时间:2022-08-28 07:03:48
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇数轴教案,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
1.使学生认识圆的周长,初步理解圆周率的意义。
2.通过对圆周率π值的探求,培养学生科学的和实事求是的探索精神,及概括能力和逻辑思维能力。
3.通过介绍我国古代数学家对圆周率研究的贡献,对学生进行爱国主义和辩证唯物主义观点的启蒙教育、增强民族自豪感。
教学重点和难点
推导圆周长的计算公式。理解圆周率的意义。
教学过程设计
(一)复习准备
上节课我们认识了圆,现在大家都说说,你们都知道关于圆的哪些知识?
(二)学习新课
我们这节课就来研究圆的周长。(板书:圆的周长)
我想问问同学,你们都带了哪些圆形实物?
两人互相指指圆的周长在哪儿?
谁愿意到前面来指一指老师手里这个圆的周长。
谁跟他指得不一佯?为什么这样指不行?
老师这有一面镜子,我要给这面镜子镶一条不锈钢边框,怎么才能知道这个边框长多少厘米呢?
老师这还有一个杯子,用它喝水有时烫手,我想编一个杯子套,怎么才能知道套口应该编多大?
哪个小组愿意帮助解决这个问题?我们每个组都带了一些圆形实物,我们要通过小组合作测出圆的周长,并填写实验报告。
请你在实验报告上填出你测量的实物名称,周长是多少,直径是多少。
(学生分小组测量手中圆形实物,并填写在实验报告上。能测量多少数据就测量多少数据。)
请小组代表汇报本组的实验过程和实验结果。
同学们想了那么多种方法,看来你们真了不起。我们归纳起来,同学们都是用缠绕、滚动的方法把曲线变直的。(板书:绕、滚)
(师出示黑板上画的圆)谁能用这两种方法来测量这个圆的周长。
看来光靠绕、滚这种实践的方法来测量圆的周长是不行的,我们必须研究一种求圆周长的方法。
想一想,以前我们学过哪些几何图形的周长?
长方形的周长和谁有关系?有什么关系?
正方形的周长和谁有关系?有什么关系?
圆的周长和谁有关系呢?举个例子说明,是不是这样呢?请看屏幕。
(用电脑演示三个滚动的圆,看出圆越大滚动的轨迹越长,圆越小滚动的轨迹越短。)
我们得出了圆的周长和直径有关系。
(板书:圆的周长直径)
这是我们大家一起发现的。科学家往往发现问题就要去研究,我们同学长大想不想当科学家?今天我们就先学着科学家来研究一个问题:用我们测量的数据,通过计算分析,来研究圆的周长到底和直径有什么关系?你发现了什么规律?
(学生分小组讨论。)
通过同学们实验研究,我们得出圆的周长总是直径的3倍多一些。(板书:3倍多一些)
是不是这样呢?我们来验证一下。
(电脑演示:圆的周长是直径的3倍多一些。)
这是一个固定的倍数关系,我们叫它圆周率。(板书:圆周率)
谁能说说圆周率是怎么得来的?
请同学们看书上是怎么说的?
早在2000年前,我国古代数学经典《周髀算经》就指出:“圆经一而周三”,(用投影打出这句话。)当时,是很了不起的成就,至今人们常用它来估算圆的周长。刚才,老师就是用这种方法来估算同学们算得是否准确的。谁知道世界上最早将圆周率准确到7位小数的是谁?(学生口答)他是我国伟大的数学家和天文学家祖冲之。
(出现祖冲之的画像,同时放配乐录音,介绍祖冲之。)
约1500年前,我国伟大的数学家和天文学家祖冲之就已精密地计算出圆周率的值在3.1415926和3.1415927之间,他是世界上第一个把圆周率的值精确到7位小数的人,比欧洲的数学家要早1000年左右。现在世界上最大的环形山,就是以祖冲之的名字命名的。
我们确实应该为前人的聪明、智慧感到自豪和骄傲。后来瑞士的数学家欧拉用希腊字母π代表圆周率。(板书:π)
圆周率是一个无限不循环小数。在计算时,如果用这个无限不循环小数参加计算是不方便的,故通常将π取两位小数。(板书:π≈3.14)
既然π是个固定的值了,只要知道什么就能求圆的周长?(直径。)
现在我们能不能计算黑板上这个圆的周长?
什么条件不知道?(直径。)
谁来测直径,用“分米”作单位。(板书:分米)
如果直径是2分米,半径就是几分米?
用半径能不能求圆周长?
现在我们试着用直径或半径来求黑板上圆的周长。
谁用直径求出圆的周长?
(板书:3.14×2=6.28(分米))
为什么这样列式?
(板书:圆的周长=直径×圆周率)
如果用C表示圆的周长,d表示直径,π表示圆周率,字母公式怎么表示?
(板书:C=πd)
谁能用半径求圆的周长?为什么这样做?
如果用字母r表示半径,字母公式怎么表示?
(板书:C=2πr)
(三)巩固反馈
1.求出下面各圆的周长。(单位:厘米)
2.判断,你认为正确画“√”,错误画“×”。
(1)一个圆的周长总是它的直径的π倍。()
(2)圆的周长是6.28厘米,它的半径是2厘米。()
(3)圆周长的一半与半个圆的周长相等。()
3.选择:你认为哪个答案正确就举几号卡片。
(1)车轮滚动一周,所行路程是求车轮的[]
①半径
②直径
③周长
(2)圆形水池的直径是4米,绕池一周长[]
①25.12米
②12.56米
③12.56平方米
(3)A圆的直径是6厘米,B圆的直径是2分米,圆周率[]
①A圆大
②B圆大
③一样大
4.甲乙两人分别沿①、②两条路线从一端走到另一端,谁走的路线长?
(四)总结全课
这节课你学会了什么?(引导学生总结本课所学的知识。)
活动时间:2005年9月5日——11日
活动形式:
一、开展为期一日的换位试岗
试岗前通过交通伴你行栏目进行人员与岗位征集,同时为此次活动进行宣传。替换下来的司机作为交通协管员,在市区各路口执勤。交警则换位作为司机。活动结束后展开关于这次换岗的讨论,通过这种换位思考和彼此沟通,密切警民关系,改进工作作风,为上虞的交通状况改善创造一个良好的环境。
时间:2005年9月10日
二、大型活动
在文化广场举行一场别开生面的普及交通安全法文艺演出。活动期间编排演出有关交通安全的文艺节目。并穿插交通指挥手势表演与竟猜,交通标志竟猜等互动活动。提高观众的参与热情。
活动期间在广场设立了交警宣传站,搭建不同展台,开展不同的互动活动
1、向群众宣传解答有关问题
2、违章处理咨询
3、交通安全片资料播放
4、事故案例图片展
5、编印《交通安全知识实用读本》,活动期间组织民警向群众发放
6、交通安全知识讲解
7、与电台合作
与上虞人民广播电台交通伴你行栏目合作,利用交通台观众的针对性强,与广大司机朋友联系紧密等特点。在活动进行前,对本次活动进行宣传,活动期间邀请交通伴你行栏目组在广场对整个活动进行直播,或部分直播。交通台主持兼作本次活动主持,设计一些的活动版快,吸引活动期间,广大司机朋友的参与热情。并邀请参加换岗的警察和司机代表参加活动,并在节目中畅谈换岗感受。
时间:2005年9月11日
三、大型活动与长期宣传相结合,除在广场进行活动活动以外,深入开展“五进”活动,延续国家关于交通安全宣传进农村、进社区、进企业、进学校、进家庭的“五进”活动精神,创建和谐的交通环境。
1、进农村
组织干净深入到乡镇、村播放警示教育光盘、发放宣传资料。掌握规律,利用好农村司乘人员的空暇时间,对低速汽车、三轮车、摩托车、个体运输户展开大规模的宣传,与车主和驾驶员面对面进行一次交通安全教育。
2、进社区
提高居民道路交通安全意识,深入人群集中的社区进行宣传。在各小区广泛设立交通安全宣传橱窗、宣传栏,结合重特大交通事故的典型案例,宣传交通法律法规和安全知识。进行事故案例图片巡展。
3、进单位
深入本市各公司、企事业单位等部门组织全体干部、职工观看交通安全宣传挂图和光盘,提高了职工特别是司乘人员的安全意识。
4、进学校
通过交通安全宣传进学校活动,培养中小学生自觉遵守交通法规的良好习惯。到学校给师生上交通安全的宣传课,举办安全讲座。与教育局合作,在中小学举行全市交通知识竞赛。分小组赛与决赛。其中6——8只代表队进入决赛。决赛争取协调由上虞电视台进行直播或录播。通过这种形式在参赛选手以及电视观众中扩大影响,加强交通安全教育。
5、进家庭
通过广播、电视、报纸等媒体,把交通安全宣传延伸到每一个家庭,使其受到深刻的交通安全教育。
“对称”是义务教育课程标准实验教科书数学(人教版)二年级上册第五单元<观察物体>第二课时的内容,主要教学”轴对称”的知识。整节课,设计了五个大的活动。让学生在活动中体验对称、感悟对称、理解对称、并且在欣赏的活动中体验对称美。
第一个活动是让学生动手剪剪,在剪一剪中体验对称图形的特点,对对称、对称图形有一个直观的了解。
第二个活动,设计的是让学生“找一找”,在各种图形事物中找一找那些是对称图形,那些不是对称图形?在找的同时,感悟到对称图形的特点,同时让学生感受到生活中到处都有对称,到处都有对称的事物。
第三个活动是让学生动手画一画对称轴,进一步理解对称及对称图形的特点,接着,出示正方形、长方形、和五角星,让学生找对称轴,由于可找很多条对称轴,让学生感悟到同一个物体有不同的对称轴,感觉到对称的奥妙.
第四个活动,在学生了解了对称及对称图形后,让学生跟着图片一起欣赏各种对称物体、图形。把生活中的数学知识:对称及对称图形在课堂上进行抽象、概括后,又回到现实生活,让学生用数学的眼光去判断生活中的对称,培养学生用数学的眼光看生活中的数学,同时,进行了美的熏陶。
第五个活动,是对学生学习的课外延伸,让学生设计一个对称图形,打扮我们的教室,充分调动了学生的积极性,发挥了他们的想象力。
整节课的设计,遵循了以下原则:
一、遵循儿童的认知规律。
皮亚杰的儿童智力开发阶段理论认为:小学生主要处于具体运算阶段,形式运算能力较差,也就是说形象思维活跃,逻辑思维较弱。因此,对于对称的概念及特点,我是从直观的,而且是学生自己动手操作所发现的,也顺应了现代教学观念,学生只有在亲身经历或体验一种学习过程时,其聪明才智得以发挥出来,任何一种学习都是一种积极主动的建构过程。
二、体现数学的生活化原则
数学,来源于生活,又用于生活。小学生所学的数学都是生活中数学的抽象。为了更好地让学生学习数学,理解数学,应用数学。采用以生活为源,给学生创造条件。学生学习的材料是生活中常见的;学生剪的窗花是用于装饰环境的;欣赏的内容也是生活中常见的。体现了一种观念,数学与生活是密切联系的。
目标:
1、通过剪一剪的实际操作,体会到轴对称图形的主要特点。
2、在认识轴对称图形的基础上,能正确判断哪些是轴对称图形,哪些不是轴对称图形,并找到对称轴。
3、通过剪、画\说找的实际操作,培养学生的观察、分析、综合、抽象和空间想象能力。
4、通过对实物及相关图片的欣赏,感受到数学与现实生活的密切联系,感受对称美。
课前准备:每生准备二张彩纸,剪刀
教学过程:
一、猜图形。
1、出示一组轴对称的图形,请同学猜一猜,完整的是什么?
2、说说你为什么这样猜?
3、揭示答案。看你猜得对不对,谜底马上揭晓。
4、看这些图,你发现了什么?有什么特点。
了解轴对称图形的一般特点,对称轴的两边完全一样。
理解对称轴及对称图形的含义。
5、假如要判断一张纸是否是轴对称图形,你怎么判断?
二、找一找,画一画。
1、请你归归类。
小组讨论:哪些是哪些不是,为什么?
2、小组反馈交流。
三、欣赏。
1、你能带着今天学的知识来欣赏吗?
2、欣赏完了,你想说什么?
四、找生活中的对称。
1、其实生活中也有很多对称的图形、物体,你能说一说吗?
2、马老师发现这样一个现象,你能帮马老师解释一下吗?课件出示倒影的图片。
五、剪一剪。
1、想设计一些对称图形吗?来打扮我们的教室。
想一想,打算怎么剪?
【教学目标】
1.知识目标:复习长方形与正方形面积计算方法。复习长方形与正方形周长计算方法。
2.能力目标:经历小组合作学习的过程,体验问题解决的一般方法。经历问题解决的过程,初步体会到长方形与正方形周长与面积的关系。
3.情感目标:师生共同学习,体验问题解决的乐趣。学生合作交流,体验集体的力量。
【教学重难点】
重点:学习平移及割补的数学思想。
难点:解决生活中的实际问题。
【教学过程】
一、复习旧知:
1.说说怎么计算长方形和正方形的周长和面积?
2.练习:
(1)计算下列图形的面积和周长:
15cm
11dm
7cm
师:请你说说计算完之后要注意什么?(注意单位名称不同)
(2)一个长方形的面积是56平方米,宽是7米,这个长方形的长是多少?
(3)一个正方形的周长是48分米,它的边长是多少分米?
二、学习新知:
1.出示例题:
用绳子围一个面积是512平方米的长方形,已知长方形的长是32米,这根绳子有多长?
师:我准备了3个思考题,请大家边思考边在小组中交流你的想法。
思考题:
求“这根绳子有多长?”就是求这个图形的什么?先算这个图形的什么?怎
样求?
2.小组讨论。
3.交流反馈:
教师根据学生反馈板书:
先算长方形的宽:512÷32=16(米)
再算长方形的周长:
(16+32)×2
=48×2
=96(米)
4.练习:
下面长方形的面积是2350平方分米,这个长方形的周长是多少?
25分米
(
)分米
师:根据刚才的思考题独立完成。
交流你的解法。
5.小结:
虽然面积和周长的概念不同,但是我们可以通过它们之间的互相转化来求出未知量。
三、巩固新知:
1.将一根36米长的铁丝围成一个正方形,求这个正方形的面积?
2.用3个边长是5厘米的正方形拼成一个长方形,求拼成的长方形的周长与面积?
3.求图形的周长与面积
执教:
单位:
教学内容:
人教版小学数学教材六年级上册第62-64页。
学情分析:
六年级的学生具备一定的逻辑思维能力与成像能力,他们已经掌握了周长的意义及圆的特征。课前调查中发现:大部分的学生已经知道圆周长的计算公式。但是能正确理解圆周率意义的却只是少数,即使在某些老师上完此课,学生能准确说出圆周率意义和特征的学生只有一半左右。也就是说,学生对圆的周长公式的理解只停留在表面上。
教学目标:
1.知识与技能:直观认识圆的周长,知道圆的周长的含义;理解圆周率的意义,理解和掌握求圆的周长的计算公式。
2.过程与方法:通过观察、推理、分析、综合、抽象、概括等数学活动,经历探索圆的周长与直径的关系的过程,渗透极限的思想;培养学生动手操作能力、合作能力与创新精神。
3.情感态度和价值观:通过揭示圆周率的意义及介绍古人对圆周率的研究史料,激发学生的科学探究的热情,增强民族自豪感。
教学重点:
圆的周长计算公式的推导,能利用公式正确计算圆的周长。
教学难点:
验证圆的周长和直径的关系。(本课的关键就是理解圆周率的意义)
教学过程:
一、预习导航
1.交流发现
师:孩子们,这节课我们一起来学习圆的周长。(板书课题)
师:通过课前的预习,大家对这节课的学习内容都有所认识,请大家先拿出课前小研究先看一看,下面我们以小组为单位进行组内交流,请看活动要求。(出示)
活动要求:
(1)在组内先核对一下课前小研究第1、2题的答案
(2)在小组内互相说说你知道了什么?
(3)在组内挑选一张最好的作品进行小组汇报。
(学生组内交流)
2.小组汇报
师:下面我们进行小组汇报,哪个小组来说说你们小组预习《圆的周长》这一课的学习收获。(思维导图板书:圆的周长)
(小组汇报,教师随机利用思维导图进行板书)
问:还有其他收获吗?
师小结:你们小组的收获真不少,知道了圆的周长的定义(板书:定义)还知道了算圆的周长的方法。(板书:方法)圆的周长的计算公式c=πd或c=2πr。(板书:c=πd)
3.适时点拔
教师结合思维导图进行追问:
(1)出示圆和长方形的图形,问:圆的周长和长方形的周长有什么不同的地方?(板书:曲线)
(2)学生演示绕绳法
师:我们给这种方法起个名,叫绕绳法(板书:绕绳法)
问:用绕绳法进行测量时要注意什么?
(3)课件演示滚动法
师:这种方法叫滚动法。(板书:滚动法)在测量时要注意标出起点。
问:这两种方法都有什么共同的地方?
教师小结:无论是绕绳还是滚圆它们的最终目的都是把圆的周长这条曲线变成了直线段,我们都把它概括为“化曲为直”。
4.聚焦问题
师:在预习中你们还有什么不懂的问题。(学生汇报,教师板书)
预设问题:
问题1:圆的周长是它的直径的几倍?
问题2:圆周率是怎么来的?
问题3:为什么圆的周长c=πd?
(设计意图:复习课中,我们不仅要针对知识的重点、学习的难点、学生的弱点进行整理和复习,更要这是复习课的重要任务之一。为了发挥学生学习的自主性和积极性,提高自学的效率,课前向学生提供了一份《课前小研究》作为预习导航,以思维导图的形式让学生小结课前收获,使学生将所学的知识进行归纳、整理,构建完整的知识网络,打破以往线性教学中一问一答的局面,让学生清晰、高效地自学这部分内容。然后通过学生的展示,使学生深切地体会到“化曲为直”的数学思想方法,从而突出重点,突破难点。最后通过问题的聚焦,为下面的导学反馈指明了方向。)
二、导学反馈
(一)问题1:圆的周长是它的直径的几倍?
1.测量圆的周长
师:圆的周长到底是它的直径的几倍?下面我们进行小组合作学习,一起动手量一量圆的直径和周长的长度,再算一算圆的周长除以直径大约等于几倍,并观察所得数所,看看有什么发现?请看活动要求:(课件出示活动要求)
要求:
(1)利用工具测量手中圆的周长和它直径的长度,并算出周长和它的直径的比值。(结果保留两位小数);
(2)完成任务的小组把结果填入学习记录单中。
(3)观察表中的数据,你们发现了什么?
组别
测量对象
硬币
小齿轮
1号
圆片
2号
圆片
瓶盖
光盘
第
(
)
小
组
周长C
(cm)
直径d
(cm)
C÷d的商
(保留两位小数)
我们的发现:
圆的周长除以它的直径的商大约是(
)倍
2.小组汇报
(1)小组汇报测量结果。
(2)观察数据,得出结论。
师:刚才汇报的两个小组的同学都不约而同地发现圆的周长除以它的直径的商都是3倍多一些。从左往右观察圆的周长、直径这两组数据是怎样变化的?它们的商都是多少?组内说说你有什么发现?
结论1:圆的直径变,周长也变,并且直径越短周长越短;直径越长,周长越长,但有一个数是固定不变的。
结论2:圆的周长总是它的直径的3倍多一些。(出示板书,齐读)
师小结:圆的周长会随着圆的直径的变化而变化,但圆不论大小,它的周长总是直径的3倍多一些,是一个固定不变的数,我们把它叫做圆周率。
(设计意图:本环节为学生提供已标有直径的一元硬币、小齿轮、1号、2号圆片、瓶盖和光盘等学生身边常见的物品作为实验物品,不仅能提高实验的速度,而且也能减少实验误差。引导学生分工合作,用自己喜欢的方法测量出圆的周长和直径,求出比值,并对学生实验的方法进行深入细致的指导,让学生边动手操作边进行信息的收集和分析处理,最后组织学生观察、分析、思考,引导学生发现“圆的周长都是直径的3倍多一些”这一结论,使学生真正理解消化了教学难点。学生在探索新知的过程中,由知识的接受者转变为知识的发现者和创造者,不仅理解掌握了知识,促进了学生的学习方法的养成,还学会了与人合作,培养了合作意识,并且感受到了成功的喜悦,体验了学习数学的乐趣。)
(二)问题2:圆周率到底等于几?
1.介绍圆周率
师:历史上,有不少的数学家都对圆周率作出过研究,想不想了解它背后的故事?让我们一起走进历史,来了解数学家们研究圆周率的历程。
(课件演示)
教师:看完了介绍,现在你们对圆周率有什么想法?
预设:
学生1:我认为圆周率太神奇了,竟然能算到12411亿位还没有算完!
学生2:我认为还有一个神奇的地方,圆周率算到第12411亿位,竟然没有一个循环节!
师:圆周率是一个无限不循环小数,用字母π表示,(板书:π)认识了圆周率,我们再回头来看看刚才实验得出的结论(课件出示:圆的周长总是它的直径的3倍多一些),这3倍多一些指的就是π,所以这句话还可以说成圆的周长总是它的直径的π倍。(课件替换π)如果用字母C表示圆的周长,d表示圆的直径,那么c/d=π(板书:c/d=)
为了计算方便,在实际应用中我们一般只取它的近似值,π≈3.14。
(设计意图:向学生介绍了人类探索圆周率的历程,拓宽了他们的数学视野,让学生感受到数学文明的发展,体验到人类不断探索的脚步。而对祖冲之详细的介绍,使学生了解到祖冲之令人神往的成就,感受到身为一个中国人的骄傲和自豪,同时对学生的后续学习也起到了一定的激励作用。)
2.引导学生发现误差,从而发现测量方法的局限性。
师:回到我们的实验数据,为什么我们实验的结果大部分都得不到3.14呢?
预设:
学生1:我认为测量圆的周长的时候,绳子是松的,而绳子伸直时是撑紧的,绳子有拉力。
学生2:我认为圆在滚动时,圆有可能在原地打转,测量有误差。
教师:很好,与测量工具有关。测量时,误差是不可避免的。用测量的方法来研究圆的周长与直径的关系是不准确的。
(设计意图:选取了相同的圆形物品让学生进行测量,再引导学生进行观察对比,发现同样的物品,测量出来的长度是不同的,知道误差是存在的,如何减少误差,提高测量计算的准确性。)
(三)问题3:为什么圆的周长c=πd?
师:数学家们千方百计地计算出这个圆周率,利用这个c/d=π这个式子,如果知道圆直径,那么可以计算圆的周长c=πd,如果告诉你半径,又怎么求圆的周长?
(设计意图:当学生发现了已知直径求圆周长的方法后,让学生思考还可以已知什么条件来求圆周长,这样通过学生自己总结得出的结论印象更深刻。)
(四)反馈练习
师:要求圆的周长,需要知道什么条件?
1.课件出示相应的练习
(学生完成相应的练习)
师小结:我们知道要算出圆的周长可以有几种方法,对比三种方法,哪种方法更简单?
2.教师出示教材第64页例1。
课件分步出示例1,学生独立完成后讲评。
3.课堂小测
(见附件)
(设计意图:为了巩固所学的知识,体现练习题有梯度、有层次性、有趣味性,设计了层次分明的练习,从计算直观的图形的周长到解决实际问题,让学生学以致用,体会到数学知识在生活中的运用价值,进一步激发数学学习的兴趣和爱好,尤其是小测中的最后一题,让学生选一道自己最想交流的题目与小伙伴们分享,让学生充分巩固所学知识,可以为小伙伴提供一些合理的建议。)
三、归纳积累
1、通过本节课的学习,你有哪些收获,把它补充在思维导图上。
2、学生在思维导图上写收获。
3、全班交流学习收获。
(设计意图:通过小结,让学生们沉静下来回顾本节课学习过程,思考自己本节课的感受和收获,让思维导图梳的形式梳理本节课所学习知识,能更好的沟通知识间的联系,使零散分布的知识连成线,结成网,方便学生理解和记忆。)
四、布置作业
1、完成课本第65页第1、2、3、4题
2、预习第65页和第66页,把不懂的问题在课本上标注出来。
(设计意图:设计一定量的作业让学生完成,让学生更好的巩固本课所学知识,提高学生运用知识解决问题的能力,预习的设计,让学生明晰下节课的教学内容,能带着问题走进课堂,培养学生发现问题的能力,提高学习效果。)
《圆的周长》教学反思
新课程强调学生自主、合作、探究学习方式的培养,让学生在情感体验、知识技能、数学思考、解决问题各方面得到均衡发展。本课的教学就是在新课程理念的指导下,通过教学情境的创设和学生实践活动的开展,积极践行自主、合作、探究学习方式,使学生的主体性和教师的主导性都得以有效的发挥,使教学内容更加厚实、教学活动更加丰富,教学环节清晰,教学效果得到有效的提高。
1、真正体现学生的主体地位,教师是一个组织者、引导者与合作者
在教学测量圆的周长这一内容时,我设计了一个个让学生充分探究的情节,小组合作,根据已有的材料,用不同的方法测量圆的周长,探索规律,让学生充分展示他们的思维过程,把静态的知识结论转化为动态的探索对象,让学生在探索未知领域的同时实现自己的智力发展,教师只是作为学生学习过程的陪伴者,给予适当的点拔和引导,把学习的主动权交还给学生。
2、让学生带着问题去学习,亲历知识获取的过程
我国著名教育家顾明远说过“不会提问的学生不是好学生”,“学问就是要学会问”。《国家数学课程标准》也明确指出:“动手实践、自主探索与合作交流是学生学习数学的重要方式,数学学习活动应当是一个生动活泼、主动探索和富有个性的过程。”也就是说,学生学习数学并非单纯的依赖模仿和记忆,数学学习过程的实质是学生主体富有思考性的探索过程。所以,数学知识的探索轨迹,应作为学生是否主动参与的标志,展现于课堂教学的全过程。在教学中,让学生围绕着问题“圆的周长计算公式为什么是C=πd?圆的周长是它的直径的几倍?”通过学生亲自动手的测量、计算、自学、推导、论证等充分的实践活动而展开的。特别是在测量周长与计算周长与直径的比值这一环节中,我采用了小组合作学习,让学生用不同的方法,如绕绳法、滚动法和折叠法测量不同的圆形物品的周长,小组同学有的测量,有的记录,有的用计算器计算,让学生在具体实验中,体会到“圆的周长总是直径的三倍多一点”这一结论,并知道圆周率的相关知识,进一步推导出c=πd,c=2πr。动手操作,合作探究加深了学生对所学知识的理解,达到突破难点的效果,体现了课堂教学的有效性,学生的合作能力、思维能力、特别是创新能力和实践能力也可以得到发展。可以说,每个知识点的发现,都是学生自主探索的成果,而不是学生被动接受的结论。探索,作为学生学习数学的重要方式,体现了学习中求发展,在发展中求创造的教育思想。
3、数学阅读让学生感受数学的厚实的文化
在数学学习过程中,适当介绍一些有关数学发现与数学史的认识,能够丰富学生对数学发展的整体认识,对后续学习起到一定的激励作用。结合本节课的教学内容,教师向学生介绍了圆周率的有关认识。这里的介绍从《周髀算经》中的“周三径一”、祖冲之的“算筹”到圆周率在现代生活中的应用以及用电子计算机来计算圆周率。通过对“圆周率”发展历史的介绍,来开拓学生的视野,丰富学生的知识面,使学生了解知识的来龙去脉,使学生对圆周率的历史有一个完整的认识,感受到我们祖先的智慧,体会数学知识与人类生活经验和实际需要的密切关系。
4、课堂检测,提高学生做题的积极性
如果一节课都是练习,学生容易疲劳,如果把练习题设计成测试题,有利于提高学生做题的积极性。本节课围绕教学目标设计了一份小测题,用卷子的形式呈现给学生,由学生独立完成。做完后,在课堂上进行小组核对答案,对测试中出现的共性问题,采取相应的补救措施。尤其是小测中的最后一题,让学生选一道自己最想交流的题目与小伙伴们分享,让学生充分巩固所学知识,可以为小伙伴提供一些合理的建议,体验到学习的乐趣。
课前小研究
姓名____________
班别____________
学号______________
组别____________
一、认真阅读课本第62~64页,完成下面的练习。
1.
用红色笔描出下面圆的周长,并说说什么圆的周长。
2.认真观察下图,结合学习长方形、正方形周长的经验,猜想:圆的周长可能和____________有关,为什么?
o
o
o
o
二、完成下面的思维导图。
课堂小测
姓名____________
班别____________
学号______________
组别____________
一、求下面各圆的周长。
二、解决问题
1.一个圆形喷水池的半径是5cm,它的周长是多少厘米?(π取3.14)
数学这门学科的学习与图形是分不开的,轴对称是数学学习过程中很重要的一个概念,可以帮助学生更好地理解之后要学习的等腰三角形和各种其他基本图形。在学习轴对称之前,学生已经对全等三角形的概念有简单的了解,学过这节课程之后,可以帮助学生更好地辨别之前学过的图形。同时,轴对称在我们学习和生活中的应用范围是非常广的,学好轴对称这一课能提高学生的审美能力,让学生在以后学习过程中对图形更敏感。
二、本节课的教学内容
这节课主要教学内容就是轴对称,重点教授的概念是什么是轴对称图形、如何辨别轴对称图形,两个图形关于某一条直线的对称性。
三、本节课的教学目标
1.知识目标。
讲解对称轴和对称点的概念;让学生明白什么是轴对称图形,同时分辨出两个图形是否是轴对称图形;帮助学生理解轴对称图形和两个图形关于某一条直线对称的不同和关联之处。
2.能力目标。
通过在课堂上现场演示折叠和剪纸的教学方式,帮助同学建立空间想象能力,锻炼学生的抽象思维;让学生动手演示提高空间想象力,能在以后迅速判断出轴对称现象;通过讲解帮助同学了解轴对称图形和两个图形成轴对称的不同辨别方法。
3.情感目标。
在学习轴对称这一课的过程当中,给学生介绍学习生活中遇到的各种轴对称图形,帮助学生了解轴对称在现实生活中是随处可见的,培养学生的审美意识。
四、本节课的教学重难点
重点:通过多种教学方法帮助学生理解什么是轴对称图形、两个图形关于某条直线对称的概念。
难点:帮助同学准确区分轴对称图形和两个图形关于某条直线对称,这两个概念的不同和关联。
五、本节课的教学过程
1.激发兴趣,引入概念。
在课程开始之前,我会用多媒体课件播放一些现实生活中能看到的事物外形、图标、大型建筑物等,让同学仔细观察课件上的每个图形,说出这些图形在数学课堂上分别叫什么名字,以此引导学生认真观察课件中的图片。之后我会继续播放课前制作的两个图形成轴对称的动图。看过课件后让同学们找出这些图形的共同特点,进而引出图形的对称轴和图形成轴对称两个概念。
2.动手实践,讲解概念。
第一步:引导学生动脑思考。
提出轴对称这一概念之后,我会让同学们继续说说自己在学习和生活中还会遇到哪些比较规则的图片,和课件中的图片进行对比,让学生说出这些图片的共性。
[教学说明:通过思考,得出这些规则图形对折后能重合的事实]
第二步:要求学生动手实践。
充分发挥学生在教学过程中的主动性,通过让学生动手操作提高课堂参与度,让学生分别拿出一张正方形的白纸,从正方形的中间对折,之后把对折好的纸张撕成自己想要的形状,撕好之后把纸张展开,让学生观察思考折痕两边的形状有什么特点。
[教学说明:通过动手操作,得出撕好的形状折痕两侧是相同的]
第三步:引出数学概念。
由之前的思考和实践引出轴对称图形的概念和两个图形成轴对称的概念。同时对比分析轴对称图形和两个图形成轴对称的相同和不同之处。
第四步:对概念进行针对性练习。
在课堂上通过多媒体课件演示方式对学习概念进行练习,给学生设置一些问题。比如:图中的轴对称图形分别有几条对称轴,是哪几条?(课件演示)请同学们思考学过的图形都有哪些是轴对称图形,对称轴有几条?
3.做游戏,巩固概念。
刚刚学习过新知识之后,学生有可能掌握得不够牢固,容易记不清楚概念,所以讲解完本节课两个重要概念之后,要同学们一起做两个小游戏,巩固这节课新学习的关于轴对称图形的概念。具体小游戏设置过程如下:
(1)我会随机说出英文字母表中的任意字母,让同学们抢答,迅速说出我说的字母是不是轴对称图形。
[教学说明:通过判断英文字母的游戏帮助学生掌握快速判断轴对称图形的能力]
(2)我会在课前准备一下轴对称的汉字,做游戏时把这些汉字的一半写在黑板上,找同学把剩下的一半汉字补齐。
[教学说明:通过补齐汉字的游戏帮助同学掌握轴对称图形的对称规律]
4.教学效果反馈。
我会在课程要结束的时候对学生的学习情况进行了解,安排详细教学效果反馈过程,具体如下:
第一步:答疑阶段。
我会问同学在这节课学习过程中还有什么疑问,对我讲解的概念有什么地方不理解,有没有同学不会判断轴对称图形等。对同学的疑问进行简单解答,共性问题在课堂上解答,问题大的同学课后继续单独讲解。
第二步:当堂测试。
我会问同学们一些关于对称轴和轴对称的问题。比如:下面几个图形有哪几个是轴对称图形,请选择?(课件显示)下面几个图形分别有几条对称轴?(课件显示)轴对称图形和两个图形成轴对称有什么相同和不同点?
第三步:布置课后作业。
让同学在课后把书上的练习题认真完成。
【关键词】初中 数学 总复习 教学质量
进入初中数学总复习的教学阶段,由于教学时间比较紧、教学任务比较重,数学教师在这一阶段怎样开展复习?复习哪些内容?如何保证有计划、有步骤地进行总复习,进而提高复习教学的质量……这些都是每位初中数学教师不得不面对的问题。
一、有步骤地安排实施初中数学总复习教学的重要性
数学总复习是初中数学教学中极为重要的一个过程。随着近几年中考命题改革的趋势越来越大,科学有效地组织学生进行复习,成为摆在每一位初中数学老师面前相当有挑战性的任务。认真并有计划、有步骤地将这个教学任务完成,不仅有利于学生理解、巩固、归纳数学基础知识,而且有利于提高学生分析以及解决问题的能力。同时也可以对基础较差的学生达到查缺补漏,巩固提高的效果。
二、有步骤地安排实施初中数学总复习教学的几点建议
1.紧扣教学大纲,精心制定复习计划。我们都知道,初中数学的内容不仅较多而且知识点还比较杂,基础知识和概念性质的分布也不均匀,学生通常在初二学了新的知识,却又忘了旧的知识。所以,必须依据教学大纲规定的内容和归纳出的知识重点,精心制订复习计划。
在复习计划制订的时候,必须根据学生知识体系的实际状况,注意总结那些平常教学中学生较难理解、遗忘率较高且易混易错的内容,紧扣教材,确定重点。同时,还要使学生在复习中充分认识、理解和运用数学概念,进而丰富学生的解题策略,提高学生的应试能力。
2.梳理知识结构,进一步巩固基础知识。众所周知,中考数学试卷中,基础概念试题通常占有60%~70%的比例。由此可见,基础知识的系统复习是不能被轻视的。因此,我们有必要在总复习中系统地梳理知识结构,进一步巩固学生的基础知识。通过基础知识的系统复习,最起码要使学生达到准确掌握每个概念和定理的含义,使学生对知识掌握更加扎实的。
3.及时做好数学总复习的总结记录。一节课或一天的复习教学结束之后,我们应该静下心来仔细反思一下:这次复习课的总体设计是不是合理?教学环节有没有遗漏的地方?教学手段的运用是否合理?重点、难点的内容是不是突出的讲到了?哪些做得还不够好,还有哪些地方需要调整和改进?学生的理解程度如何?还有哪些问题没有解决等。把这些想清楚,然后记录下来,形成教学总结。这样就为今后的教学提供了非常有用的经验参照。长期下来,必然会给我们复习教学带来非常有益的帮助。
4.注重对学生解题表述的训练。数学解题的思路和方法必须通过准确、完整的数学语言进行表述。然而,在复习教学中我们发现许多学生还不能有效地运用规范、准确的数学语言表达自己的解题思路。
例如,正方形ABCD中才有∠A=∠B=∠C=∠D=90°,学生解题过程中通常容易忽略正方形ABCD这个条件,而直接写出∠A=∠B=∠C=∠D=90°。这种不规范、不严密的表达,倘若得不到及时纠正,就会影响正常的逻辑推理过程,甚至造成答题时的分数丢失。所以,我们在总复习中有必要严格规范学生的解题表达,有意识、有针对性地训练学生严谨的解题思路,避免在中考考场上再犯同样的错误,造成不必要的损失。
5.穿插思维训练,缓解学生紧张感。随着近几年中考对学生思维能力的要求越来越高,立意新颖、紧密联系生活实际的新题型也逐渐增加。因此,在复习中我们有必要经常注意收集一些既具有丰富的数学思想,又具有促进学生发展性思维的新题型,如阅读理解、归纳猜想、开放探索、图表信息分析等。
我们可以把这一类型的问题放在总复习的第二阶段,在强化习题训练的时候偶尔插入一些这样的例题,不但可以激发学生学习数学的好奇心、求知欲,帮助学生更好地理解题意,进而在此基础上养成向参考答案挑战的习惯,还可以缓解他们的复习紧张感,培养他们敢于怀疑的精神,激发他们学习数学知识的信心,提高学生的学习质量,为即将到来的中考奠定坚实的基础。
综上所述,初中数学总复习阶段教学时间紧、任务重、要求高、学生心理压力大。每个初中数学老师都面临着严峻的考验。因此,为了有步骤地安排实施初中数学总复习教学,取得好的复习效果,我们就必须在总复习教学中既注重知识的全面巩固,又要突出概念、性质、定理等基础重点知识的复习;既要严格按照复习教学计划开展复习教学,又要注重与不同知识结构、不同层次的学生的实际情况相结合;既要注重对学生解题表述的训练,还必须重视学生数学思维的培养。进而进一步做到复习教学的有效性,促进学生成绩的明显提高和进步,为他们在中考中取得优异的成绩奠定良好的基础。
参考文献:
[1]张征信.如何搞好初中的数学总复习[J].教与学.2011(05).
【学习目标】
1.初步认识长方形正方形周长和面积的关系。
2.知道几个长方形在周长相等的情况下,长与宽越接近,面积则越大。
3.培养同学们学习数学的兴趣。
【学习重难点】
1.长方形的周长和面积的关系。
2.正方形的周长和面积的关系。
【学习过程】
一、复习
1.说说长方形正方形周长和面积的计算方法。
______________________________________________________________
______________________________________________________________
______________________________________________________________
2.长方形、正方形的周长和面积有什么区别?
______________________________________________________________
______________________________________________________________
______________________________________________________________
二、学习内容。
1.兔宝宝小白和小灰长大了,兔妈妈让它们各自负责一个小花坛,看着这两个花坛,小白说:“两个花坛的周长相等,所以这两个花坛一样大。”小灰说:“不,这两个花坛不是一样大,因为周长和面积是没有关系的。”你认为它们的话对吗?为什么?
______________________________________________________________
______________________________________________________________
______________________________________________________________
2.操作并完成实验报告:用16根小棒摆出一个长方形,并求出它的周长和面积。(一根小棒代表1米)
______________________________________________________________
______________________________________________________________
______________________________________________________________
三、练习。
1.判断:一个长方形和一个正方形的周长相等,面积也相等?如果两个长方形的面积相等,周长一定相等?
______________________________________________________________
______________________________________________________________
______________________________________________________________
2.用20厘米长的铁丝可以围成几种不同的长方形?其中哪个图形的面积最大?
______________________________________________________________
______________________________________________________________
______________________________________________________________
3.有两块长方形菜地,甲地长18米,宽9米;乙地长20米,宽7米,如果不计算,你能否直接判断哪块菜地大?
______________________________________________________________
______________________________________________________________
______________________________________________________________
四、课堂总结。
今天我们学习了什么内容?长方形正方形的周长和面积之间有什么联系?
______________________________________________________________
______________________________________________________________
______________________________________________________________
五、课后作业。
把一张长方形纸剪成两个完全一样的小长方形,怎样剪才能使小长方形的周长最小?如果要使小长方形的周长最大,应该怎样剪?
______________________________________________________________