欢迎访问爱发表,线上期刊服务咨询

四边形教案8篇

时间:2022-11-18 17:53:48

绪论:在寻找写作灵感吗?爱发表网为您精选了8篇四边形教案,愿这些内容能够启迪您的思维,激发您的创作热情,欢迎您的阅读与分享!

四边形教案

篇1

一、教材分析

1.从在教材中的地位与作用来看

“平行四边形的判别”紧接“平行四边形的性质”一节.综观整个初中平面几何教材,它是在学生掌握了平行线、三角形及简单图形的平移和旋转等平面几何知识,并且具备了初步的观察、操作等活动经验的基础上讲授的.这一节课既是前面所学知识的继续,又是后面学习菱形、矩形及正方形等知识的基础,起着承前启后的作用.

2.从教材编写角度看

教材从学生年龄特征、文化知识的实际水平出发,先让学生动手做,动脑思考,然后与同伴交流、探索、总结归纳,升华得出平行四边形的判别方法,再用这些方法去对四边形是否是平行四边形进行判定.这样的安排使学生更易于接受抽象的定理,并能在整个教学过程中真正享受到探索的乐趣.

3.教学重、难点

重点:平行四边形的判别方法.

难点:判别方法的灵活运用.

4.教学目标

知识目标:

经历并了解平行四边形判别方法的探索过程,使学生逐步掌握说理的基本方法;探索并掌握平行四边形的四种判别方法,能根据判别方法进行有关的应用.

能力目标:

在探索过程中发展学生的合理推理意识、主动探究的习惯.

德育目标:

体验数学活动来源于生活又服务于生活,提高学生的学习兴趣.

二、教法分析

针对本节课的特点,我准备采用“创设情境――观察探索――总结归纳――知识运用”为主线的教学方法.

在教学过程中引导学生通过观察、思考、探索、交流获得知识,形成技能,在教学过程中注意创设思维情境,坚持二主方针(学生为主体,教师为主导),让学生在教师的引导下自始至终处于一种积极思维、主动探究的学习状态.使课堂洋溢着轻松和谐的气氛、探索进取的气氛,而教师在其中当好课堂教学的组织者、决策者、创造者和参与者.同时借助多媒体进行演示,以增加课堂容量和教学的直观性.

三、学法指导

在本节课的教学中要帮助学生学会运用观察、分析、比较、归纳、概括等方法,得出解决问题的方法,使传授知识和培养能力融为一体,使学生不仅学到科学探究的方法,而且体验到探究的甘苦,领会到成功的喜悦.

四、教学过程

1.引入新课

在复习了平行四边形定义和性质之后创设教学情景.(例如装潢店要招聘店员,老板出了这样一道考题:“一位顾客要一张平行四边形的玻璃,你能否利用手头的工具制作一个平行四边形吗?并说明这张玻璃符合顾客要求的道理.”你能为招聘人员设计一个方案吗?)此问题可先提示学生用定义,但用定义不好测量时是否还有别的方法,这样就给学生提出一个问题:也就是说除了用定义外,还可以用什么样的方法去判定一个四边形是平行四边形呢?

[设计意图:从实际问题引入新课, 提出具有启发性的问题,能够调动学生的积极思维,激起学生的学习欲望.著名教育家苏霍姆林斯基曾经说过:如果教师不想方设法使学生进入情绪高昂和智力振奋的内心状态,就急于传授知识,那么这种知识只能使人产生冷漠的态度,而不动感情的脑力劳动就会带来疲惫.]

2.判别方法的探索

提出问题后我安排了如下三组探索题:

探索一,将两根木条AC,BD的中点重叠,并用钉子固定,则四边形ABCD就是平行四边形.你能说出这种方法的道理吗?并与同伴交流.

探索二,将两根同样长的木条AB,CD平行放置,再用木条AD,BC加固,则四边形ABCD就是平行四边形.你能说出这种方法的道理吗?与同伴交流.

探索三,用两根长40cm的木条和两根长30cm的木条作为四边形的四条边,能否拼成一个平行四边形?与同伴进行交流.

这三个问题,让学生分小组展开讨论,此时课堂上营造一种和谐、热烈的气氛,在小组讨论中教师可鼓励学生用度量、旋转、证三角形全等等多种方法来证明所得四边形是平行四边形.教师还要指导学生进行总结、归纳,在探索过程中鼓励学生力求寻找多种方法来解决问题,同时还可组织组与组之间的评比,这样也能培养他们的竞争意识.然后每组由一名学生代表发言,让学生锻炼自己的语言表达能力,让学生的个性得到充分的展示.最后教师和大家一起总结归纳,得出平行四边形的判别方法:

两组对边分别平行的四边形是平行四边形;

两组对边分别相等的四边形是平行四边形;

一组对边平行且相等的四边形是平行四边形;

两条对角线互相平分的四边形是平行四边形.

[设计意图:确保学生主体作用得到充分发挥,让学生从被动学习到主动学习、自主学习,让学生从接受知识到探究知识,从个人学习到合作交流.这样的活动教学将会真正焕发出课堂教学的活力,从而在课堂教学中注入一种新课程理念:给学生一个空间,让他们自己往前走;给学生一个时间,让他们自己去安排;给学生一个问题,让他们自己去找答案;给学生一个条件,让他们自己去锻炼;给学生一个题目,让他们自己去创造;给学生一个机遇,让他们自己去抓住.]

3.挑战自我

在四边形ABCD中,若分别给出四个条件: AB∥CD;AD=BC;∠A=∠C;AD∥ BC.现在,以其中的两个为一组,能识别四边形ABCD为平行四边形的条件是________.(只填序号.)

[设计意图:此题为条件型开放题,答案不唯一.设计此题的目的是:培养学生的发散思维,力求使学生不停留在重复与模仿的阶段.]

4.实际应用

生物实验室有一块平行四边形的玻璃片,在做生物实验时,小华一不小心碰碎了一部分.谁有没有办法把原来的平行四边形重新画出来?(A,B,C为三顶点,即找出第4个顶点D.)

[设计意图:目的是让学生了解数学问题来源于实际,同时又应用于实际,让学生充分体验经历困难探索结果而轻松用于实际的快乐感觉.]

五、布置作业

1.课本P92习题4.4:1、2.

篇2

平行四边形的性质(第一课时)公安县胡家场中学刘小平教学内容:北师大版义务教育课程标准实验教科书《数学》(八年级上册),第四章四边形性质探索第一节平行四边形的性质。教学目标:[知识目标]了解和掌握平行四边形的有关概念和性质。[能力目标]经历探索平行四边形有关概念和性质的过程,经历数学建模的过程,培养学生的动手能力、观察能力及推理能力。[情感目标]在探究的过程中发展学生的探究意识、创新精神和合作交流的习惯,培养学生用数学的意识和严谨的科学态度。教学重点:探究平行四边形的概念及对边相等、对角相等的性质。教学难点:平行四边形性质的探究。教学用具:CAI课件、剪刀、学生用三角板、透明胶布等。教学过程:一、创设情境播放投影:让学生走进央视栏目“开心辞典”节目现场,观察图形。[学生活动]观看影片后抢答问题:你看到了哪些常见的几何图形?师:是的,各式各样的图案装点着我们的生活,使我们生活的这个世界变得如此美丽,那么,请你用两个相同的300的三角板,看能拼出哪些图案?[学生活动]小组合作交流,拼出下列图案:

师:同学们所拼的图形中,除了有我们刚学过的三角形,还有很多四边形,今天,我们一起来研究四边形,探索四边形的性质。二、合作交流,探求新知1、问题(1):你能用同样的方法得到四边形的纸片吗?[教师活动]演示课件,将一张纸对折,剪下两个叠放的三角形纸板。[学生活动]按照课件的演示,两个同学合作,叠、剪、拼。2、问题(2):你拼出了怎样的四边形?[学生活动]小组交流合作,展示交流的结果。[教师活动]选择具有代表性的图形:(甲)(乙)3、问题(3):为什么我们把(甲)图叫平行四边形,而(乙)图不是平行四边形呢?[学生活动]认真观察、讨论、思考、推理。[教师活动]鼓励学生交流,并是试着用自己的语言概括出平行四边形的定义:两组对边分别平行的四边形叫着平行四边形。并指出:平行四边形不相邻的两个顶点连成的线段叫它的对角线。记作:ABCD。读作:平行四边形ABCD。师生共同讨论,得出如何用符号语言表示平行四边形的概念。4、做一做:先复制一个刚才拼的平行四边形,再绕其顶点旋转1800,然后平移,看能否与原平行四边形重合?你能得到什么结论。[学生活动]动手操作,积极探究,得出平行四边形的性质:平行四边形的对边相等、平行,对角相等,邻角互补等。[教师活动]鼓励学生用多种方法探究。三、运用新知,反馈练习例、学校准备修建一个平行四边形的花坛,如图,要想使其一个角为450,那么其它三个角应是多少度?[学生活动]作尝试性解答。[教师活动]引导学生建立数学模型,并要求学生学好几何,设计更多更好的图案,美化我们的家园。A30C随堂练习:1、填空:如图,ABCD中∠B=560,AB=­­­­(),CB=()25∠D=(),∠C=(),∠A=()。BD2、在ABCD的四条边中,哪些线段可以通过平移而相互得到?四、课堂小结请同学们回忆一下,这节课有哪些收获?五、快乐套餐1、P85习题4.1T1、2、3;2、请你以平行四边形为主设计一个图案,并制作成网页在互连网上;3、数学日记(小组交流,口头完成)

本节课我最感兴趣的部分本节课我解决的问题本节课我学会的方法本节课我感到疑惑的部分我还想知道

篇3

关键词:数方格法。平行四边形

【中图分类号】G40-03 【文献标识码】 【文章编号】

[教学内容]苏教版五年级数学(上册)第12-13页例1、例2、例3。

[教材简析]平行四边形面积的计算共分两课时教学。第一课时主要是引导学生探索平行四边形的面积公式,第二课时主要是应用平行四边形的面积公式。本设计是第一课时。教材安排了三道例题。例1从比较方格纸上每组中的两个图形面积是否相等入手,引导学生把少复杂的图形转化成相对简单的熟悉的图形,让学生初步感受转化方法在图形面积计算中的作用,并为进一步的探索活动提供基本思路。例2引导学生通过平移把平行四边形转化为长方形,教材一方面突出了平移在转化过程中的应用,另一方面也鼓励学生用不同的方法实现转化的目的。例3的重点则放在探索平行四边形与转化成的长方形之间的联系上。

[教学目标]

1、懂得用转化的方法把平行四边形转化成长方形,探索出平行四边形面积计算公式,并能应用公式计算平行四边形的面积。

2、理解图形之间的内在联系,体验探究平行四边形面积公式的过程。

3、培养学生的操作、比较、抽象、概括能力。感受数学与生活的联系。

[教学重点]掌握平行四边形面积公式。能正确计算平行四边形的面积。

[教学难点]平行四边形面积公式的探究推导过程。

[教学过程]

一、谈话导入

同学们,上节课我们进行了《面积是多少》的动手操作实践活动。你们还记得求不规则图形面积的方法吗?(学生回顾并交流了上节课学习的“四种”不规则图形面积的计算方法)这节课,我们就运用这些方法来探究“平行四边形面积的计算”这个问题。板书课题:平行四边形面积的计算。

二、探究新知

1、课件出示例1插图。判断每组中的两个图形面积是否相等。

(1)观察每组的两个图形说一说自己判断的方法。

生1:我是通过数方格的方法知道每组的两个图形面积相等的。

生2:我是通过平移的方法知道每组的两个图形面积相等的。

根据学生的回答师板书:

方法一:数方格法。

方法二:平移法。

(2)师问:比较上面两种方法你们认为哪种方法比较简便呢?学生经过比较和交流,一致认为方法二比较简便。

(3)师小结:把每组左边的图形经过分割平移,就转化成了和右边一样的图形。转化法是我们以后经常要用到的方法。教师利用课件演示。

2、课件出示例2插图。你能把平行四边形转化成长方形吗?

(1)师问:怎样把平行四边形转化成长方形呢?(以小组为单位,拿出课前准备的方格纸、直尺和剪刀动手操作)。

(2)组织学生汇报。

①从平行四边形左边(或右边)剪下一个直角三角形,然后向右(或向左)平移,可以拼成一个长方形。

②将平行四边形沿高剪下,然后向右平移,也可以拼成一个长方形。

设计说明:学生可能想出很多方法,分割平移转化成长方形,让学生体验各种方法的合理性,并对各种方法进行比较,掌握简单、易于操作的方法,并且在头脑中形成表象

3、课件出示例3。

(1) 要求学生从教材第127页上剪下一个平行四边形。学生动手操作。

(2)组织学生把它转化成长方形,求出面积。完成例3中的表格(以小组为单位完成填表)。

(3)指导讨论:(课件出示讨论提纲)

① 转化成的长方形与平行四边形面积相等吗?

②长方形的长和宽与平行四边形的底和高有什么关系。

③根据长方形的面积公式,怎样求平行四边形的面积呢?

(4)、教师启发性小结:我们用割拼法把平行四边形转化成长方形,什么发生了变化?,从什么变成了什么?,什么没有变?。再想一想,平行四边形的底等于长方形的什么?,平行四边形的高等于什么?,长方形的面积=长×宽,那么平行四边形的面积呢?板书:(略)。

如果用S.a.b分别表示平行四边形的面积、底和高。那么平行四边形的面积公式可以写成S=ab

(5)教学“试一试”(先独立完成,集体反馈时指名说一说所应用的面积公式。)

设计说明:学生经过动手操作、转化、计算、填表、比较等一系列实验活动,沟通了新旧知识的内在联系,探究出了平行四边形的面积公式。

三、巩固练习

1、选择题、(把正确答案前的编号填在括号里)

右图的面积是( )

①15m ②15m2 ③15cm2

2、操作练习:(先画一个平行四边形,测量出有关数据,再计算平行四边形的面积。)

设计说明:练习为了培养学生的动手操作能力和应用公式计算面积的能力。

四、全课总结

通过本节课的学习,你有哪些收获?还有什么不懂的问题? 同桌交流自己的体会培养学生的抽象概括能力。

[资料链接]《新课标》九年义务教育学段的“空间与图形”部分,和平行四边形有关的知识有:

1、平行四边形定义:两组对边分别平行的四边形叫做平行四边形。

2、平行四边形面积=底×高。

3、平行四边形性质:(1)平行四边形的对边相等;(2)平行四边形的对角相等;(3)平行四边形的对角线互相平分。

篇4

【教学内容】

  教科书第70页例1、例2、练习十九1,3,4。

【教学目标】

1.联系生活实际,通过观察、操作等活动,认识平行四边形及其特征。

2.经历自主探索平行四边形特征的过程,培养学生动手操作、合作交流的能力,进一步发展空间观念。

3.在观察、操作、交流等数学活动中,让学生进一步体会几何图形的学习方法,积累认识图形的学习经验,感受数学思考的条理性。

4.应用平行四边形的特征解决简单实际问题,体会平面图形的学习价值,提高学生的学习兴趣。

5.了解平行四边形在生活中的应用。

【教学重、难点】

教学重点:认识平行四边形及其特征。

教学难点:自己探索、发现、描述、应用平行四边形的特征。

【教学准备】

教具:课件,长方形、三角形活动框,磁性小棒。

学具:三角板,量角器,直尺,平行四边形

纸片(4人小组相同),小棒4根(两两等长)。

【教学过程】

一、    导入新课

 

1.     目标导学。

(1)           什么是平行四边形?

(2)           平行四边形有什么特征?

(3)           长方形、正方形是平行四边形吗?

(4)           你能用平行四边形的特征解决简单的数学问题吗?

(5)           平行四边形在生活中有哪些应用?

2.     活动引入,发挥想象。摆小棒游。

学生在桌子上任意摆1根、2根、3根、4根小棒,想一想,你会摆出哪些我们学过的形状?同桌交流,说一说自己摆的是什么形状。

[同一平面内,学生用小棒可能会摆出线段、角、相交(垂直)、平行、三角形、任意四边形、长方形、正方形或平行四边形等。

3.揭示课题,激发兴趣。]

在同一个平面内,用两根小棒可以摆角、平行线和垂线,用3根小棒可以围成三角形,那么用4根小棒就可以围成四边形。

长方形、正方形、平行四边形都有4条边,所以称为四边形。长方形和正方形同学们非常熟悉,而对于平行四边形却比较陌生,今天我们就一起来研究平行四边形的特征。

[学生已认识了平行和垂直,掌握了长方形、正方形、三角形的特征。通过富有挑战性的摆小棒活动,既能激发学生的想象力和求知欲,又能唤起对旧知识的回忆,使学生在研究图形特征时,自觉将视角引入边、角及平行和垂直等问题中。]

二、探究新知识

1.教学例1,认识平行四边形的静态特征。

(1)联系实例,初步感知。

(出示例1)平行四边形在生活中应用广泛。仔细观察屏幕,你能在这些物体上找出平行四边形吗?

学生边指边说抽象出实物中的平行四边形。

(2)思考:平行四边形一样吗?哪里不一样?(大小、边的长度、平行线的倾斜方向、角度等不一样。)

为什么我们都叫它们平行四边形呢?

什么是平行四边形?有两组对边分别平行的四边形。

2.探究平行四边形的特征

(1)经验迁移,学法指导。

它们除了两组对边分别平行,还有什么共同的特征呢?前面认识三角形时,同学们已经有了一些学习图形的经验,如果老师让你们自己去寻找平行四边形的特征,你准备从哪些方面去研究?(边和角,数和量……)

学习几何图形,就要抓住图形的关键部分,用眼看一看,动手做一做,用脑想一想,才能发现它们的特征。

(2)小组合作,自主探究。

①请拿出你们准备的平行四边形纸片,4人小组合作,用前面学习图形的方法,去寻找平行四边形的特征,可以在图片上适当标注,然后结合数据在小组内说一说你的发现。

②全班交流,引导认识。

你们发现了平行四边形的哪些特征?你们是通过什么方法发现的?

预设1:平行四边形有4个角、4条边,我们是通过看和数发现的。

预设2:平行四边形两条长边一样长,两条短边一样长,我们是用直尺量的。

预设3:平行四边形两条长边互相平行,两条短边也互相平行,我们是用三角板和直尺验证了的。

预设4:平行四边形对角相等,我们是用量角器量的。

小结:平行四边形的两组对边平行且相等,对角相等。

 [通过观察、动手、动脑、看、数、量、议等活动、归纳总结,发挥了学生的主观能动性。]

3.教学例2,认识平行四边形的动态特征。

同学们真能干!大家团结协作,采用多种方法、多种手段找到了平行四边形的一些特征,并通过相互交流,验证了平行四边形这些特征的科学性。不过,平行四边形还有些特征不容易被发现,你们想知道吗?

(1)感知平行四边形“容易变形”的特性。

老师拿出长方形活动框。这是一个像孙悟空一样会变的平行四边形,像老师这样捏住它的两个对角,向相反方向拉动,它会听你们的话。

我们用同样的方法再来拉一拉三角形活动框,它会听你们的话吗?在拉动的过程中,你发现了平行四边形的什么奥秘?(三角形具有稳定性,不容易变形;平行四边形不稳定,很容易变形。)

拉动过程中,什么变了?什么没变?(边长没变,角度变了,两条边的距离变了)

平行四边形“容易变形”的特性在生活中也有很大的用处。(课件演示:升降机、伸缩门工作等。)

(2)理解长方形、正方形与平行四边形的联系。

①拉动平行四边形当拉成4个直角时就变成长方形了

②平行四边形和长方形有什么相同和不同的地方?长方形是不是平行四边形呢?同桌讨论一下。

预设1:长方形和平行四边形的相同点都是两组对边都分别平

行,说明长方形也具有平行四边形的特征,它是平行四边形。

预设2:它们的不同点是长方形4个角都是直角,所以我认为长方形是特殊的平行四边形。

③那正方形又是不是平行四边形呢?

预设3:正方形也有两组对边分别平行,所以它也属于平行四边形。同时,它还具有4个角都是直角、4条边都相等的特征,所以它还是特殊的长方形。

④原来平行四边形在特殊情况下也能变成长方形或正方形,所以我们说,长方形和正方形是特殊的平行四边形

⑤小结:在研究图形的过程中,我们要学会比一比、议一议,在变化中寻找图形隐藏的特征,发现图形之间的联系和区别。

[通过“拉一拉”的操作活动,引领学生感悟平行四边形“易变形”的特性,理解长方形、正方形与平行四边形的联系,注重学生经验的迁移和教学方法的引导,有利于培养学生数学思考的条理性和逻辑性。]

三、巩固练习,加深认识

1.练习十九第1题。

引导学生遮一遮,比画比画,结合特征寻找图形。

2.练习十九第3,4题。

学生独立做,交流做法,说一说是怎样想的。

3.     开放练习,拓展思维

4.     学校花匠准备在花园里栽4株花,并希望这4株花能围成一个平行四边形,他已经栽了3株,请你想一想第4株花可以栽在哪里。

 [练习由直观操作题到抽象的图形思维题,都紧紧抓住了平行四边形的特征去思考,由简到难,逐步拓展,由学生独立完成到教师引领,层层推进,较好地检验了学生应用新知识解决简单问题的能力。]

五、回顾梳理,总结反思

解决目标导学5个问题

你还有哪些补充?

篇5

四边形分类:

1、一般四边形:是指四条边都不相等,四个角也都不相等的四边形;

2、平行四边形:两组对边分别平行的四边形叫做平行四边形 。平行四边形一般用图形名称加四个顶点依次名称。平行四边形包括矩形、菱形、正方形;

3、梯形:梯形是指一组对边平行而另一组对边不平行的四边形。平行的两边叫做梯形的底边。梯形包括一般梯形、直角梯形、等腰梯形。一腰垂直于底的梯形叫直角梯形。两腰相等的梯形叫等腰梯形。

(来源:文章屋网 )

篇6

【关键词】数学;小学;三角形;教学;案例

教学内容:

北师大版小学数学第八册《三角形边的关系》

教学目标:

1、通过摆一摆等操作活动,探索并发现三角形任意两边的和大于第三边,并应用这一性质判定指定的三条线段能否组成三角形。

2、引导学生参与探究和发现活动,经历操作、发现、验证的探索过程,培养自主探索、合作交流的能力,激发学生探究知识的愿望和兴趣 ,进一步发展空间观念,锻炼思维能力。

教学重点:

探索发现三角形任意两边的和大于第三边。

教学难点:

能应用发现的结论,来判断指定长度的三条线段能否组成三角形,并能灵活实际运用生活。

教学过程:

一、导入

1、小熊要建一座小竹屋,什么形状的屋顶美观又稳固?(三角形)

2、小熊已搭好了一条8m的边,从3m、4m、5m的竹子中再选两根,合起来做三角形屋顶,可以怎样选择?

3、学生操作演示(实物投影):老师事先准备了4根分别注明是8cm、3cm、4cm、5cm的小棒(老师说明:cm代表m)

3cm、4cm、8cm (不能围成)

3cm、5cm、8cm (不能围成)

4cm、5cm、8cm (能围成)

4、看到结果,你有什么疑问?(为什么有的能围成三角形,有的不能围成?到底怎样的3根小棒才能围成三角形呢?能围成三角形的三根小棒之间有什么关系?)

5、让我们像数学家一样去探索和发现三角形边的关系(板书课题)。你有信心和勇气吗?

二、实验探索:

1、分组实验,合作探索:

从3cm、3cm、3cm、4cm、5cm、6cm、9cm共7根小棒中选三根小棒摆一摆,也可以用画一画(自己选择数据画三角形)、量一量(量已有三角形的各边)、折一折(用纸折三角形)等其它方法来试一试。将实验结果填在报告单中:

(附实验报告单):

3cm、3cm、3cm、4cm、5cm、6cm、9cm

第一边长度cm第二边长度cm第三边长度cm能否围成(能√,否×)比较三条边关系

3453+454+535+34

2、小组内分析数据,交流探究结果。

三、发现结论

1、小组汇报交流实验结果:你发现了什么?(能围成的三角形任意两边之和都大于第三边。)

①不能围成三角形的每组小棒的长短有什么关系?(有一组两边之和小于或等于第三边)

如:3+4

②能用一句话说说你的发现吗?(三角形任意两边之和都大于第三边)

2、归纳结论:

同学们,祝贺你们探索和发现了三角形边的关系,让我们自豪地再说一遍这个结论。

四、拓展应用

师:同学们真了不起,能探索和发现三角形三边的关系了。那么请同学们拿出信封中的三根小棒,说说为什么这三根小棒围不成三角形呢?

生1:我的信封中的三根小棒中有两根小棒的长度和没有第三根长,所以围不成。

生2:我的信封中的三根小棒中的两根小棒的长度和等于第三根,所以也围不成。

师:看来只有当三根小棒的长度满足三角形边的关系,才能围成三角形。请同学们判断下面几组线段是否能围成三角形?

(1)3厘米 4厘米 6厘米 ( )

(2)1厘米 2厘米 3厘米 ( )

生1:因为3+4>6、4+6>3、3+6>4,满足了三角形边的关系,所以能围成三角形。

生2:因为1+2=3,所以围不成三角形。

师:大家想一想,有没有一个简单的方法,快速判断三条线段是否能围成三角形?

生1:可以直接看较短的两条线段之和是否大于第三条线段,如果大于就说明能围成,反之就不能围成三角形。

生2:我同意,两条短边之和大于第三边,那么长边和短边之和肯定就大于另一条短边了。

师:同学们说的很好,下面就请同学们自己说几组线段让同学们用这个方法快速判断一下。(同桌互说)

五、完成书上的例题填表然后集体交流

六、全课总结

这节课你有哪些收获?关于三角形边的关系还有值得我们探讨的地方,比如三角形任意两边的差与第三边有什么样的关系?有兴趣的同学课后可以自己探索。

反思:

对于四年级的学生来说,三角形一点都不陌生,所以我放手让学生独立进行操作,把较多的时间放在了探究三角形边的关系方面了,这是本课的一个难点。从“是不是所有的三根小棒都能围成一个三角形?”,借助了小棒、画图等手段,引发学生的主动探究,使学生获得了一定的数学知识,激发了学习兴趣,培养了探索意识。

我首先创设有趣的、具有生活实践意义和挑战性的问题情境,可以激发学生强烈的求知欲和探索兴趣,使学生积极主动参与操作活动,进行探索。通过小熊造房子盖三角形屋顶这一具体情景,创设数学问题,激发学生强烈的探究欲望,感受数学学习的价值,体现了“数学知识来源于生活”。

其次,我设计了摆三角形的探索性学习活动。三角形两条边长度的和大于第三边,是本课的教学重点,是三角形内在的特征,教学时采用的一般操作活动是很难让学生自主体验的,因此,我由指向明确的问题导入:是不是任意长度的三条线段都能围成三角形呢?继而组织学生展开探索性学习活动,把探索结果记录下来后,组织全班学生展开充分的讨论:为什么不能围成三角形,什么情况下能围成三角形。其中,着重解决两边之和等于第三边的情况,并引导学生形成思维:两条边长度之和大于第三边,是指任意两条边之和大于第三边,在此基础上,进行抽象概括,形成正确认识。这一过程,使学生既加深了对三角形内在特征的认识和理解,又通过此过程感受到数学思想方法,提高了数学学习的兴趣和信心。

再次,我安排了探究意味很浓的课堂练习。课堂练习不是简单的强化和巩固,而是进一步完善认知结构,优化思维的过程。教学中我充分注意到了这一点,通过练习,学生在所学内容的基础上,对知识又有发展,找到了最佳的判断方法。

课堂是每个学生都在经历着的生命历程,学生渴望着这个历程的丰富多彩,生活中毫不起眼的一些例子都能引起他们为之思考、争论、兴奋、抱怨,那是因为师生共同的“演绎”让课堂成为富有经历与创造的过程。我注意引导学生自己动脑、大胆猜想、勇于实践、积极创新,用数学的眼光去探索和发现,使学生感受到学习数学的乐趣。但在组织学生动手实践时,怎样引导学生有序地、有目的性地去合作探索?这是值得我去探索,去继续努力的。

参考文献

篇7

课件出示了:等腰三角形、等腰梯形、正五边形、平行四边形

我启发学生:这些平面图形中,哪些是轴对称图形?哪些不是轴对称图形?(稍停)别忙着发言,先想一想,轴对称图形有什么特点?要知道一个图形是不是轴对称图形,可以怎样做?

接着,我让学生从信封中拿出这几个图形,先动手折一折,再和小组里的同学说一说,这些图形中,哪些图形是轴对称图形。

在汇报的过程中,学生的思维很活跃,让我惊叹。第一个学生说:“我们小组通过折一折,发现只有平行四边形不是轴对称图形,其他三个都是轴对称图形。”他刚说完,有一个学生举手说:“我发现老师课件上的平行四边形短一些,而我们信封中的平行四边形长一些,我觉得课件上的这个平行四边形应该是轴对称图形。”这个学生观察很仔细,于是我就说:“瞧,老师用剪刀把它的长边剪短一点点,你再折一折,是轴对称图形吗?”他折了折说:“不是轴对称图形。”

这时候,另一个学生快速站起来反驳道:“老师,你看,我把信封中的这个平行四边形剪短了,把它对折后,两边完全重合。”我忙走过来一看,果然是的,原来他把信封中的平行四边形长边也剪短了,剪成了菱形,很是出乎我的意料。既然出现了我课前没有预料的情况,我不能避而不谈,于是借机说:“你很爱动脑筋,很不错,你剪出的这个平行四边形的确是轴对称图形,因为这是一个特殊的平行四边形,以后你们会知道,它叫菱形,四条边一样长。这个特殊的平行四边形是轴对称图形,但是我们判断的是课件上的这个平行四边形,通过折一折,它不是轴对称图形。大家明白

了吗?”

这时,一个学生站起来忙说:“老师,我明白了,也就是说平行四边形只有在特殊的情况下才是轴对称图形,‘试一试’中的这个平行四边形不是特殊情况,所以不是轴对称图形。”三(7)班的学生真的是个个出色啊,于是,我又一次竖起了大拇指,再一次进行了表扬。

篇8

    “谁能说一说,要想求出平行四边形的面积,就必须知道什么条件?”

    学生对这个问题几乎一致的回答是:“必须知道这个平行四边形的底和高。”

    小学数学课堂上,这样的师生问答非常普遍。教师问得好,可以启发学生思维,使学生形成正确概念;问得不好,就可能禁锢学生的思维,甚至导致学生形成错误概念。

    前面这一问一答,连起来说,就是:要想求出一个平行四边形的面积,就必须知道这个平行四边形的底和高。

    这个结论或许会使学生形成这样一个思维定式:只要遇到求平行四边形面积的问题,就必须先求平行四边形的底和高。如果求不出底和高,自然就求不出平行四边形的面积。这样一来,学生如果遇到下面的问题,可能就无从下手了。

    问题:在下图中,三角形ABE的面积为24平方厘米,求平行四边形ABCD的面积。

    翻阅一些《小学数学教案选》发现,类似提问还比较普遍,比如:

    要求出长方形的周长,就必须知道这个长方形的什么?(答:长和宽)   

    圆锥和圆柱的体积在什么条件下存在三分之一的倍数关系?(答:等底等高)

    要求一个小数的倒数,就必须先把它化为分数。

    为了说明这种语言的问题所在,下面我从逻辑和数学两个方面进行分析。

    从逻辑的角度看,一个命题(在逻辑学中称为“判断”)与它的逆否命题是等价的,它的逆命题与它的否命题是等价的。但命题与它的逆命题和否命题并不等价。这就是说,一个真命题的逆命题和否命题未必是真的。根据平行四边形面积公式,可以知道命题——如果已知一个平行四边形的底和高,则可以求出这个平行四边形的面积——是真的。其逆命题和否命题分别是:如果可以求出一个平行四边形的面积,就一定知道这个平行四边形的底和高;如果不知道平行四边形的底和高,就无法求出这个平行四边形的面积。这样的结论与原来的命题并不等价。老师将求解面积的一条途径简单化为唯一途径,极容易给学生造成错误认识。事实上,能用公式求出面积的平面图形是很少的,更一般的方法是寻求图形面积之间的关系。比如在前图中,只要看出平行四边形ABCD的面积是三角形ABE面积的2倍,问题就可以迎刃而解了。

    平行四边形面积公式“面积=底×高”,在数学中可以看作是一个函数关系。函数通常描述自变量和因变量之间的依赖与制约关系,体现的是当自变量确定的时候,因变量随之确定。反过来却不一定成立,就是说当因变量确定的时候,自变量未必随之确定。

    在“面积=底×高”这一函数关系中,底和高是自变量,面积是因变量,当底和高确定的时候,则面积随之确定;反过来,当面积确定的情况下,底和高未必能够确定。

    教师在课堂上提问,其根本目的在于促进学生思考。因此不妨把提问设计得宽泛一些,让学生有充分的思考空间。在教学平行四边形的面积公式之后,如果提出如下问题供学生思考,也许会得到更好的效果。

    1.如果两个平行四边形等底等高,那么这两个平行四边形的面积具有什么样的关系?

    2.如果两个平行四边形面积相等,那么这两个平行四边形的底和高具有什么样的关系?

    3.在同一个平行四边形中,底、高、面积三者满足什么关系?

推荐范文