肉眼读取仪表上的显示结果,对设备参数的调整往往是使用设备软件工具手动调整。在设备量产时需要进行大量的重复性工作,测试结果也仅凭借手工记录,工作压力陡增。

测试速度慢、精度差、效率低,而且对于仪表的占用率非常高,在一定程度上造成仪表资源的相对缺乏,人力投入的增加。

射频指标自动化测试系统对通信覆盖系统(产品)和模块射频指标进行全面的测试,提高测试效率、节约测试设备和人力资源的投入、规范了测试流程、提高测试效率和测试结果准确性,从而提高产品的质量。

该系统将测试过程中大量重复、复杂性高的人工操作集合提取出来由程序模拟,在PC端使用VISA仪器控制驱动及SCPI命令控制仪器,来实现对信号源、频谱仪的远程控制以及对被测系统的监控。

二、通信设备现状

2.1 系统结构复杂

现代移动通信运营商为了实现对不同应用场景灵活组网,往往采用多级网络架构。比较常见的移动通信覆盖网络架构包括信号接入单元、组网交换单元及覆盖单元。在人工测试的时,需要手动调节测试每个网络节点的各种射频参数,操作复杂,工序繁琐且准确性差。

2.2 产品质量控制难

通常,为了保证设备能够正常入网,通信设备生产商在交付产品之前,都必须经过严格的质量检测。

通信系统射频指标项目繁多,一般涉及系统输出功率、增益、衰减、ALC、带内波动、带外抑制、杂散等几十种测试项目。每个射频指标参数的优劣会影响整个通信系统运行质量,往往需要多次调节参数信息来保证产品在系统应用中达到最佳状态。

在质量检测过程中,如此庞大的工作量,精细的调节工作倘若只依靠人工来完成将很难保证产品的质量。

三、系统设计方案

3.1 系统架构

本文结合通信覆盖类产品射频指标测试的实际需求,搭建自动化测试系统,其物理结构如下图1所示。射频自动化测试系统由计算机、频谱仪、信号源、设备(被测系统)、路由器(或交换机)、网线、射频线缆组成。

通过LAN口、串口以及RF接口将PC、仪器(频谱仪和信号源被测设备(或模块)组成三维一体的物理结构。其中,信号源实现被测设备对应信源信号的输入;频谱仪完成进由被测设备输出信号的测量工作,并将测量数据交由PC机处理,PC机提供用户操作平台,完成测试数据分析判断和被测设备的参数调整、结果保存等工作。

3.2 系统功能实现

射频指标自动化测试系统设计架构图如下图2所示。系统由表示层、控制层、数据层、及通信层四部分组成。表示层实现与用户的交互,控制层进行具体运算、数据处理和命令打包,数据层完成数据存储,通信层则实现PC机(自动化测试软件运行平台)与仪器设备之间的信息传输。

自动化测试应用软件是唯一人机交互接口,考虑到界面的可操作性,信息显示的直观性,设计时运用了JavaFX客户端开发技术进行开发。自动化测试软件主要包括设备参数自动化测试系统和执行测试模块两部分组成。其中设备参数自动化测试系统主要包括测试指标显示与定制,结果显示和数据导出,设备校正,系统设置及PF先衰减补偿等功能;执行测试模块主要包括数据获取和分析、设备参数校准,仪器命令组包、设备参数组包等功能。

数据库的主要功能是存储数据信息,供应用程序调用。由于产品调试过程中系统参数修改频繁,为实现数据存储调用的便捷,数据库采用XML数据库技术实现,便于数据信息查询和修改,以及承载用例标准数据源、测试结果、SCPI指令集、系统配置参数等应用数据。

通信层主要由路由器(或者交换机)及各种线缆为系统与仪表设备之间通信提供物理链路, VISA(Virtual Instrument System Architecture,虚拟仪器系统框架)驱动函数库也属于通信层,它是基于可编程仪器设备的I/o接口库,实现了仪器控制命令开发,使得测试设备可与PC机可通过SCPI控制指令实现实时通信。

3.3 系统执行流程

1、系统功能

射频指标自动化测试系统为用户提供了友好操作界面。操作界面实现功能有:配置管理、仪器校准、上下行指标自动化测试、测试结果处理、设备出厂参数的导出备份。配置信息主要包括串口波特率的选择、频谱仪和信号源的IP地址、被测系统(设备)的测试项目配置。RF线校准完成信号源信号输出射频线衰减补偿和频谱仪信号输入射频线衰减补偿。

2、操作流程

自动化测试系统在本地计算机上运行,可实现仪器的远程自动化控制、测试结果的自动化分析、设备参数的自动化调整。具体实现步骤如图3所示。

在PC机启动自动化测试系统,用户在窗口界面中设置串口、波特率、仪器及设备IP后,选择待测试设备所属通信制式并加载该制式的测试用例。PC机根据用户设置参数发出SCPI指令来设置信号源,信号源将相应信号传送到待测设备。待信号源加载射频信号完成后,频谱仪截取待测设备输出信号并将数据回传给PC机,PC机对回传数据进行分析,判断测试值是否满足相应指标要求,若不满足,则通过与产品对应的系统和模块通信协议进行调整,并循环进行判断、调整,直到符合相应要求。若待测项目在可控范围内不能调整到正确的值,说明是非软件设置导致射频指标参数错误,需要检查该产品的硬件模块或电路元器件。

3.4 系统优势

射频指标自动化测试系通过简化设备测试操作工序,用智能化的检测系统代替传统的工作测试,有效地缩短人工劳作时长,降低设备制造成本。此外,自动测试系统具有友好的人机交互界面,质检和测试人员容易上手,且自动化测试软件提供统一标准指标参数,能够有效的减少人为误差,能够保证测试准确度、效率及产品质量。

四、结束语

射频指标自动测试系统的引入大大提高了测试效率,测试时间大幅度缩短,并减少了人为引入的误差。该系统的设计思路具有一定的代表性,同样适用于其它通信设备自动测试系统的开发与实现,具有很高的实用价值和应用前景。

参 考 文 献

篇3

关键词:微灌,计算机控制,推广应用

 

1.工程概况

莱芜市钢城区黄庄镇,是中国黄金桃之乡,优质黄金桃种植生产基地,该项目位于黄庄镇东北部黄金桃主产区,控制灌溉总面积4000亩,项目区原无灌溉设施,经常遭受干旱威胁,严重威胁黄金桃产量和品质。近年来实施了计算机控制微灌工程项目,共建成了中心控制管理房及附属设施1处、蓄水池5座、各类灌溉管道 40km。自动控制部分安装中心控制计算机1套,在田间埋设各类控制信号模块40个、进口2英寸电磁阀40个、土壤墒情传感器4个;沿干、支管道铺设电源线、信号线、计算机网络线、电磁阀控制线8km,金属屏蔽管3km,在支管管道安装水表、压力表等量测设备,另外还配备UPS电源、避雷器等稳压和过电压保护装置。

2.计算机控制系统的工作原理及配置

2.1 自动化控制系统工作原理

计算机控制系统主要是接收土壤水分传感器采集的数据,当采集数据达到土壤含水量下限值时,控制系统发出开阀指令,控制器打开电磁阀门,按照预先设定的灌水强度和灌水量进行灌溉,本组灌溉完毕打开下一组电磁阀,同时关闭本组电磁阀,直到整个灌溉过程结束。在整个灌溉过程中,灌溉强度、灌水量均可根据不同作物品种、当时的土壤含水量进行人工设定。系统可对土壤含水量、管网压力、流量、灌水量等进行实时控制,并将灌水时间、日期、灌水总量等数据存储并可随时打印。

2.2 自动化控制系统的配置

自动控制系统由上位机和采集控制模块相结合,是目前配置较为可靠的方案。采集控制模块对于系统的扩展灵活方便。土壤水分传感器是自动控制系统的关键部件,其灵敏度和可靠性直接关系到能否适时启闭供水设备可靠灌溉。论文格式。管道上的电磁阀均按照预先分组连接到控制模块上,启闭受计算机软件控制。

2.3 系统的软、硬件设计及功能

系统软件分为上位机监控软件和采集控制模块软件两部分。上位机软件包括通讯程序、监控画面和打印程序。采集控制模块采用梯形图编写。

系统硬件设计按功能可划分为监控、控制两部分。系统监控部分由上位机和打印机组成,用来实时处理采集控制模块采集的数据并据设定值进行逻辑判断,向控制站采集控制模块发送控制命令。系统控制部分由采集控制模块、土壤水分传感器、压力流量传感器及电磁阀等组成。该部分作用是采集流量压力信号并送入上位机进行处理,同时执行上位机发送的控制命令,对电磁阀进行控制操作。

3.自动化控制系统方案设计

3.1 自动化控制系统站点布局

整个高效经济作物种植区内,控制灌溉总面积4000亩,全部采用小管出流灌溉,分布于项目区内的5座蓄水池为灌溉水源,由安置于中央控制室内的计算机分别负责控制5座水池按需供水。每种灌溉区域和每座水池都安装一套中心测控单元——测控终端。包括:采集控制模块,用来完成数据采集和控制驱动任务;传感器,完成数据测量与传输任务。测控终端通过Rs485信号网络与中心控制室内主计算机相连,自动进行数据采集、传输、指令接收和驱动控制,实现远程测控功能,从而使田间地块灌溉自动化。

3.2 自动化控制系统网络结构布局

由于本项目区周围需灌溉的农田面积较大,各测控点距中央控室距离不等,为此,控制系统采用了二级分布式网络化测控系统拓扑结构。该结构具有以下先进特点:(1)保持网络距离、测控终端的扩展、传感器和伺服机构的增加,在原有工程的基础上扩大系统规模。(2)不同种类、不同通讯协议、不同传输速率的智能终端共用网络介质,进一步提供了系统扩展的灵活性。(3)部分远程测控终端的故障或脱网维护,不影响其他部分的正常工作。

3.3 自动化控制系统布线

微灌工程中埋设了各类管线,其中有不同管径的灌溉输水管道、强电电缆线、弱电信号线等。现场弱电信号总线采用4芯1.5mm2铜芯电缆,其中2芯传输 24VDC电源,另外2芯传输RS-485网络信号。论文格式。电磁阀驱动线采用每电磁阀1.5mm2的2芯24VAC电缆。通信网络采用RS-485双绞线,通信波特率9600bps、自定义奇校验、帧协议、帧校验格式,自动切换。

4.计算机控制系统的特点

本项目系统测控选择了高性价比的测控设备,具有高可靠性、直观性、安全性等特点。系统不但支持测控对象数量、测控终端数量、软件功能、远程信息共享等方面的开放扩展性,而且对于操作人员的技术水平要求较低,技术维护工作简单易行,完全能够满足农业生产的野外工作环境要求。本项目实现了以下技术创新:(1)设计了多媒体动画界面,可对全灌区实时动态动画模拟,对灌溉作业远程实时操作。(2)根据作物品种、土壤含水量,编制科学合理的灌溉计划,避免了大水漫灌和灌水不足,为作物稳产高产奠定了基础。(3)使用了1:1隔离变压器,有效避免了雷击、过电压等强电干扰对设备的损害,延长了设备的使用寿命。(4)测控终端使用了通用采集控制模块代替了传统PLC可编程控制器,既方便了管理又降低了工程造价。

5.自动化控制系统的应用效果

计算机控制系统在微灌工程中的成功应用,是自动化控制技术在其适用领域内一个很大的突破,实现了根据不同作物不同需水量,实时科学灌溉和水资源的高效利用,经济效益和社会效益显著,推广应用前景广阔。论文格式。工程运行证明,该系统具有节水、省工等特点,降低了农业生产成本和管理成本。果园小管出流与地面灌相比,桃树每亩增产220kg,每亩年节水175m3,节水61%。该工程提高了灌溉水的利用率,减少了深层渗漏和棵间蒸发,节省了水资源。为微灌计算机控制和微灌工程建设探索出了成功经验,推动了微灌技术的发展。

篇4

关键词:工业以太网;工厂流水线;自动化控制;系统设计

中图分类号:TH166 文献标识码:A 文章编号:1006-8937(2013)03-0027-02

在自动化控制领域,占绝对统治地位的是现场总线技术。尽管现场总线具有众多优势,但是随着生产规模的一再扩大,现场机电装备越来越多,需要实时监测和自动化控制的设备也越来越多,在这种背景下,现场总线已经无法完全满足现场众多机电装备的监控需求,而且由于现场总线是具有针对性的工业自动化控制总线,往往使得各个机电装备成为了“自动化控制孤岛”,彼此无法兼容通讯,给设备的后期维护管理带来不便。

随着以太网通信技术的飞速发展,工业以太网逐渐以其低廉的组网价格、兼容性较好的通信协议,以及一体化的联网技术而受到普遍应用,成为目前能够替代现场总线的最好选择之一。本论文主要结合汽车整车焊装PLC自动化控制流水线生产控制系统,对基于工业以太网的自动化控制系统进行设计研究,以期能够从中找到面向工厂流水线生产控制的工业以太网自动控制应用方式,并以此和广大同行分享。

1 工业以太网概述

工业以太网在工业生产制造领域中,主要是作为生产制造自动化控制的基础平台,通过底层安装的传感设备,将机电装备的工作状态参数、工艺参数以及现场环境参数等关键参数检测出来,并通过工业以太网所支持的网络通信协议上传到工业以太网中进行网络传输。随着工业自动化技术的日益发展与进步,很多工业生产流水线都逐渐提出了更高的自动化控制的要求,例如要求实现监测与控制的一体化,要求实现无人值守等等,这些高难度控制要求的提出,在一定程度上都促进了工业以太网在工厂自动化控制领域中的应用,尤其是将工业以太网与PLC控制相结合,能够实现很多工厂自动化控制系统的功能建设需求。本课题重点以工业以太网和PLC相结合,以工厂流水线自动化控制为具体研究对象,深入探讨工业以太网在工厂流水线自动化控制系统中的应用。

2 基于工业以太网的流水线自动控制系统设计

2.1 功能模块设计

本论文以汽车整车焊装作为具体的研究对象来探讨工业以太网在流水线自动控制中的应用。汽车整车焊装具有较多的工艺流程,而且机电装备离散度较大,需要实时监测与控制的参数变量较大,因此采用工业以太网相较于采用现场总线具有很多优势。纵观整车焊装的流水线工艺流程,基于工业以太网实现的流水线自动控制系统应当具有以下几个主要功能:

①产品生产任务分派及调度。能够根据生产进度适当的调整生产资源分配,根据任务变化自动完成对流水线生产工艺的更改,以适应不同车型的自动焊装。

②电气控制和分析。通过在底层安装传感监测设备,实现对流水线焊装工艺流程的各个环节的监测与控制,并通过工艺数据库的分析,实现相关生产工艺参数的自动匹配和优化。

③顺序和逻辑控制功能。按照流水线自动化焊装的工艺流程,对整个焊装工艺流程实施顺序控制,利用PLC作为顺序逻辑控制器,实现众多机电设备在流水线自动焊装工艺过程中的顺序联动、启停控制及互锁等控制功能和逻辑判断功能。

④监视报警功能、显示功能。通过在监控终端开发专用的监控画面,为用户提供直观的监控界面,通过人机交互接口的设计实现用户对现场焊装流水线的远程自动化控制。

2.2 基于工业以太网的流水线自动控制系统设计

2.2.1 系统结构设计

由于整个流水线的设备量大、信号类型多、控制地点分散,不适合采用传统的继电器和控制开关为主要实现方式的本地控制模式,而且这种控制模式并不利于设备的后期维护管理,同时对于系统的扩容升级而言是十分不利的,为此,必须借助于工业以太网实现分布式控制管理模式(DCS模式),通过三级DCS功能的合理划分与配置,能够很方便的实现对整车焊装流水线自动控制的远程控制模式。本论文拟采用监控终端、本地PLC站和底层传感设备三个层次的DCS控制模式实现基于工业以太网的整车焊装流水线自动化控制。

①监控终端。监控终端设置在中央控制室内,供值班人员对全厂流水线自动化控制的工艺进行实时监控。监控终端内运行的是专门开发的上位机程序,通过友好的人机交互接口实现远程控制,并且通过工业以太网实现与本地PLC站的数据信息的交互。

②本地PLC站。主要通过对开关量的检测实现流水线生产工艺流程中各个环节的电气监测,诸如限位开关、行程开关、电磁阀等。本地PLC站能够通过对设备的工作状态参数、工艺参数和环节参数的检测和A/D转换,将相关参数变量转换为数字量进入工业以太网传输,从而实现上位机与下位机的一体化通信。

③底层传感设备。现场传感器主要是用以检测现场监控点物理参数信号,变送器将采样数据转换成

4~20 mA的电流信号,经屏蔽电缆送到各子系统的PLC内。控制信号由PLC输出后以4~20 mA电流形式送到执行机构。执行机构主要有气动和电动执行机构等。

2.2.2 系统控制模式设计

①远程遥控方式。在现场设备控制箱,将控制方式置于“遥控”控制方式,中央控制室的操作人员可以通过计算机监控软件对现场设备进行遥控启停。在这种控制方式下,监视界面可显示设备的运行状态及相关的工艺参数,操作员可根据选择“手动或者自动”控制方式,通过设备控制按钮启停远程设备,并能判断设备运行是否正常,监测故障并发出报警提示,统计工艺数据,显示模拟量趋势曲线,打印故障报警及日志报表等。全部操作由中央控制室的操作人员通过键盘和鼠标完成。

②本地控制方式。在现场设备控制箱,将控制方式置于“本地”控制方式下,通过控制操作箱上的启动/停止按钮,对现场设备手动启停控制。本地控制方式为系统的基本保留方式,在与中央控制室断开联系等任何情况下都可以完成整车焊接处理工艺要求的控制功能。

2.3 PLC自动系统设计

根据整车焊接处理厂工艺特点和现场的焊接设备分布及焊接机器人的作业范围,可以将整车焊接车间流水线PLC下位机系统划分为两个PLC站点,各自负责不同的工艺流程。为此,需要统计全厂的I/O点分布情况,详见表1。

由于本系统中的下位机PLC选用的西门子公司的S7-300系列的PLC产品,其网络通讯功能的最大特色便是集成了MODBUS/TCP以太网通信协议。为此,本系统中下位机PLC控制系统的网络通讯就基于MODBUS/TCP以太网通信协议实现,进而进一步降低了本自动控制系统的网络通信集成成本。

2.4 工业以太网网络系统设计

2.4.1 网络拓扑结构选择

本系统选用环型网络拓扑结构,当某一节点出现故障时,它会自动旁路,而不影响环型网络的信息传输。环型网络结构的显著特点是环路上的工作站在发送信息时,只能按照顺序依次传输,所以不存在冲突问题。在光纤传输介质成本降低的今天,工业以太网的传输介质选用光纤组成双环路双冗余网络是比较合适的方法。

2.4.2 系统组网方案设计

基于工业以太网的整车焊接流水线综合自动化控制网络系统可以划分为三层:信息管理层、网络传输层、传感检测及执行机构层。

①信息管理层。信息管理层主要是实现对整个工业以太网自下而上传输过来的流水线生产工艺的各个参数的管理,包括状态参数的实时监测、越限报警;生产工艺参数的自动存储、报表分析;设备控制指令的自动/联动派发等等,这些功能的实现依赖于在信息管理层所开发的人机交互接口良好的专用自动化控制监控程序,通常可以采用组态程序实现。

②网络传输层。网络传输层就是指基于工业以太网所搭建起来的工业以太网传输网络系统,同时通过配置交换机、操作站等辅助设备,能够实现操作人员在网络现场对网络传输层的检查、维护和管理。网络传输层作为整个自动化控制网络系统的数据传输平台,对于整个系统的功能实现具有至关重要的作用。

③传感监测及执行机构层。传感监测及执行机构层主要有两个作用,第一是通过传感检测设备,将流水线工艺流程中的各个参数实时检测出来并发送到工业以太网上进行通讯,第二是通过安装电气开关、电磁阀等开关动作执行元件,接受来自顶层的中央信息管理层的远程控制指令,实现对现场机电装备或者流水线工艺流程的远程自动化控制,传感监测及执行机构层是面向整车焊接流水线生产和自动化控制的最底层,主要包括车间现场的各种监测、控制子系统,如焊接机器人控制子系统,滚床控制子系统,带式输送机控制子系统等。

3 结 语

随着工业以太网在工厂自动化控制领域中的逐步广泛应用,逐渐取代了过去传统的以现场总线为基础的自动控制模式。本论文对基于工业以太网的整车焊接流水线综合自动化控制网络系统展开了设计与研究,通过对网络通信实时性的理论分析,建立了基于工业以太网的整车焊接流水线综合自动化控制网络系统,分别从下位机PLC自动化控制系统和上位机DCS以太网网络系统两个角度详细探讨构建了整个综合自动化网络控制系统的设计与实现,对于工业以太网在工厂自动化控制方面的应用,无论是在理论研究还是在实践应用方面,都是具有较好的指导借鉴意义。

参考文献:

[1] 吴文秀,吴修德.基于工业以太网的数控机床网络控制系统[J].石油天然气学报,2005,(6):803-805.

篇5

关键词:DSP;变压器;继电保护;测控装置

1引言

目前,电力自动化的应用可以分为变电站自动化、调度自动化、配电自动化、电能计量自动化和电力市场等。03年以来,我国的电力供应紧张,根据国家电网的统计,电力自动化行业呈现不断增长的趋势。由此,继电保护产品的需求也急剧增长,而且对于继电保护产品的性能、新技术的应用等方面也提出了更高的要求。而变压器是电力系统自动化控制设备中普遍使用的一款电气设备,变压器的继电测控保护对于电力系统的安全可靠运行具有重要意义。

本论文主要借助于新型的DSP处理芯片,对基于DSP的变压器继电保护测控装置进行设计研究,以期从中能够找到合理可靠的变压器继电测控保护装置应用,并以此和广大同行分享。

2继电保护测控装置总体设计

(1) 继电保护装置的功能设计

① 自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,并保证其它无故障元件迅速恢复正常运行。

② 反应电气元件不正常运行情况,并根据不正常运行情况的种类和电气元件维护条件,发出信号,由运行人员进行处理或自动地进行调整或将那些继续运行会引起事故的电气元件予以切除。反应不正常运行情况的继电保护装置允许带有一定的延时动作。

③ 继电保护装置还可以和电力系统中其他自动化装置配合,在条件允许时,采取预定措施,缩短事故停电时间,尽快恢复供电,从而提高电力系统运行的可靠性。

综上所述,继电保护在电力系统中的主要作用是通过预防事故或缩小事故范围来提高系统运行的可靠性。继电保护装置是电力系统中重要的组成部分,是保证电力系统安全和可靠运行的重要技术措施之一。在现代化的电力系统中,如果没有继电保护装置,就无法维持电力系统的正常运行。

(2) 变压器继电保护装置

电力变压器是电力系统中大量使用的重要电气设备,它在电力系统的发电、输电、配电等各个环节广泛使用。因而其安全运行与否是整个电力系统能否连续稳定工作的关键,是电力系统可靠工作的必要条件。

根据变压器的不正常运行状态,变压器一般应装设以下一些继电保护装置[6]:

① 为反应变压器油箱内部各种故障和油面降低,对于0.8MVA及以上的油浸式变压器及户内0.4MVA以上变压器应装设瓦斯保护。

② 为反应变压器绕组和引出线的相间短路及中性点直接接地侧绕组和引出线的接地短路以及绕组匝间短路,应装设纵联差动保护或电流速断保护;对于6.3MVA及以上并列运行变压器和10MVA及以上单独运行变压器,以及6.3MVA及以上的厂用变压器,应装设纵差保护;对于10MVA以下变压器且过流时限大于0.5s时,应装设顶流速断保护;对于2MVA以上变压器,当电流速断保护的灵敏系数还不满足要求时,则宜装设纵差动保护。

③ 为反应外部相间短路引起的过电流和作为瓦斯、纵差保护(或电流速断保护)的后备保护,应装设电流保护。例如。复合电压起动的过电流保护或负序电流保护,适用于升压变压器;过流保护适用于降压变压器。

④ 为反应中性点直接接地电网中,外部接地短路的零序电流保护。

⑤ 为反应对称过负荷的应装设过负荷保护。

⑥ 为反应变压器过励磁的应装设过励磁保护。

3基于DSP的变压器继电保护测控装置设计

3.1 测控装置硬件架构设计

本文从紧凑型和多功能两方面入手,设计了一款基于新型DSP芯片的测控保护装置。DSP芯片需要完成电压、电流等输入信号的采集和处理,并且根据一定的保护逻辑驱动继电器动作,另外,还需要处理人机接口任务和通信任务。根据这些任务的不同优先级,DSP芯片还需要分配不同时间片的进程以满足各项任务合理有序地执行。

硬件设计的总体框架如图1所示,输入信号包括电流、电压、频率和开关量,而输出则通过继电器来实现。其中电流信号包括三相保护电流和一路零序电流,电压信号包括三相测量电压和一路辅助电压。主控制器采集并处理这些信号,分别用于显示和实现保护逻辑判断等功能。本装置的测量数据、设备信息、事件记录信息、保护定值和保护配置信息等内容都是通过菜单的方式进行显示,装置还提供了按键用于接线方式、保护功能等基本设置功能的实现。设备提供了基本的串行通信功能,可完成装置和服务器之间的报文传输,实现遥信、遥测、遥调、遥控等功能。同时还提供了GPRS模块、方便远距离无线通信功能的实现。

3.2 继电保护测控装置抗干扰设计

微机继电保护装置是一个电路和结构都非常复杂的装置,其主要电路部件均采用中大规模和超大规模的集成电路器件,虽然这些器件在其它领域中的大量实践已表明其损坏率是很低的,但由于继电保护装置是在强电磁环境中长期连续工作,并且责任重大,对万一出现的元器件损坏仍需考虑对策;而且除了起主要作用的数字部件外,还有为数不少的模拟元器件,所以提高元器件可靠性的措施应考虑数字部件和模拟元器件两个方面。

微机保护装置特有的工作方式和很强的处理能力为实现自动检测提供了方便。对装置中平时工作在“静态”的部件,如出口驱动电路、出口继电器等,由于微机保护中这部分的电路比较简单,制造时容易保证其较高的可靠性,同时还可以利用微机的超强处理功能对其进行定时功能检查;对装置中平时工作在“动态”的核心部件,如DSP、MCU、A/D转换器、Flash、FRAM、CPLD等等,无论电力系统有无故障,这些硬件都处在同样的工作状态中,也就是说,总在不停地进行数据采集、传递、运算和判断,因此元器件损坏会及时表现出来;同时,由于有了DSP和MCU这些“智能”部件,可以“主动地”去查找和发现问题,使得微机保护装置可以具有完善的自动检测功能。

4结语

篇6

关键词:冶金企业,铁路运输,自动化管理,信息系统

 

0.引言

钢铁市场的竞争日益激烈,冶金企业面临巨大的机遇和挑战,各企业大显神通弥补不足,提高效益。其中冶金企业现行的铁路运输管理模式已不能满足生产要求,为了提高生产的可靠性、安全性、高效性,在对目前铁路运输管理系统运作模式、职能划分以及基层作业详细调查研究的基础上开发了铁路运输综合自动化管理信息系统。该系统建成以后可以大大地提高铁路运输管理的现代化水平和工作效率,将为公司领导的决策提供真实可靠、全面快捷的信息,生产作业更加流畅。

1.系统总体构成

铁路运输综合自动化管理信息系统涉及铁路运输的各个方面,能及时、准确地为各运输调度指挥管理部门提供现代化的调度指挥管理手段及平台。该系统由生产指挥控制中心网、运输部中心网及车站设备构成。

2.职能管理部门的系统划分

针对宣化钢铁公司具体情况,运输部中心主要负责协调各作业区之间的运输调度和管理,并协同路局准确统计路局车辆在工厂作业区、成品作业区、西车务作业区以及炼铁作业区发生的交接、调入、待卸、卸车、空停待装、装车、交出等八个主要业务活动和解冻、维修两个辅助业务活动的滞留时间及业务活动的时间间隔;准确统计路局车、自备车装/卸运量、停时以及班组运量、停时、运送时间;实现在厂车总数、车种、品名、交接时间,各作业区路局车总数、车种、品名、交接时间、站场股道占用情况,当日内到达、发出车数、车种、品名、收货单位、发货单位的查询;通过网络查询车辆挂钩计划的编制和执行情况、股道详细信息及车辆详细信息;还可通过调度监督系统掌握厂内铁路全线列车的运行情况。论文参考网。

生产指挥中心主要负责下达月、周、日的运输计划,实现运输的应急管理,协调运输调度指挥,实时掌握厂内车的位置和状态,查询和统计各种运输调度信息。

车站设备主要完成各种作业基础信息的录入,调度计划的输入、发送,调度监督、微机联锁、机车信号信息的采集等功能。论文参考网。

3.系统功能简介

3.1货车实时跟踪管理系统

该系统利用计算机及其网络通信技术,以车站为基础信息源点,收集、处理和交换车流信息,由计算机网络向各级车号、调度提供日常计划和调度指挥所需的各种货车资料。一方面提高各岗位生产人员的工作效率,另一方面使运输组织人员能及时准确地掌握车流和货流,组织有计划装车、卸车和排空车,从而保证均衡运输和良性循环,提高运输生产的能力和效益。通过该系统可实现对整个运输系统中的机车、车辆、原料和产品的位置及状态的实时跟踪和管理,同时自动生成各级查询和统计报表,为各级调度人员和运输部领导进行生产指挥提供实时准确的数据。

3.2运输调度管理信息系统

运输调度管理信息子系统是提高运输效率、实现厂内铁路运输自动化指挥、集中管理、集中监视、集中控制的必不可少的系统。通过该系统可直接指挥行车,实时掌握列车运行状况、信号设备显示状态,完成运输计划的编制、调整及调度命令的生成和下达等功能,并进行信息汇总、处理;可对列车的运行进行实时监视并具有历史查询功能;还可为调度指挥管理人员提供管辖范围内信号设备状态及列车运行状况。

3.3调度命令无线传送系统

一般情况下,调度作业指令的传输是通过调度手写调度计划,再用人工的方式将调车计划单交给调车人员和机车上的司机。这种方式严重限制了机车的作业范围、导致了机车作业的不连续性,降低了机车的作业效率,给生产运输带来了极大的不变。为此我们可以安装使用调车计划无线传输系统,即在各站设立调度命令无线传送控制中心,并在每台机车上加装机车信息台,地面控制中心接收铁路货物车辆实时跟踪管理信息系统的调度作业指令,通过无线方式发送到机车信息台上,机车信息台通过液晶显示器显示调度作业计划单并通过打印机打印出来,作为机车作业的依据,同时机车信息台还将机车的作业完成情况及时反馈给地面控制中心和铁路货物车辆实时跟踪管理信息系统。这种方式可以大大提高机车的作业效率。

该系统由中心局域网和基层网两层网络组成。其中基层网由微机监测系统构成,是面向用户的开放性设计的系统,使安装、调试、使用、维护更加方便、简捷。

3.4智能计算机联锁系统

我们现在正在使用智能型计算机联锁系统,它是模块化系统,采用了双机热备的冗余结构以保证其具有很高的可靠性和可用性,实践证明该设备安全、可靠、实用。该系统具备有进路的选排、锁闭、解锁以及信号操作、道岔操作、特殊操作等联锁功能。操作和显示均通过电气联锁上位机实现,同时可根据需要,给车站值班员配置若干台监视器,以达到安全行车的重要目的。

4.结束语

铁路运输综合自动化管理信息系统是为了适应铁路运输发展需要而开发的,完全实现了运输管理的自动化。论文参考网。如果完全投入使用,将会彻底改变了传统落后的管理模式,取得了良好的经济效益,该系统对于我公司的铁路运输管理将有极大的使用价值,将给我们带来巨大的效益。目前,我们虽然只使用了部分的无线传送系统和计算机联锁系统,但是运输效率却取得了质的飞跃。相信未来,我们的无线平调系统将更加完善,铁路物流将更加顺畅。

参考文献

[1]平调无线调车系统.

[2]微机联锁系统技术.

[3]网络系统的集成管理.概念、体系及其应用.

篇7

关键词:虚拟仪器,力传感器,标定

 

1 引言

力传感器是目前广泛使用的传感器,在长期使用过程中,由于使用环境、本身结构的变化,需要对其进行标定,以此保证测量的精度。近年来,随着虚拟仪器技术的出现和发展,越来越多的技术人员开始基于该技术来开发自动化测量设备。博士论文,标定。虚拟仪器是基于计算机的仪器。计算机和仪器的密切结合是目前仪器发展的一个重要方向[1]。而在众多的虚拟仪器开发平台中,美国国家仪器公司(NI)的LabVIEW应用最为广泛。本文主要介绍了基于LabVIEW的力传感器标定程序的设计。

2 标定的原理

所谓标定(或现场校准)[2]就是指用相对标准的量来确定测试系统电输出量与物理输入量之间的函数关系的过程。标定是测试中极其重要的一环。标定除了能够确定输入量和输出量之间的函数关系之外,还可以最大限度地消除测量系统中的系统误差。

传感器的校准采用静态的方法,即在静态标准条件下,采用一定标准等级(其精度等级为被较传感器的3~5倍)的校准设备,对传感器重复(不少于3次)进行全量程逐级加载和卸载测试,获得各次校准数据,以确定传感器的静态基本性能指标和精度的过程。为简化系统的设计,此处标准量采用砝码加载的方式获得。

3 系统组成

3.1硬件组成

系统的硬件组成如图1所示:

图1 系统硬件组成

由图可以看出,系统主要包括计算机、力传感器,数据采集卡、接线盒等。本系统中,力传感器采用电阻应变式压力传感器,四个应变片采用全桥的工作方式。数据采集卡采用NI公司的PCI-6221,该采集卡的主要参数如下:它具有16个模拟输入端口,2个模拟输出端口,24个数字输入输出端口,采样速率最高可达到250kS/s。接线盒采用NI公司的SC-2345,此接线盒直接与数据采集卡相连,接线盒上有SCC信号调理模块插座。SCC模块是NI公司提供的信号调理模块,其上面包含信号调理电路,可以将传感器处采集的信号转换成适合数据采集卡读取的信号。本系统所用的SCC模块为SCC-SG04,此模块适用于连接采用全桥工作方式的电阻应变式压力传感器。

3.2软件组成

本系统软件基于LabVIEW 8.2来开发。LabVIEW是一种图形化的编程语言。博士论文,标定。博士论文,标定。与其他开发工具不同,用LabVIEW编程的过程不是写代码,而是画“流程图”。这样可以使用户从烦琐的程序设计中解放出来,而将注意力集中在测量等物理问题本身。它主要针对各个领域的工程技术人员而设计,非计算机专业人员[1]。博士论文,标定。

因为所用的力传感器属于应变式电阻传感器,其电阻变化率与应变可以保持很好的线性关系,即输入与输出量之间呈线性关系,所以可以用一条直线对校准数据进行拟合。此直线就称为拟合直线,所求得的方程为拟合方程。图2所示为传感器标定程序的采样页面。

此程序采用LabVIEW的事件驱动编程技术进行编制的。事件[3]是对活动发生的异步通知。事件可以来自于用户界面、外部I/O或程序的其它部分。在LabVIEW中使用用户界面事件可使前面板用户操作与程序框图执行保持同步。事件允许用户每当执行某个特定操作时执行特定的事件处理分支。

图2 标定程序采样页面

图3 采样程序

直线拟合的方法[2]有很多种,比如最小二乘法、平均选点法、断点法等等。其中,最小二乘法精度比较高,此处利用它进行直线拟合。根据最小二乘法,假定是一组测量值,是相应的拟合值,mse为均方差,则拟合目标可以表达为,期望mse最小。

LabVIEW中的分析软件库提供了多种线性和非线性的曲线拟合算法,例如线性拟合、指数拟合、通用多项式拟合等等。本程序选择Linear Fit.Vi 来实现最小二乘法线性拟合。

标定子程序的工作流程如下:用户先通过多次采样,获得各个输入量对应的输出量,通过While循环的移位寄存器保存这些值。博士论文,标定。采样完成后,把这些值输入Linear Fit.Vi进行拟合,拟合的曲线在Graph控件中显示出来,同时该Vi自动求出方程y=ax+b中的斜率a和截距b,这样,输入输出量之间的函数关系就可以确定下来了,如图4所示。

图4 标定程序拟合前面板

4 小结

基于虚拟仪器的力传感器标定程序能够方便地对力传感器进行标定。博士论文,标定。该系统具有人机界面友好,灵活方便,自动化程度高等特点。

参考文献:

【1】.候国屏;王珅;叶齐鑫.LabVIEW7.1编程与虚拟仪器设计[M].清华大学出版社.2005

【2】.张迎新等.非电量测量技术基础[M].北京航空航天大学出版社,2001

【3】.NationalInstrumentsCorporation.LabVIEWHelp[CD].ni.com/china,2008

篇8

关键词:电厂高炉 温度调节 自动控制

中图分类号:TM31 文献标识码:A 文章编号:1674-098X(2013)02(b)-0063-01

电厂作为电力供应的生产者,其电力制造的质量和生产过程的安全直接关系到千家万户的切身利益,因此对于电厂现场机电装备的自动化控制的要求十分严格。随着现场总线技术的飞速发展和广泛应用,以现场总线技术为典型应用的自动化控制系统已经逐渐深入到工矿自动化的多个领域,在一些自动化控制水平较高的电厂,已经初步实现了电厂机电装备的自动化控制。高炉是火力电厂生产过程中不可缺少的机电装备,其温度控制要求十分严格,如何实现高炉温度自动调节与控制,一直是很多火力电厂技术工程师都着力重点解决的技术难题之一。本论文主要结合现场总线技术,结合电厂高炉温度的控制要求,对其温度自动控制系统进行系统的研究与探讨,以期能够找到面向火力电厂高炉的温度自动控制技术,并以此和广大同行分享。

1.高炉温度自动控制概述

(1)高炉温度调节控制功能需求。火力电厂采用高炉主要是实现燃煤产电,为了实现能源的复合利用,提高经济效益,往往还通过高炉生产一些副产品,这就要求对于高炉内的温度和压力都有着严格的控制要求。在实际生产过程中,高炉温度的调节往往是采用人工调节的方式实现,这种调节方式效率低,精度差,可靠性差,因此逐渐提出了高炉温度自动调节的控制要求。要达到高炉温度无人值守控制的效果,就必须要能够实时自动监测高炉内的温度参数,并通过计算实时控制气阀或者进料阀,以实现对高炉内温度的自动控制与调节。

(2)现场总线技术的应用特点。由于技术的发展和设备的日益复杂,过去集中式自动化控制模式在实际应用中已经逐渐暴露出了诸多问题与不足,如控制中心负载过大,信息传输效率较低,系统兼容性较差等等;而现场总线技术的出现则很好的克服了上述问题,现场总线能够结合具体的被控对象合理设计自动化控制系统,对现场的智能仪表、数据传输、数据处理和终端均有着可靠的集成性和兼容性,因此将现场总线技术应用于火力发电厂高炉温度的自动调节控制,是完全可行的。

2.基于现场总线的高炉温度自动调节控制技术应用探讨

2.1系统功能设计

基于现场总线技术的高炉温度自动调节系统,具体来说,其功能主要包含以下几个方面:(1)在线监测。(2)数据查询。(3)生成报表与统计分析。(4)超限报警与联动控制。

2.2系统层次架构

高炉温度的自动调节控制系统主要由以下四个系统层构成。

(1)传感仪表层。为了实现高炉温度的自动监测与控制,必须选用合适的传感器对高炉内的温度进行实时监测,温度传感器采用4-20 mA电流信号作为传输介质,将模拟量信号传输到数据采集模块中。

(2)数据采集层。数据采集模块接收传感器传送过来的模拟量信号,通过现场总线实现模拟量数据信号的远程传输,直至传输到中央控制室的PC终端。

(3)PC终端。PC终端通过专用的组态软件实现对高炉的温度变量的实时显示,并提供友好的人机交互界面,完成数据的查询、存储和报表统计等管理功能。

(4)驱动执行层。当被监测的高炉温度过低或过高或者异常超限时,由PC终端发出相应的控制指令,经过驱动机构层实现控制指令的放大和执行,输出到动作执行器,实现相关的报警动作或联动控制动作。动作执行器主要由气阀和进料阀构成,气阀的开度可以降低高炉内的温度,进料阀的开度可以提高高炉内的温度,它们通过接收来自PC终端发出的控制指令,经过驱动放大转变为阀门调节的开度大小,从而实现对高炉温度的自动调节与控制。

2.3系统软件设计

基于现场总线的高炉温度自动调节与控制系统,采用组态软件实现对高炉温度参数的实时显示,以提高人机交互系统的直观性。该组态软件可以采用当前市场上主流的组态软件,例如wINCC,组态王等专业工控自动化组态软件,也可以采用VB、VC等高级语言进行开发。由于该自动控制系统仅仅是对高炉的温度参数进行实时监测与显示,因此软件开发的工作量并不是很大,下面结合组态软件的开发分析软件系统的设计基本流程。

(1)系统界面设计。一个好的软件系统必然有着良好的人机交互性,而这离不开系统的界面设计,因此要结合高炉的温度控制选取合适的图像图形,提高软件的可观性。

(2)系统导航设计。由于软件系统既要显示温度数据,还要提供数据报表、历史曲线等其他数据管理功能,就需要提供良好的页面之间的导航切换功能。

(3)系统数据设计。组态软件或者说自动化控制系统软件都离不开数据库的开发,可以选用软件自带的数据库系统,也可以采用第三方数据库管理系统,但是都必须要能够为系统提供可靠的数据源。

(4)系统管理设计。出于对系统管理的安全性考虑,必须要对系统进行管理涉及,包括用户认证,数据权限管理等等,这些都需要进行系统的管理功能的界定与设计。

推荐期刊