时间:2022-03-14 19:03:25
绪论:在寻找写作灵感吗?爱发表网为您精选了8篇电力系统通信论文,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!
(1)卫星接入技术。这种通信接入技术被广泛应用于房地产、金融以及教育领域,主要是由于其技术可以有效地实现高速度的互联网连接以及高速度的数据包发放。同时还由于此种接入技术的实施方法比较稳定,所以在各个领域被广泛应用。
(2)红外光通信接入。这种通信接入技术由于其传输速率相对比较高,它的速度频率大约在3MB/s-621MB/s之间,这样就可以有效的促进数据之间的高速度传播。同时此技术的传输距离可以高达100米左右,并且以红外光为主要的工作波段,这样既不需要对其进行频率波段的申请,也不会影响其他通信系统的运行情况。
(3)微波宽带接入技术。这种技术适应的频率段主要是在28GHz的周围,并且采用的是蜂窝方式的网络布局,这样就可以有效地降低因为传输距离比较长而造成的损失和能源消耗。同时还可以有效地减少无线通信发射的功率,由此可知,这种通信接入技术比较应用于双向数据和图像传输。
2无线通信技术在电力系统的应用
2.1无线通信技术在电力输配电系统中的应用
在电力系统中,有关状态信息的搜集和控制命令的发送主要是将输变电无线与光纤集成通信系统放置在网络通信层;变电站的中心站主要是通过电力特种光缆与部署在输电线路杆塔上的远端单元进行相互的连接,其中中心站还可以通过链式自组网的模式来有效地实现它们之间的通信,并且可以通过利用输变电中心站设备和远端单元有效连接的无线与光纤集成通信系统,这样就可以实现底层终端信息的汇总和采集。此外,还可以利用远距离传输的方式将信息进行汇集到输变电系统主站中。在电力系统中运用输变电的时候,可以有效地采用分布式中心站与链式组网两者相互相结合的方式,这样就可以更加充分地利用输电线路光缆资源,从而就可以有效地实现光纤与无线组合网络之间的通信。由于在电力系统中应用配用电的时候,它需求不同,这样就需要促使系统具备智能化的链路传输能力,并且系统还需要具备流量实时监测技术,从而就可以有效地实现系统性能的动态感知。除此之外,在对系统进行实际的监控和测量的时候,要对流量控制技术进行具体的分析和研究,从而才能使链路传输能够有效地适应网络系统的变化。在配用电应用的过程中,需要很大的终端数量,同时由于基站系统承受的压力比较大。所以系统在运行的过程中就需要具备海量终端,并且还要有一定的接入能力。除此之外,在利用调度算法对基站系统进行运算中还需要对终端用户进行数据传输的监测。
2.2无线通信技术电力系统内部管理中的应用
在发电企业,内部管理工作是非常重要的,首先无线通信技术可以有效地实现远距离延伸,其中有一些管理人员在异地出差,这样就不能连接电厂设备的实际情况,他们可以通过利用SIM卡和GPRS网络掌握电厂大型设备,例如:高压变频器等的运行参数,这样就可以方便电厂内部的管理,也有效地解决了距离远的问题,同时也为电厂节约了资源和成本。然后电厂设备如果在运行的过程中,发生了以外的事故,可以起到应急的作用,保证电厂通信网络正常的运行。可以实现小范围的覆盖,对于电厂、变电站等区域,应该考虑采用无线通信系统进行语音网、数据网的无线覆盖,在业务流量需要不是特别大的地方应用这种方式,这样就减少了电厂线路的布局,从而也方便管理人员对电厂内部进行管理。
2.3无线通信技术在电力通信系统中的应用
无线通信网络的研究对象在电力系统中的发电、送电、变电、用电等等一切与电相关的信息和环节,而无线通信技术就是对这些环节的整合,从而保证发电行业的自动化发电和电力生产、输送都更加安全经济。同时无线通信技术可以采用高压骨干网架进行远距离、大容量以及低损耗输送,这样就促进了电力系统的可持续发展。除此之外还可以有效地实现不同单位、机构以及装置的实时监测。
2.4无线通信系统在电力终端系统中的应用
(1)在电力通信中,完成通信需要多个设备的参与,而这主要是由于设备的性质不同、功能不同,且所承担的任务也不同,因此,这就使得电力系统通信网络结构复杂,由于传统的通信已无法适应电力系统通信网络发展的要求,因此,把光纤通信作为介质,提高通信质量也就成为一种趋势。(2)电力通信与其它通信之间的区别在于,其不仅对传输信息质量要求高,而且在通信实时性方面有着较高要求。随着中国经济社会发展的转型升级,电网规模的扩大,通信信号的种类日渐繁杂,同样要求在电力系统通信领域应用光纤通信,不仅包括继电保护信号,也包括语音信号,通过应用光纤通信,可提高信号传输质量。(3)由于电力系统的覆盖范围广,在通信这一领域,对传输范围和抗冲击能力均有较高的要求,为了最大程度上降低通信的损耗,保证传输的质量,特别是长距离传输的质量,也要求应用光纤通信。
2电力系统中光纤通信的特点
光纤通信的特点,主要是相对于传统电力通信方式来说的,这些特点同时也可视为光纤通信的优点,主要包括以下几个方面:(1)电力系统中的光纤通信的通信容量相当大,一般情况下,一对光纤便足以满足上百路甚至上千路信息路径通过,同时在一根光缆中,含有几十根甚至上百根光纤纤芯。(2)众所周知,光纤的制作材料一般为硅或者玻璃,所以这也就意味着光纤制作的原料来源非常丰富,所以对于节约金属材料的使用量具有重要的意义。(3)在电力系统通信领域中,光纤通信的保密性良好,外界的电磁干扰不容易对其造成影响,同时光纤通信也不受雷击、潮湿等因素的影响。(4)电力系统用的光纤,主要是OPGW光缆,其敷设与地线一次性完成,比较简单。(5)由于光纤通信无感应性能,所以电力系统中的光纤通信不容易受到电位升高的影响,毫无疑问,光纤通信技术是电力通信系统最为理想的通信技术。
3光纤通信在电力系统中的应用领域
光纤通信在电力系统中主要在以下方面有应用:(1)电网监控与调度自动化。电网智能化和自动化程度提高,在电网中应用光纤通信技术成为一种常态,在监控与调度中的应用表现为:把监控传感器采集到的状态信息传输给上级系统,同时下达有关的指令。(2)在配网自动化中的应用。确保系统运行的安全性与可靠性,要求在电力系统通信领域应用光纤通信,在状态监测、调度管理与分层控制等方面具有重要的作用。此外,光纤通信在继电保护器中也有着应用,主要是用于保护电流纵差中的导引线、保护继电保护装置、智能变电站或控制室内的信号传输线等。
4光纤通信在电力系统中的发展前景
现阶段,光纤通信在快速发展的形势下,已经发展到第五代光纤通信阶段,在这一阶段的光纤通信技术,具有容量大、信号传输速率快等诸多的优点。随着技术的进度与经贸水平的提高,全球的信息化程度逐步提高,因此对光纤通信的通信距离、容量和速度等提出了更高的要求。电力系统中,光纤通信的发展前景包括下面几个方面:
4.1光纤传送网新技术
目前,传输40GE/100GE网络的技术中,主要包括两种技术:①40Gbit/s技术;②100Gbit/s技术。同时,这两种技术中又包含有编码调制技术、色散补偿技术与非线性抑制技术,以及OSNR保证对策等几个方面。在未来电力系统发展过程中,为有效保证长距离光纤通信的要求,应使用光纤传输网新技术,主要是FEC技术,也就是多种增强前向纠错技术,以及动态增益均衡技术、新型编码调制技术等,通过利用电均衡接收机、功率调整技术等,可实现增加容量的目的。而频分复用技术、偏振复用技术和波分复用技术等,在未来的电力系统通信中,毫无疑问将会有越来越广泛的应用。
4.2光纤通信接入网新技术
在现阶段,电力系统中光纤通信接入技术主要存在传输距离、分光比、业务支持能力等方面的差距。目前光纤接入技术包括EPON技术(即太无源光网络)、GPON技术(即基于I-TU-TG984标准的新宽带无源光网络),以及基于星型结构的以太网接入技术、基于树形拓扑的APON/BPON技术等。一般情况下,EPON技术的实现,相比于GPON技术来说要简单不少,但是对于多业务的支持能力不如GPON技术。而基于星型结构的光纤接入技术是在传统的以太网的基础上实现的电力系统光纤通信的接入技术,这种技术适宜在单用户对宽带的要求大的区域(此种光纤接入情况下只能对单个用户进行连接)或者具有丰富光纤资源的区域,因此,相对来说基于星型结构的光纤接入技术的范围比较窄,并不是主流光纤接入技术的发展方向。
4.3光纤通信光交换新技术
对于光网络来说,典型属性之一便是光交换。当前,基于实现特征与交换颗粒进行光交换技术的划分,可以分为OPS即光分组交换、OBS即光突发交换、OCS即光路/波长交换。OCS的交换单位是波长,具有易于实现,交换颗粒大的优势,然而宽带的利用率以及复用特性非常差;OPS的交换单位是分组,并且交换的颗粒较小,因此不易于实现,然而其宽带的利用率以及统计复用特性非常好。基于光路/波长光交换技术与光分组交换技术的OBS,相对来说较为容易实现,同时,宽带利用率和复用特性能较好,因此,在未来电力系统通信中光纤通信的应用中,OBS会处于主导位置。
5结语
1.1电力通信网络信息管理系统的设计原则
关于电力通信网络信息管理系统的设计原则需要从四个方面说起:第一,管理系统的网络化。从长远角度来说,在未来的发展当中,电力通信必然会和不同的体系结构整合在一起,因此需要提出统一的管理标准,而这也是目前来说最为可行的办法。将网络化管理的要求实现出来,最终实现不同的体系与统一的接口进行互联的目的。第二,综合的接入性。电力通信网络信息管理系统需要对不同规格的设备和产品具有较好的兼容功能,而且每一部分的任务都是以综合性的接入口为基准,实现通信设备的统一转换,最终以网络管理系统的高层次进行处理。第三,对功能和开放性的应用接口进行完善。要想制定好应用功能,那么就必须做好用户的需求分析,并且将其作为基础来将网络管理体系设计得丰富和完善。第四,系统的独立性和标准化。要想实现网络管理系统的统一,就必须要从设计的角度出发,在设计程序、设计风格和设计术语应用等方面要做到尽量统一,还要通过标准化的设计来应对不同的设备和系统的控制与操作。
1.2电力通信网络信息管理系统的功能与结构分析
将计算机信息技术发展的总体要求和技术的总体发展趋势作为基础,再和本研究的研究背景相结合,电力通信网络信息管理系统在当前科技框架之下,最好采用基于J2EE体系的架构来进行设计和开发,采用Java语言进行辅助编辑。因为Java具有十分强大的编程语言优势,而且它有众多的国内外大型厂商所参与制定的J2EE标准规范,因此在目前来说,Java也是很多大中型企业的首选应用。不单单可以为电力通信网络信息管理系统提供更加稳定的性能支持,而且还能够为其提供更好的处理性能。J2EE应用服务器和Java语言Web的开发和应用当中,为其更好地发挥和使用提供了很多可复用性、标准性、开放性和可管理性等跨平台功能特性。因此,给予J2EE和Java进行研发和设计,能够开发出更多的一次研发多次运行的系统。在此期间,J2EE也为其提供了更加先进和强大的多层架构支持。此外,对于系统性能和方案设计来说,需求分析也具有十分重要的作用。在对功能配备和设备配置的时候,一定要本着合理性的原则来进行。对网络进行设计的时候,一定要摆脱那种传统式的对网络的依赖,在设计系统的时候,一定要做到层次鲜明清晰。从功能角度分析方面来说,一个优秀的网络系统需要具备三个方面的内容,分别是对故障的鉴定和判断,对异常运行做出检测和记录,对相应故障和反应故障进行管理;对设备的性能做出分析、检测和控制;合理做好物理设备上的资源管理和资源配置工作。
2电力通信网络信息管理系统的实现
2.1电力通信网络信息管理系统的建立
可以从三个方面来对电力通信网络信息管理系统的建立进行阐述:
(1)进行设计前期的分析。
对该系统进行设计需要将满足客户的要求当做前提,在此基础上对系统良好的开放性和稳定性做出设计,还要保证系统具有一定的安全性。在设计当中需要考虑对相关的技术手段的运用,对于在系统当中必然会出现的数据、表格和文字等作出处理,需要选择较为强大的数据处理功能和数据处理软件来进行。
(2)建立数据模型。
对数据模型进行监理可以说更加有益于大量的数据信息的管理,它能够将抽象的数据具体化和形象化,在某种程度上能够将管理的效率提升起来,也可以提高操作的可行性。关于数据模型主要分为两个部分:一部分是利用DBMS进行电路走势的分析,可以使相关工作人员对空间因素更好地掌握;另一部分是对线路的具置进行掌握,这种模型可以以几何图形的形式存在,运用起来更加高效便捷。
(3)对数据库的建立。
在对数据库进行建立之前,需要花费大量的工作在通信信息的收集和整理上,在具体的建立过程当中,需要对系统将来的发展做出考虑,因此就必须做好子网的联网设计工作,而且在数据库开始建立和设计之初就应该对图层的阶层关系做出准确而又清晰的把握,最好能够了解各个阶层之间的相互联系和相互关系,以便于以后在大的通信网络里更好地实现。
2.2电力通信网络信息管理系统的体系结构
对于一般的网络管理系统来说,主要分为分布式和主从式两种。主从式的结构主要是通过后台来统一调配和管理设备的电路的,操作管理相对来说更为高度集中,但是却在其间存在着很多的问题。举例来说,信息资源在这种结构之下就会显得非常拙劣,这种结构采用集中式的管理,对处理的难度起到了一个施压的作用,会使其工作难度加大。此外实时监测也存在着很大的问题,具体来说主要是效率比较低下,丧失了实时监测的意义所在,因为后台的集中处理会使网络数据产生阻塞,于是链路和节点就较多了,最终也就产生了这种情况。在这种情况之下,假使后台出现了问题,那么整个系统很可能会面临着失去控制中心的风险,此外这种结构的升级性能较差,服务类型也不全面。相比之下,分布式的结构就存在着很大的优势,因为它具有很优秀的管理配置模式,其模式会将中央平台作为中心,再逐层将数据的控制功能剥离出来,然后再配置到设备当中。这样一来,该系统和各个管理级别就能够通过协议来进行相互之间的联系,从而构成一个完整的系统,因此这种结构方式是值得选择的。在此之间,能够有效地将电力通信的电路和设备数据的处理实现对应,在设计管理站的时候需要根据不同的操作环境来进行,实质上它是一个介于系统和操作者之间的界面,起到了一个介质的作用。而信息库是用来储存信息的,管理协议则对和管理者之间起到了一个连接的作用,而且还能够对众多的内容做出协定,比如信息的通信方式、数据的储存方式,还有信息数据的处理方法等。
3结语
1.1应对蓄电池的失效以及相应的运行维护
不论是在中心机房还是直流系统等情况下,蓄电池组都发挥着自己的功效。我们都知道,在平常蓄电池组都是处于在线的浮充电备用状态,但是一旦交流失电或者是出现充电机故障的情况,蓄电池组则必须立即应对,为程控交换机和其他的直流负荷提供所需要的能量,在这之后,可逐步恢复由油机进行供电。从这里可以看出,在平常没有有效运用于基站运行的蓄电池,在发生事故的时候,却能够摇身一变成为唯一的负荷能量提供者。而假设如此重要的蓄电池出现了失效的情况,基站的其他设备便会因此难以运行而最终造成通信发生中断,从而给我们造成重大的损失。由于蓄电池类型不同,各自的失效机理也有着巨大差别。因此,面对不同类型蓄电池的失效机理,我们要对其进行相应的维护管理。
1.2常见的蓄电池的测试方式对比
虽说在一般情况下,高频开关电源设备的主机维护需求相对是比较小的,但是由于其具有的特殊性和重要性,我们也应该根据相关的一些维护规章的要求,对蓄电池进行应有的检查,其中包括每月的、每季度的以及年度的保养和检查。在平常的检查中,维护运行人员则要保持蓄电池的清洁,检查是否有过热的痕迹,并且对其电压进行测量,一旦发现有与规定电压有所差别时,便应该做出均衡充电等的及时反应。在现今社会,各种不同的蓄电池维护方法都被不断地发展并运用于我们的实际生活当中,其中包括了电导测试(内阻测试)、核对性放电测试、蓄电池网络化在线监测测量技术等,而这几种测量技术中又有着不同的优缺点。
(1)电导测试(内阻测试)
顾名思义,电导测试是通过利用交流或直流的信号电源,来对蓄电池进行简短的电导测试或者内阻测试。它的优点是测试所需时间短。相应的其缺点是在反馈蓄电池当前容量时有所欠缺,并且要求较高精度的测试仪器仪表以及更好的蓄电池运行环境。该技术在国内外的邮电、通信以及电力等行业运用较广。
(2)核对性放电测试
当蓄电池有多大容量,便能够相应地放出多大容量,这就是核对性放电测试--能够更好地真实地反映出来目前蓄电池的实际容量。放电测试过程中需要用蓄电池目前容量的百分之十的电流来对蓄电池恒流进行10h放电。核对性放电测试的优点是能够准确测量,并且在维护方面没有太大的需求。然而在测试过程中却要求观察充电过程并且进行放电观察。此项技术在邮电、铁路等方面运行较广。
(3)蓄电池网络化在线监测
蓄电池网络化在线监测是一项能够通过远端监控蓄电池的技术,只需要利用目前较为方便成熟的技术,便能够对蓄电池进行监控。如果想要达成远端遥控放电,只需要再加装上放电模块(负荷)。不过这项技术的缺点是需要在所有蓄电池上都加装系统。该技术也是在邮电和铁路方面使用较广。
2.针对蓄电池的维护提出的建议
2.1针对蓄电池系统的维护提出的建议
(1)以下情况应该避免发生:蓄电池长期搁置不用;蓄电池过放电;长期浮充却不放电;选择的充电机波纹过大。
(2)建立对应的温度补偿功能(蓄电池浮充电压随温度上升而下降,-2~+4mV/℃)。
(3)及时为使用过的蓄电池充电。
2.2关于发现和处理老化蓄电池的建议
(1)关于发现老化蓄电池的建议:①对电池的浮充电压进行监测;②对电池内阻的变化进行监测。
(2)关于处理老化蓄电池的建议:①对浮充电压长期处于偏低状态的蓄电池进行补充充电;②对老化蓄电池进行及时的监测,如果发现内阻偏大或者严重偏大,以及电压出现巨大问题的老化蓄电池,要进行及时的应急处理,例如活化或者更换。
2.3关于阀控式铅酸蓄电池如何维护的建议
(1)应该对以下项目进行定期的监测:①蓄电池电压;②连接处是否有松动;③电池壳体是否合格。
(2)应该对出现以下情况的电池充电:①浮充电压有2只以上低于2.18V;②放出20%以上额定容量;③全浮充使用时间达一个季度;④闲置不用超过一个季度。
(3)虽然蓄电池的容量和内阻并没有什么精确的相应联系。但我们可以通过对比上次的测量结果或者出厂时厂家提供的数据来进行比较,通过测量蓄电池的内阻,从而能够观察其离散性。如若出现了内阻或者离散型较为不正常的电池,更要特别注意处理。
(4)在蓄电池的核对性放电方面,应该保持一年一次的核对性额定容量的放电测试,如若发现了蓄电池组有故障,针对其再进行额外的测试。
(5)如若情况允许,则尽量选用多组蓄电池。或者是通过把大的蓄电池由一拆分为二的方法,并且进行电联。这样不仅能够更好地促进稳定安全性,并且并不会增加预算。
3.结语
电力系统通信电源的设计目标是能够为电力通信系统提供高效,稳定的能源,所以,电力系统通信电源技术将会从提高系统的安全性能和稳定性能着手,在提高供电性能、高效节能,实现网络化,数字化管理等方面快速发展。在高效节能方面,高频变化仍是电源技术发展的主流,通过功率集成技术来简化电力系统通信电源的结构,使其向模块化、集成化的方向发展,在降低损耗的同时提高供电效率。然而,随着互联网的普及和计算机的不断进步,网络化管理和数字化的控制也日渐成为通信电源发展的重要趋势。所以,保护通信互联网终端的电源设备必须具备数据处理和网络通信能力。此外,采用全数字化控制技术的电源的自我监控能力普遍增强,大大提高了设备的可靠性和对用户的适应性。
2.电力系统通信电源的日常维护
2.1通信电源设备的日常维护为通信系统电源建立起一套完善可行的运行维护制度是很必要的,这样就可以保证做到定期对设备进行检测,及时发现潜在的隐患,防患于未然。要定期检查设备的电器连接情况,尤其是重要负载与空气开关的连接和蓄电池连接,空气开关之间的连接,这些都极为重要。同时也应该定期检查交流配电设备的继电器开关、电表指示等。除了每次的定期检查,平时的日常巡查也是必要的。每次巡查的时候,应该仔细检查接地电缆和机架的连接是否牢固,检查电机房的接地电阻是否符合规定要求。除此之外,还要检查各模块的负载情况,在现场就要测量整个电力系统通信电源的电压,负载电流,交流电的电压和蓄电池的温度,环境温度和湿度以及检查告警功能等等。
2.2通信电源蓄电池的日常维护蓄电池是保证直流系统或者是交流系统能够不间断供电重要设备,是整个系统中最为关键的重要组成部分。日常对蓄电池的维护同样也是不能松懈的。对于蓄电池的日常维护,应该要先测出电池的电压,以此为主,用来发现各个电池间的电压是否均匀,并检查出有没有落后的电池。为了保证电池能够安全使用,要使电池在浮充状态下保持满容量,如果电池失去了容量,即使对前端的交流高低压系统、整流系统等配置管理得再好,都可能造成失电而引致通信故障。所以,我们在日常的维护工作中应改注意以下事项。蓄电池不能够过分放电,即使放电后也要及时的充电,同时也应该注意不能经常性的出现充电不足的现象,也不可以经常性的过分充电,这些行为都会使蓄电池受到损坏。对于阀控的密封电池,日常检测时则要注意检测极柱及周围安全阀是否有酸雾出现,连接情况是否松动和腐蚀,壳体是不是发生渗漏和变形。除了上述所提到了注意事项外,蓄电池也应该要保持清洁干净,室内外要保持干燥,通风情况良好,最好能够避免阳光直接照射到蓄电池本身。同时,值得注意的是,在存放蓄电池的室内不可以存放易燃,易爆和容易腐蚀的物品,更加不能将明火带入室内,以免造成不必要的伤害,甚至是引起火灾。在做好以上注意事项的基础上,平时注意不再蓄电池上放置任何金属物品,避免发生短路现象。并且还要做好日常维护,维修的记录。只有做到每个细节都层层把关,一丝不苟,才能保证电力系统通信电源能正常工作,提供高效的服务,带来可观的经济效益。
3.结语
1.1技术特点MSTP的出现迎合了电力二次系统针对各类通信业务(如安稳系统、继电保护、远动通信、电力系统信息化等)接入和动态带宽处理的需要。基于SDH系统,MSTP具备集成对多种业务(主要是时分多工TDM、以太网业务和ATM业务)支持的能力,实现了对城域网业务的汇聚。其技术特点大致有以下几点:1)延续了SDH技术的诸多优势:如具有杰出的网络倒换保护性能和良好的TDM信号业务支持能力,能很好地兼容现有的TDM信号业务。2)对多种协议的支持。对多种协议支持以增强网络边界智能硬件性能,通过对各种业务的交换、聚合或路由划分来筛取不同种类的传输流,使MSTP对多种业务支持的能力得以实现。3)可支持波分复用(WavelengthDivisionMulti⁃plexing,WDM)扩展。MSTP的信号类型随所处网络位置的变化而发生变化,如MSTP设备被置于核心层时,信号类型最低可为OC-48,并能扩展为密集波分复用信号;当MSTP被置于汇聚层和接入层时,其信号类型则变为OC-3/OC-12,且可在必要时扩展至支持密集波分复用(DenseWavelengthDivisionMultiplexing,DWDM)的OC-48。4)支持动态带宽的分配。MSTP具备支持虚级联和级联的功能,因此MSTP可对所用带宽进行灵活多样的分配,其通常的带宽可分配颗粒为2Mbit/s,某些厂商甚至能将带宽可分配颗粒调整至576kbit/s。基于此,MSTP不但可以满足对SDH帧中的列级别以上带宽的分配需求,还能通过支持其链路容量调整机制(LinkCapacityAdjustmentScheme,LCAS)技术,动态地配置、调整链路带宽。5)提供综合网络管理功能。拥有对不同协议层的综合管理能力,有利于MSTP管理和维护网络[5-6]。MSTP管理涵盖整个网络,无论是对网内性能的告警监控还是对业务的配置,均基于直接为用户提供的网络业务。配置MSTP网管上的业务时,仅需要配置好网络业务的源、宿及相应的时隙、端口等参数,网络业务便能快速自动生成,避免传统的SDH系统需逐个对网元相关参数进行设置的繁复操作,进而实现业务的快速开通。此外MSTP还具备一些非电力通信需要但被运营商广泛使用的功能,如计费和带宽租用等。
1.2MSTP技术在电力通信中的应用广西某市地区电力通信网涵盖网内20多个变电站,每个变电站建立一个网元节点,组网采用产自UT斯达康公司的NetRing系列光传输设备,该系列设备均具有MSTP特性。其中NetRing10000-(IV2)系列设备主要针对大型网络的骨干网和城域核心层需求设计,是高集成STM-1/4/16/64(155M/622M/2.5G/10G)多业务传输平台,具有大容量高、低阶交叉连接矩阵,分插复用功能及Ethernet/ATM信元交换功能,最大交叉连接能力为512×512VC-4,4032×4032VC-12。此外该设备可按实际需要,灵活配置成2.5G或l0G,可平滑地由2.5G升级到10G。基于NetRing传输平台,该市地区电力通信网为电力系统提供了多条符合实际生产管理和管理信息需求的通道,如地区级综合数据网通道,承载的业务包括:综合信息化管理、电力统一通信、电视电话视频会议系统、营业所及变电站在线视频监控;地区调度数据网电力调度自动化、电能在线计费、电网一体化运行智能、VoIP(VoiceoverInternetProtocol)调度电话等。保障了该市地调与各变电站之间、发电厂之间及厂站间的各类专线信号;供电局与各下属二层机构之间的专线信号的信息传递与交互。
2MSTP设备的日常维护与故障分析
2.1MSTP设备的日常维护作为一项综合性较强的工作,MSTP光传输系统的日常维护项目很多,例如对光缆设备的定时巡视记录、设备电源清洁保养、配线架端子测试等。下面是MSTP设备日常维护的一些简单但值得注意的要求:1)供电电压不可超限。传输设备可正常工作的直流电压范围是-57.6~-38.4V,即MSTP设备的直流电压允许范围为-48±20%V。2)保证设备的运行环境。通常MSTP设备的允许机房温度是0~40℃,但根据实践经验,通信机房的建议保持温度约为25℃[7]。3)设备应按照行业规范采用三地联合接地,综合通信大楼的接地电阻要求小于1Ω,普通变电站内通信点接地电阻要求小于5Ω,否则雷击打坏设备的概率会大大增加;另外接地线的长度最好小于30m,并且尽可能短;两个接地体在最近点用导线短接。4)禁止小角度弯折尾纤,避免经常打开光连接器。5)网管、本地维护终端(LocalCraftTerminal,LCT)用电脑应专机专用,严禁挪作他用,以免电脑中毒瘫痪。6)插入单板时,先将单板的上下边沿与机框的左右导槽对齐,然后沿左右导槽慢慢推进单板,直至其刚好嵌入母板。更换单板时,在更换前要确认待换单板与在用单板型号一致。
2.2MSTP设备的故障分析高效地开展MSTP设备维护工作是电力通信网络安全稳定运行的保障。但由于网区内各个站点之间、厂站之间的距离较远,因此能否准确分析并定位故障,是MSTP设备故障处理中极为关键的切入点。与传统SDH故障定位方法一样,MSTP设备的故障定位也遵循“先系统,后单站;先线缆,后设备;先设备,后单板;先线路,后支路”的准则。通信检修人员可结合设备网管、光时域反射仪(OpticalTimeDomainReflectometer,OTDR)等测试仪表,充分利用性能事件、环回、在线检测帧等技术手段,分步、有计划地对MSTP设备故障定位。在故障出现初期,先分析告警的可能成因、相关业务流向及性能事件,初步判断后,再逐步缩小故障点的范围;然后通过分别对支路板和光板进行逐段环回(注意设备参照点)的方式,排除外部干扰,把故障点定位到单站,接着到单板。在MSTP设备故障处理过程中,首先应该排查SDH层面的问题,较为常用的SDH故障定位方法有告警性能分析法、仪表测试法、环回测试法及替换法等。1)告警性能分析法。该方法借助网管捕获有关的性能及告警信息,定位潜在故障。检修人员通过网管可以获得每一个站、每一块单板故障的详细情况;全网设备的故障状况,以及业务两端间的告警信号;告警信号的产生、结束时间和所有历史告警信息。例如检查网管时如果发现网管报TU-AIS和TU-LOP等SDH层告警,就可初步判定单板硬件有问题,需准备更换故障板件。2)仪表测试法。该方法需要采用各种仪表(如2M误码仪、万用表、光源、光功率计、以太网测试仪、SDH分析仪等)检查传输设备的故障点。如:用2M误码仪检测业务信号通断情况、误码数量;用光源、光功率计测试相关设备的收发光状况;用万用表检测设备的直流供电电压,判断是否存在电压越限影响设备运行的问题。用仪表定位故障的方法很有说服力,但前提是故障现场需要备有相关的仪器仪表。3)环回测试法。该方法使信号在网元的Tx、Rx端口间环回流转,藉此定位故障。环回测试法的两种典型方法:硬件环回和软件环回。硬件环回又分光接口、电接口两种,其中光接口的硬件环回,用尾纤或借助光纤配线架(OpticalDistributionFrame,ODF)配线端子,使光接口板的Tx端口和Rx端口互联;电接口的硬件环回,用电缆线或经由数字配线架(DigitalDistributionFrame,DDF)配线端子,将电接口板的Tx端口与Rx端口连在一起。软件环回则是指通过网管下发命令环回某一网元中的某一单板,又可分为内环回和外环回两种,如图2、图3所示。软环回的对象相对较多,包括电支路、光支路、光线路等。在分段自环设备的各种不同位置点后,便可将故障点从纷繁的信息中剥离出来,继而排除故障。值得注意的是,硬件环回光板时必须视具体情况在光板加入适当衰耗,以免损坏光板4)替换法。该方法是使用正常部件去替换疑似异常工作部件,以达到定位、排除故障的目的。这里的部件,是指与设备相关的物品,如线缆、单板、模块甚至于芯片等。这种方法在排除传输外部设备问题时应用较多,当故障被定位到单站后,替换法则更多地用于排除站内设备单板或模块的问题。通过上述方法排除SDH层面的问题后,检修人员可以转入以太网层面对故障进行定位。实践中一般采取环回手段+Ping和测试帧定位以太网层面的故障。例如在本端MSTP设备以太网单板端口Ping对端路由器或者交换机的IP地址,若能Ping通,则可基本确认本端设备以太网层无异常,Ping包的格式有很多种,常用的Ping包格式如下:pingxxx.xxx.xxx.xxx-11000-t11000表示数据包的包长是1000,-t即持续不断Ping包。其中的包长可视具体情况设定,在测试时不妨同时多开几个Ping窗口来尝试。如果Ping不通,则考虑检查线缆、网线、设备等硬件工作正常与否,在排除硬件方面的问题后,应在网管或LCT排查网元上的端口工作模式的设置、TAG属性、封装协议的匹配、虚容器(VisualContainer,VC)通道捆绑情况、端口VLANID的设置等,假如这些设置均被正确配置,但网络还是Ping不通,此时就应考虑检查两端站点路由器循环冗余校验码(CyclicRedundan⁃cyCheck,CRC)的配置情况。较常见的,如本端设CRC校验,对端不设CRC校验,也会造成Ping不通。但是即便Ping包正常也不可轻易认为本端MSTP设备以太网层无异常,因为当端口工作模式配置不正确时,也可能出现小流量Ping包能通过但大流量Ping包存在时延或丢包的现象。此时应考虑查验本端站点与对端站点设备的使能流控设置一致与否,两端设置不一致的情况下,大流量Ping包很可能存在丢包现象,故建议双方都关闭流控。此外这种现象也可能与带宽配置不够有关,带宽配置不够有用户业务量小但突发业务比较大或用户业务量大两种情况。带宽是否充足可通过多绑定几个2Mbit/s的方法来验证。针对基于多协议标记交换(Multi-ProtocolLa⁃belSwitching,MPLS)的报文类型或基于VLAN的报文类型的故障业务,最有效的手段是借助以太网性能分析仪辅助定位故障点,如果现场没有相关的测试仪表,则可借助“模拟发包”类的软件,使用计算机网卡模拟设备发送业务报文的办法来定位故障点。当涉及用户内网时,tracert也是一个非常实用的命令,其可用于圈定IP数据包访问目标所采取的路径。通过跟踪数据包的访问路径,检修人员可以了解数据走向,缩小故障范围,有助于故障信息的定位和处理。
3结语
首先,在进行风力发电场通信系统的系统设计过程之中,要严格按照电力系统设计的基本原则完成风力发电场内部各种基本设计,并在完成风力发电场的基本设计的过程之后,再进行相应的风力发电场通信系统设计;其次,在进行风力发电场通信系统设计的过程之中,要充分的分析风力发电场在通信系统之中扮演的角色,并根据相应的电信业务的计算,对风力发电场的通信规模进行设计,并对风力发电场的通信容量进行设计,规划好风力发电场通信系统;然后,在进行风力发电场通信系统设计的过程之中,要充分的考虑到如何进行区域通信网络共享,帮助风力发电场充分的利用到区域的通信资源;最后,在进行风力发电场的电力通信建设方案的设计和技术方案的规划的过程之中,要充分考虑到风力发电场的实际通信需求,与此同时,还要充分考虑到风力发电场的远期发展的情况,提出可行的通信设计方案(一般情况下至少要设计出两套较为合理的方案),在进行设备的选型和购买,完成风力发电场的电力通信建设过程。
2风力发电场通信系统设计方案
2.1风力发电场通信系统光纤通信设计方案。风力发电场通信系统光纤通信设计的过程之中,要根据风力发电场的实际施工环境进行对光缆类型的选择。例如,在进行风力发电场电力通信系统的架设光缆的选择的过程之中,如果在线路架下方有地线就需要选择OPGW光缆,如果在线路架下方没有地线,则需要选取ADSS光缆。在进行电力通信系统的光缆数量的确定的过程之中,要根据电力通信系统的传输长度以及针对电力通信系统的线路保护的原则来进行选择。例如,如果电力通信系统的线路长度如果是在六十千米之下,还需要对电力通信系统之中对两个相互独立的传输通道进行保护,就需要为电力通信系统建立两条光缆。如果如果电力通信系统的线路长度如果是在六十千米以上,只需要对电力通信系统之中的一条传输通道进行保护,就只需要架设一条光缆。在进行风力发电场通信系统光纤的配置的设计过程之中,也要针对实际的情况进行对风力发电场通信系统光纤的配置进行设计。例如,如果进行电力通信系统的线路保护过程之中涉及到了两个光纤的通行通道的,就需要使用两个2Mbit/s的光纤专用通道来进行设计。如果进行电力通信系统的线路保护过程之中只涉及到了一个光纤的通行通道的,就只需要使用一个2Mbit/s的光纤专用通道来进行设计。与此同时,在进行完光缆的设计过程之中,后续的设备选型要满足光纤选择的需求。
2.2风力发电场通信系统载波通信设计方案。在进行风力发电场通信系统线路的设计过程之中,要充分考虑到线路的实际高频保护问题,具体的来说,目前的高压线路主要有500千伏、220千伏、110千伏、35千伏这几种,这就需要针对不同的电压数值进行风力发电场通信系统载波通信设计,并专门规划好相应的载波通道。在载波通道的开通过程之中,要充分的考虑到风力发电场的内部的载波现状,保证所选取的载波频率的筛选不会干扰的风力发电场通信系统载波通信的正常运行,与此同时,还要求所选的载波机的型号和风力发电场通信系统的设备选型保持一致。
2.3风力发电场场内通信系统设计。所谓风力发电场场内通信系统设计,主要满足的是风力发电场内部的各个用来发电的风力发电机机组与风力发电场的升压站监控主机之间的通信连接系统的功能的发挥。在进行设计的过程之中,要满足以下几个方面的设计原则:首先,要保证风力发电场的升压站监控主机可以有效的对用来发电的风力发电机机组进行控制,还需要使用光缆将风力发电机机组和升压站监控主机有效的连接在一起,保证升压站监控主机对风力发电机机组的实时监控;其次,进行设计的连接用来发电的风力发电机机组与风力发电场的升压站监控主机之间的光缆要满足相应的通信频率和载波频率的要求;然后,为了保证信息传输的可靠性,还要求架设相应的通信支路,并杜绝这些通信支路之间的相互干扰;再者,风电场内通信光缆的埋设方式应当采用直埋敷设的埋设方式,当风力发电场内部的架空线路走向与风力发电场的通信电缆的走向相同的时候,就可以有效的利用风力发电场内部的架空线路同杆架设的架设方式,以便于有效的减少电缆沟的施工,与此同时,电缆一般情况下要选用铠装电缆;最后,要保证好通信设备的接地操作,保证通信过程的安全运行。
3结束语
1光纤通道的配置方式
电力系统主要是由发电厂、输变电系统、配电系统等共同组成。而在系统中,信息的采集和传输是其正常运行的关键因素,因此光纤通信技术在电力系统中扮演着越来越重要的角色。双光纤通信的组网方式极其灵活,大致分为树形、星型、链型、网状、环状等。按照智能电网配电自动化系统的特点,光纤网通常采用环型网或者树型环型相结合的网络,并通过与计算机的连接实现数据资源共享。由于环路节点较多,为防止光缆设备故障、通讯中断等通信事故出现,大多数企业采用双光纤环路自愈网,并配置具有自愈功能和自动切换的光纤收发器。当光缆出现故障时,断点两侧的光纤设备通过双环路切换器构成新的光纤路径,实现自愈功能,为电网的运行调度和继电保护系统保驾护航。
2光纤通信有利于保护输电线路
供电单位作为一个特殊的部门,对电网可靠性的要求极高,因此对继电保护的要求也越来越高。当系统发生故障时要求必须做出及时高效的反应,快速切除,及时解决故障,绝不允许出现任何纰漏,继电保护发生拒动的现象更是不被允许的。另一保护电网的有效方法是全线速动的纵联保护,其保护作用的发挥程度直接关系到高压电网的稳定运行。当出现故障时,高压线路纵联保护两端的保护装置通过故障信息的交换,可以甄别出是本线路故障还是区外故障,并根据不同的故障采取不同的方法。在遇到区外故障时不动作,在甄别出是区内故障时,快速反应及时切除故障以达到保护的作用。光纤抗干扰性,容量大的特点为电流差动保护的应用提供了强大的技术支持。
3光纤通信在电网中的发展前景
随着经济、技术的发展,光纤通信技术、计算机技术也越来越多的应用到了现代生产生活中。光纤通信讯技术在电力系统中的应用也越来越深入广泛,电力系统调度自动化已经成为了一种必然发展趋势。通过数字传输手段传递电量讯号、用光纤作为传输媒介取代金属电缆共同构成了网络通信的二次系统,这种网络二次系统成为电力系统的未来发展趋势。自动化技术的发展是智能化电力系统的基础。而智能化电力系统则是对信息传输全程实现数字化,这对光纤通信技术提出了更高的要求。光纤通信技术也应积极创新,与时俱进,实现应用上的平稳发展,并对重点技术及科技难题进行逐一突破、逐步完善。电网现代化要求调度自动化进一步加强,要求人力从繁复的劳动中解放出来。调度自动化有利于优化配电网络结构,简化保护和运营程序,提高供电的可靠性和电能质量。作为新的传输媒介,将光纤运用到电力通信系统中,并依据电力系统自身特点对其进行科学的改进,可以提高电力系统各个组成部分的运转能力,也可以提高电力系统运转的稳定性、安全性和可靠性。随着光纤的不断发展进步,电力通信会越来越完善,光纤在电力系统中的应用也会越来越深化。
4小结